A View of Professional Development as Technology Transfer

Paul Eakin
Department of Mathematics
University of Kentucky
paul@ms.uky.edu

Supported by the National Science Foundation through the Appalachian Math Science Partnership
With

• Dr. Lee Alan Roher, mathematics teacher, Boyle County High School, Boyle County, Ky
• 2009 doctoral dissertation, University of Kentucky

– “The relationship between the degree of participation in online embedded professional development for high school mathematics teachers and student achievement in college algebra.”
“technology transfer” as opposed to “professional development”
The term “PD” communicates:

– A sense of “expert” service to enhance the productive capacity of the receiving individuals

 • Often a sense of “remediation”

– No sense that selection to participate enhances (or signifies) the status of the recipients in the receiving organization

– No sense that content is uniquely available from the source

– A sense of focus on general goal(s); difficult to assess
“Tech Transfer communicates:

• A sense of collegial transfer done to improve productive capacity of the receiving organization
• A sense of the receiving organization sending its best people to receive the transfer
• A sense of new knowledge of established potential to enhance productivity being communicated by its originators
• A sense of focus on specific goal(s); much easier to assess
The Evolution of Intel’s Copy EXACTLY!
Technology Transfer Method

Chris J. McDonald, Intel SEMATECH

Index words: copy exactly, technology transfer

Abstract
Semiconductor manufacturing is characterized by very complex process flows made up of individual process steps, many of which are built to a particular process. Furthermore, there are many steps whereby each final product results from matching device and final product parameters. Changes would still occur

Introduction
Table 1 shows the typical technology transfer approaches used over the last ten years or so. At the 1.5-micron generation, process flows were much simpler than they are today. A small band of technical experts would typically be employed to orchestrate a successful technology transfer. Generally, there would be a lengthy “make it work” strategy. Table 1:

<table>
<thead>
<tr>
<th>Technology Generation</th>
<th>Transfer Strategy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 micron</td>
<td>“Make It Work”</td>
<td>Small band of engineers. Few ground rules needed.</td>
</tr>
<tr>
<td>1.0 and 0.8 micron</td>
<td>“Process Output Matching”</td>
<td>Copy selectively. Match to existing factory conditions.</td>
</tr>
<tr>
<td>0.5 micron</td>
<td>“Copy EXACTLY!”</td>
<td>Copy everything that might affect the process.</td>
</tr>
<tr>
<td>0.35 and 0.25 micron</td>
<td>“Systems Synergy”</td>
<td>Copy all manufacturing systems.</td>
</tr>
</tbody>
</table>
prove product quality and reliability program effectiveness, the transfer from R&D materials development to manufacturing instruction, or to a new factory school, offered the opportunity to introduce promise improvements to the equipment teachers and process instruction. The latest model equipment curriculum or even a new vendor text might be chosen. Process Instructional recipes could be changed to improve
Copy Exactly!

Transfer the technology along with all of the tools and the capacity to employ them in exactly the same manner and as productively as the developers.
Access to Algebra: A Copy Exactly! Experiment

- **The Technology:** A College Algebra Course
 - Application: Production of college credit in college algebra

- **Objective:** Transfer to 7 Appalachian Secondary Schools (14 Math Teachers) the capacity to offer “exactly” the same course as that taught on campus.

- **Question 1.** What precisely is to be “transferred” and how do we determine if it has been transferred “exactly”

- **Question 2:** Is the course content substantially new to the recipients?
The course

- Very classical approach to content (sixth to nineteenth century mathematics)
 - technology (calculators) for “arithmetic”
- New (free) text written specifically for the project
 - Large amount of “new” material
 - Not familiar to most teachers
 - Some not familiar to new graduate students
- Companion graduate course for teachers on coordinate free approach to the same material
College Algebra by Avinash Sathaye

- Studies the interplay between algebra and geometry
 - geometric information in coefficients of algebraic expressions.
- Emphasis on a few primary tools
 - Euclidean algorithm
 - Aryabhata Algorithm
 - Cramer's Rule
 - Complex numbers
 - Binomial Theorem
- Companion web homework
- Free, open source
- Written specifically for this project

http://www.ms.uky.edu/~sohum/ma109/ma109_fa08/
Question 10

The fraction \(\frac{308,712}{334,248} \) is not in lowest terms since both the numerator and denominator are even. So \(\frac{308,712}{334,248} \) and \(\frac{154,356}{167,124} \) are fractions that represent the same rational number, \(r \). Find the fraction in "lowest terms" which represents \(r \). That is, write \(r = \frac{A}{B} \) where \(A \) and \(B \) are both positive and have no common factor other than 1.

\[A = \boxed{} \quad B = \boxed{} \]

Remember not to include commas in your answers.

\[
\begin{array}{ccc}
1 & 0 & 308712 \\
0 & 1 & 334248 \\
-1 & 0 & 308712 \\
-12 & 1 & 25536 \\
-11 & 13 & -12 \\
-5 & -144 & 133 \\
733 & -677 & 0 \\
\end{array}
\]

\[
733 \times 308712 = 677 \times 334248
\]

Answer = \(\frac{677}{733} \)
Question 16

Larry has a balance, a large collection of 43 gram weights and another large collection of 37 gram weights. He also has a golden object which is supposed to weigh exactly 6 grams and he wants to check the weight. Complete the following Aryabhata table

\[
\begin{array}{cccc}
\text{minus quotient} & \text{Answer 1} & \text{Answer 2} & \text{Remainders} \\
1 & 0 & 43 \\
0 & 1 & 37 \\
\end{array}
\]

and use part of it for a recipe to place weights of one type on one side of the balance and weights of the other type on the opposite side so that the scale will perfectly balance if the weight of the object is correct. To do this, one would place [] of the 37 gram weights in the left pan and [] of the 43 gram weights in the right pan.

Solution:

\[-6 \times 43 + 7 \times 37 = 1\]

\[6 \times (-6 \times 43) + 6 \times (7 \times 37) = 6 \times 1\]

\[-42 \times 37 + 36 \times 43 = 6\]

\[36 \times 43 = 6 + 42 \times 37\]
The graph of the ellipse E, with equation $9x^2 + 16y^2 - 289 = 0$ is shown. The vertical line is the graph of $x = -5$ and the horizontal line v is the graph of $y = 2$. Their intersection $P(-5, 2)$ is on E (i.e. is a solution to the equation). As in section 10.1 pf the text, substitute $x = u - 5$, $y = v + 2$ to get

$$9u^2 - 90u + 16v^2 + 64v = 0$$

which is the equation for the ellipse in terms of u,v.

(i) In terms of u,v the equation of the tangent line to E at P is $u + \boxed{} \cdot v + \boxed{} = 0$.

(ii) In terms of x,y the equation of the tangent line at P is $y = \boxed{}$.

Solution:

\[
9x^2 + 16y^2 - 289 = 0 \\
9(u - 5)^2 + 16(v + 2)^2 - 289 = 0 \\
9u^2 - 90u + 16v^2 + 64v = 0 \\
-90u + 64v = 0 \\
-90(x + 5) + 64(y - 2) = 0 \\
-90x - 578 + 64y = 0 \\
\]

\[
y = \frac{45x}{32} + \frac{289}{32}
\]
Solution:

\[-8x + 5 + 5x^2 - 2x^3 - y^3 - 10y^2 - 21y = 0\]
\[-8u + 60 + 5(u + 1)^2 - 2(u + 1)^3 - (v - 3)^3 - 10(v - 3)^2 - 21v = 0\]
\[-4u - 21v + 60 + \text{higher order terms} = 0\]
\[-4(x - 1) - 21(y + 3) = 0\]
\[-4x - 59 - 21y = 0\]

The point \(P(1,-3)\) lies on the graph of \(-8 \cdot x + 5 + 5 \cdot x^2 - 2 \cdot x^3 - y^3 - 10 \cdot y^2 - 21 \cdot y = 0\). If, as in section 10.1 of the text, make the substitution \(x = u + 1\), \(y = v - 3\) in this equation to produce an equation for the graph, expressed in \((u,v)\) coordinates.

(i) The \((u,v)\) coordinates of the point \(P\) are \((\boxed{}, \boxed{})\).

(ii) In \((u,v)\) coordinates the equation for the tangent line to the graph at \(P\) is \(\boxed{} = 0\).

(iii) In \((x,y)\) coordinates the equation of the tangent line is \(\boxed{} x + 12y + \boxed{} = 0\).
The transformation T maps the plane onto itself by multiplication by a complex number. That is, there is a complex number $C = a + ib$ such that for any point $P(x, y)$, $T(P)$ is the point corresponding to the complex number $C \cdot P$. For a particular complex number C the transformation T takes the smaller house in the diagram to the larger one. The point $A = \left(\frac{1}{4}, 1 \right)$ (the upper left corner of the window) on the smaller house is taken to the point $T(A) = \left(\frac{-19}{4}, -2 \right)$ on the larger house.

The complex number $C = \boxed{1 - 2i}$.

The small house is rotated 126.86 degrees counterclockwise and expanded by a factor of 5. The solution is as follows:

The complex number $C = \frac{1}{4} + i$.

The magnitude of C is $\|C\| = \sqrt{(-3)^2 + 4^2} = 5$.

The angle $\theta = \arctan \left(\frac{4}{-3} \right) + \pi = 126.8698$ deg.
Exams, homework, communications, materials distribution, attendance, etc. are managed through a very large mathematics instruction support system called “mathclass”

- developed at UK over the last 10 years
 - Mainly with NSF (AMSP) support
 - 5000 students (2,000,000 grading transactions) per semester
 - Open source
• The Mathclass system provides both the packaging mechanism and transfer methodology

"... common, open cyberlearning platform that supports a full range of teaching and learning activities, including assessment and analysis.

........"

"... collection of learning modules on the platform that teachers can easily integrate into their practice “
Project Format

- Course structured as coordinated, multi-section university course with on-campus and off-campus sections
- Participating teachers have their own “sections”
- All sections use the same text, syllabus, calendar
 - All students do (personal versions of) same online homework on the same schedule
 - All exams are open-response, commonly graded, taken at the same time
• On-campus sections taught by experienced on-campus instructors

• Teachers formally treated as teaching assistants in mathematics:
 – all have math degrees or course equivalent
 – most lacked 18-graduate hour Southern Association requirement to qualify as independent instructor and “teacher of record”

• Not a problem because of rigid UK control of curriculum, assessments, and (college) grades

• First off-campus “sections” were small:
 (2-6) students/teacher in initial semester
On-campus Comparison Group

• Students from an NSF STEP program at UK
 – Focus on Appalachian and Minority Science, Technology, Engineering, and Mathematics Majors (AMSTEMM)
• Motivated, well supported
• Interested in science, math
• Majority from Appalachian Kentucky
• Demographics, academic preparation largely reflect those of AA students
Transfer Program

• Summer:
 – Initial 1-day “face-to-face” meeting for intro to program and technology
 – 4-day “webinar” walkthrough of course with faculty materials developers

• Fall:
 – Weekly synchronous online seminar (course staff meeting) to go over upcoming material, instructional issues
Some Outcomes
Homework vs Test Average
Fall 2007 - Spring 2008

Scatterplot of AveExam vs AveHW

- GrpNon0
- HS
- AMSTEMM
- UK Gen Pop
- HS (W)
- AMSTEMM (W)
- UK Gen Pop (W)
Grade distributions: Fall 07-Spring 08

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E(F)</th>
<th>W</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Fall</td>
<td>16</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>39%</td>
<td>29%</td>
<td>12%</td>
<td>10%</td>
<td>2%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Secondary Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Fall</td>
<td>27</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>43%</td>
<td>19%</td>
<td>10%</td>
<td>6%</td>
<td>5%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>2008 Spring</td>
<td>26</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>34%</td>
<td>17%</td>
<td>16%</td>
<td>9%</td>
<td>5%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

Percentages are rounded to the nearest integer, so rows may not total 100%.

Note: AMSTEMM did not have a section of MA109 in Spring 2008.
Student success vs PD participation

<table>
<thead>
<tr>
<th></th>
<th>Teachers</th>
<th>Total</th>
<th>Total Enrolled HS Students</th>
<th>HS Students receiving College Algebra credit</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic Participation</td>
<td>9</td>
<td>28</td>
<td>26</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Non-systematic Participation</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td></td>
<td>21%*</td>
</tr>
<tr>
<td>S 07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic Participation</td>
<td>11</td>
<td>21</td>
<td>19</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>Non-systematic Participation</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td></td>
<td>33%*</td>
</tr>
<tr>
<td>F 07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic Participation</td>
<td>3</td>
<td>27</td>
<td>20</td>
<td></td>
<td>74%</td>
</tr>
<tr>
<td>Non-systematic Participation</td>
<td>5</td>
<td>40</td>
<td>25</td>
<td></td>
<td>62.5%</td>
</tr>
<tr>
<td>S 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic Participation</td>
<td>4</td>
<td>28</td>
<td>19</td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td>Non-systematic Participation</td>
<td>5</td>
<td>48</td>
<td>32</td>
<td></td>
<td>67%</td>
</tr>
</tbody>
</table>

* = skewed by outlier
Most S07-S 08 are repeating from previous semester