The ASU/Maricopa Mentoring Partnership

Eric Kostelich, ASU (kostelich@asu.edu)
Roberto Ribas, SCC (roberto.ribas@scottsdalecc.edu)

ARIZONA STATE UNIVERSITY

October 6, 2014
Background: the ASU MCTP program

- Mentoring through Critical Transition Points (NSF DMS)
- **Program solicitation:** Provides funds to develop a system of mentoring devoted to points of transition in a mathematical sciences career path that are critical for success . . . [and] emphasizes department-wide activities
- Partnership with the Maricopa County Community College District (MCCCD) to mentor promising transfer students majoring in mathematics and statistics
- Also includes a summer research component at ASU
Some background

- **ASU**: ~ 83,000 students in Fall 2014, including ~ 13,000 taking some online course
- **MCCCD**: ~ 225,000 students, including ~ 5,500 taking mathematics at the level of precalculus and above (~ 55 sections of engineering calculus)
- *New York Times*, Oct. 3: 7.7 million students are enrolled in community colleges (45% of the total)
- Total undergraduate enrollment of *U.S. News* top 25 colleges: 0.218 million
- **Meta-challenge**: How to address the STEM skills shortage at large scale cost effectively
The Starbucks program

- Any Starbucks employee working 20+ hours/week is eligible
- Starbucks will pay full tuition for employees admitted to ASU Online as juniors or seniors
- Freshmen/sophomores are eligible for partial scholarships
- Starbucks claims over 70% of its employees are current or aspiring students
- ~4,000 have applied so far, ~1,000 have been admitted
- Five semesters per year (7.5 weeks each)
Goals and vision of the program

- Answer the #1 question: What can I do with a math degree (besides teach)?
- Provide substantive examples of connections between mathematics and other disciplines
- Reduce “transfer shock” from 2-year to 4-year STEM programs
- Provide research experiences and “project seminar courses” for interested students
- Offer a continuing and supporting mentoring environment
Some ongoing issues

- MCCCD students do not have “majors” per se—they pick one of three tracks (arts, sciences, business)
- STEM advising at ASU is done by full-time “academic success specialists” who do not have STEM backgrounds
- Tenure-track faculty have significant research demands
- Daily demands of a math program with 18,000 students in 650 course sections
- Must work within existing course, articulation, and curricular frameworks
- Efforts must be able to scale
Program specifics

- 3-week, half-day “pre-REU” program at Scottsdale Community College
- 2 tracks of 19 students each: one for 1–2 semesters of calculus, another for 2+ semesters of calculus
- Partnership with the Barrett Honors College at ASU
- 8-week summer REU program at ASU for ~15 2nd–3rd year undergraduates each year
- Optional 300-level “project seminar” courses at ASU intended to serve as a bridge to 400-level courses in numerics, PDE, probability, etc.
The “project seminar” format

- Adapt some aspects of the summer REU to a 3-credit course during the regular academic year
- Prerequisites are 3 semesters of calculus plus differential equations and linear algebra (sophomore/junior level)
- Goals: provide a “path forward” to advanced courses in mathematics and applications
- Use real data in a nontrivial way
- Anticipated topics so far: (1) Math and Climate; (2) Math and Cancer; (3) Math and Imaging; (4) Math and Networks
The math & climate course

- Co-developer of this course: Alex Mahalov
- **Principal focus:** The mathematics of urban heat islands
- **Motivation:** Rapidly urbanizing cities in arid climates have very warm nights, especially in summer
- Start with simple cases and hand computation, then work up to realistic domains and more sophisticated computer models
- **Real data:** on nighttime temperatures, electricity consumption
- **Possible future scenarios:** What happens in mid-century based on expected demographic trends? global climate change?
Instructors: Yang Kuang, Tracy Stepien, and E. K.

Main examples: Prostate and ovarian cancer, melanoma, glioblastoma

Exponential, logistic, Gompertzian growth models

Mathematical analysis of surgery and chemotherapy regimens—which is best to do first?

Overview of statistics, especially \(p \) values and their limitations
Prostate cancer example: modeling, data fitting, prediction

doi:10.1063/1.3697848
Other common aspects

- Students have to read a research paper every week
- All students prepare a 15-minute talk and 5–10 page on a research paper (which includes some simulation/replication of results)
- MATLAB: scripts, functions, ode45, pdepe and plot
Other potential “seminar project” courses

- Metropolis algorithm, bootstrap sampling
- Game theory
- Kalman filtering
- Public-key cryptography
- Shotgun genome sequencing
- … Your ideas here!
Acknowledgments

Thanks to:

- National Science Foundation
- ASU Barrett Honors College
- ASU School of Mathematical and Statistical Sciences