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Preface

Mathematical biology is a fast growing field which is concerned with problems that arise
in biology. The aim is to address biological questions using mathematics. The mathematical
models that are used to address these questions depend in the specific biological context. They
include dynamical systems, probability, statistics and discrete mathematics. The approach in
addressing a biological question is to develop a mathematical model that represents the biological
background needed in order to address the question, show that simulations of the model are in
agreement with known biological facts, and, finally, provide a solution to the original question.
This approach to mathematical biology was carried out in two recent books: “Introduction
to Mathematical Biology”, by C-S Chou and A. Friedman (Springer-2016) and “Mathematical
Modeling of Biological Processes” by A. Friedman and C-Y Kao (Springer-2014). Each of these
books was based on a one semester course (the first one for undergraduate students and the
second for Master’s students) taught over several years at The Ohio State University in Columbus,
Ohio. Each of the books included MATLAB simulations and exercises. The present monograph
considers biological processes which are described by systems of partial differential equations
(PDEs). It focuses on modeling such processes, not on numerical methods and simulations. On
the other hand it also includes results in mathematical analysis of the mathematical models, or
of their simplified versions, as well as many open problems.

The monograph is addressed primarily to students and researchers in the mathematical sci-
ences who do not necessarily have any background in biology, and may have had only little
exposure to PDEs. We have included in an Appendix a ‘short course’ in PDEs in order to
familiarize the reader with the mathematical aspects of the models which appear in the book.
The first chapter introduces the basic biology that will be used in the book. The second chapter
introduces the basic blocks in building models, for example how to express the fact that a ligand

activates an immune cell. The third chapter gives several simple examples of models on popula-
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tion dynamics. The fourth chapter develops two models of cancer. The choice of parameters in
the cancer models, as in all other PDE models, is critically important if the models are to have
a predictive value. In Chapter 5, we illustrate how to estimate the parameters of the first cancer
models of Chapter 4 using both experimental data and some ‘reasonable’ assumptions.

Chapter 6 describes mathematical results inspired by cancer models, including stability of
spherical tumors and symmetry breaking bifurcations, and it also suggests many open problems.

Chapter 7 addresses the question of the risk of atherosclerosis associated with cholesterol
levels. The model develops a system of PDEs that describe the growth of a plaque in the artery.
Chapter 8 describes mathematical results and open problems for a simplified model of plaque
growth. Chapters 9 and 10 follow the format of Chapters 7 and 8: Chapter 9 develops a model
of wound healing, and Chapter 10 describes mathematical results and open problems associated
with this model.

Almost all the PDE models introduced in this book are free boundary problems, that is,
the domain where each PDE system holds is unknown in advance, and its boundary has to be
determined together with the solution to the PDE system.

It is our hope that this monograph will demonstrate to the reader the challenges and excite-
ment, and the opportunities for research at the interface of mathematics and biology.

It is finally my pleasure to express my thanks and appreciation to Dr. Xiulan Lai for typing

the manuscript and drawing all the figures.
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Mathematical Biology: Modeling and Analysis

Description of Lectures

Professor Avner Friedman will give 10 lectures on Mathematical Biology. Modeling and Analysis. The 10 lectures
arc aimed at mathematics graduate students and faculty members with basic background in ordinary and partial
differential equations (ODEs and PDEs): no previous knowledge of biology is required. The aim of the 10 lectures is
to introduce the attending participants and students to basic concepts and knowledge of biology, and to demonstrate
by examples how to formulate interesting biological research questions, and how to address these questions using
mathematics.

The first two lectures will introduce the biological background and the biological expressions of biological interactions
that will be used in the remaining eight lectures. In the subsequent lectures, we shall present biological research
questions and develop mathematical models to address these questions. We shall also describe rigorous mathematical
results inspired by the models, and present open research problems,

Lecture 1, Introductory Biology

Description of the structure of a cells, the different types of cells, what is the functions of cells and how they perform
their tasks. In particular, we focus on cells of the immune system. Concepts such as proteins, cytokines, chemotaxis,
receptors, etc. will be explained.

Lecture 2: Building blocks of mathematical models

A mathematical model is developed in order to address a biological question. The model should include all the
biological species which are needed to address the biological question, but otherwise it, should be minimal. The
relations among these species are based on physical and biochemical laws.

We shall explain the concept of enzyme dynamics, derive the Michaelis-Menten and Hill laws. We shall show how to
express mathematically the fact that “a cell X produces cytokine Y,” or that “a cytokine Z inhibits the production of
Y by X.” the concepts of “logistic growth” and “chemo attractive force” will be defined, and advection-diffusion
equations will be introduced.

Lecture 3: Models of population dynamics

Many biological processes are concerned with populations of cells, but not with what happens within the cells. An
example is the harvesting of bacteria a chemostat. The chamber of the chemostat contains bacteria and nutrients, and
the bacteria feed on the nutrients and keep multiplying. At one side of the chamber there is influx of nutrients and at
the opposite side there is outflow of mixture of bacteria and unused nutrients. A mathematical model will address the
following question: How do we adjust the rate of inflow/outflow in order to maximize the bacteria output?

Epidemiology is the study of patterns, causes, and effects of health and disease in a population. Of particular interest
is the spread of infectious diseases in a population. The simplest example is the SIR model of susceptible, infected,
and recovered populations. We shall develop a mathematical model of SIR and use it to determine whether an initial
infection in a population will spread or die out.

Another completely different biological question arises when two species compete for resources or space. For
example, consider cancer cells and normal healthy cells in a tumor region. The cancer cells proliferate faster than
normal cells, but they are partially killed by immune cells. The question is whether the tumor will grow or shrink, and
this will be formulated as a mathematical model.

Lecture 4: Mathematical models of cancer

A solid tumor, or cancer, is an abnormal new growth of tissue that has no physiological function. Cancer initiates
when normal healthy cells undergo mutation and they begin to divide abnormally fast. There are different types of
cancer, depending on the location of origin. Cancer treatment includes surgery, radiation and drugs (chemotherapy).
Here, we focus on a specific drug.

We shall develop a mathematical model of cancer by a system of PDEs which includes enough variables (cells and
cytokines) in order to determine how effective the drug is.



Lecture 5: How to estimate model parameters
In Lecture 4, we encountered systems of PDEs, but in order to simulate the models, we need to determine all the
patrameters, which appear in the equations.

In this lecture we shall illustrate how to estimate all the parameters which appeared in the tumor model of Lecture 4.
Several methods will be used and several underlying assumptions will be made.

Lecture 6. Mathematical analysis inspired by cancer models

Mathematical models of biological processes include simulations. But we would also like to develop rigorous
mathematical analysis for the models. However, typically we can do it only for simplified models. In this lecture we
consider a very special case of spherical tumor and state theorems on the stability of the spherical tumor, and on the
existence of non-spherical branches of tumors which bifurcate from the spherical tumor.

Many open problems will be described.

Lecture 7: A mathematical model of atherosclerosis and the risk of high cholesterol

Atherosclerosis is a disease in which a plaque grows inside an artery that may eventually cause a heart attack or a
stroke. It is the leading cause of death in the United States. Cholesterol is a protein that lines up the membrane of cells;
these proteins are produced in the liver, packaged by lipoproteins, and then shipped to the cells through the blood
circulation. There are low density lipoproteins (LDL) and high density lipoproteins (HDL). If the inner layer of an
artery incurs a damage, the cholesterols enter into the inner layer of the artery and become oxidized, initiating the
process of plaque growth.

In this lecture we develop a mathematical model of plaque formation, and use it to develop a color “risk map” in the
(Lo, Ho)-plane, where L, and H, are the LDL and HDL levels in the blood, and the color shows the growth (or decrease)
of a small plaque once formed in the artery.

Lecture 8: Mathematical analysis inspired by the atherosclerosis model

We develop a simplified model of plaque formation consisting of only 4 variables: LDL, HDL, macrophages and foam
cells (‘obese’ macrophages). We prove mathematically that there exists small stable plaques, and determine their
stability.

However, the geometry of the artery is highly simplified, and many mathematical questions are open.

Lecture 9: Mathematical models of chronic wounds

Chronic wounds represent a major public health problem. Ischemia, primarily caused by damage to the capillary
system, presents a major complication in cutaneous would healing. One of the approaches to treat ischemic wounds
is to surround the wound with oxygen rich environment, so that cells which move into the wound microenvironment
in order to heal the wound receive the oxygen they need for their survival and function. In order to determine optimal
schedules for the oxygen treatment (how often and at what pressure) we develop a mathematical model

The model variables satisfy a system of PDEs in the healing tissue. The model predictions agree with experimental
results, and the model can be used to determine the state of healing for different oxygen treatments.

Lecture 10: Mathematical analysis inspired by the chronic wound model

We first consider a flat symmetric wound. We shall show that if the flux of oxygen into the wound is too small, the
wound will not heal, and its radius will not decrease after some time. The interesting open problem, mathematically,
is to prove that, if treated with enough oxygen, the wound will heal. (This has been shown in simulations.)

We also consider a 3-d wound and the question: would the wound start to heal for at least a small time? This is also
an open mathematical question.



Appendix: Introduction to PDEs

A.1. Elliptic equations

The Laplace operator in R" in defined as follows:

Consider the following boundary value problem (BVP) for a function u(z) in a bounded
domain Q with boundary 0€:
Ay = f(z) in €, (A.1)

,Bg—z +(1—Bu=g(z) on 0N (A.2)

where 0 < 8 < 1, 8/9n is the derivative in the direction of the outward normal 7, and f and
g are given functions. We refer to the system (A.1)-(A.2) with the boundary conditions 8 = 0,
B =1and 0 < B8 < 1 as the Dirichlet problem, the Neumann problem and the Robin
problem, respectively, or as the first, second and third BVPs, respectively.

If 0 < 8 < 1 then the system (A.1)-(A.2) cannot have more than one solution. Indeed, if u;

and us are two solutions then their difference v = u; — uy satisfies the homogeneous system
. ov
Av =0 in Q, ﬁg——l—(l—ﬁ)v:o on Q.
n

By integration by parts,

OZ/UA’U:/’UV-V’U:/(V-'UV’U—VU'VU)
Q Q Q (A.3)

:/ vVu i — [ |V
o0 Q
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and
W 1_
V”v-ﬁ'=%=-— ﬁﬁv if0<pB<l.

%/‘mvz-k/s;leP:O

sothat v=0in Qif 0 < g < 1. If =0 then v =0 on 92, and, by (A.3),

/ |Vo|? =0,
Q

and again v = 0 in 2. We conclude that u; = us.

Hence

In case 8 = 0 (the Neumann problem) we can only conclude from (A.3) that v = constant,
so that the solution is unique up to an additive constant.

An elliptic operator of the second order has the form

8
L= Z aii(x 81:‘8:1,3 + Zb £ — +e() (A.4)

ij=1 i=1 %
where a;;(z) = aji(z) and (a;;(z)) is a uniformly positive definite matrix,
n
3 ag(2)e; > el forall z € Q, €= (£, ...rEn) €R? (A5)
i,j=1

where 7 is a positive constant. Similarly to the BVP (A.1)-(A.2) we define the BVP for the
elliptic operator L by the equation

Lu(z) = f(z) in Q (A.6)
and the boundary condition "
u
6W +(1—-Bu=g on 09, (A.7)

where

=3
J

1,7=1
and @ = (n1,ng,...,n,) is the outward normal to 9§(t). Note that 5% is a derivative in an

outward direction, and du/IN = Qu/on when L = A.
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To prove uniqueness of the solution we shall use the following maximum principle.
Theorem A.1. Assume that the coefficients a;j(z), bi(x), c(z) are bounded functions, that
(A.5) holds, and that c(z) < 0 for x € Q. Ifv(x) is a continuous function in Q,

v(x) # constant, and — Luv(z) <0 in Q

then v(z) cannot take a positive mazimum in Q at any point zo of Q; furthermore, if the positive
mazimum 1s attained at a point xo € 082, then

Ou(xg)

N > 0.

To prove the first assertion, we assume that

maxv(z) = v(zg) >0 for some zg € L.
zefd

Then (o)
ov & 0“v(xo
— § ¥ <
= (zg) =0 and aij (o) B0, = 0,

i,j=1

so that
—Lv(zg) > —c(zo)v(zo) > 0 if ¢(x0) <0,

which contradicts the assumption that —Lv(z) < 0 in . If however ¢(xp) = 0 then there is no
contradiction, and in this case a much deeper argument (for details see, for instance, [8]) shows

that v = constant in 2, which is a contradiction to the assumption that v # constant.

Bu(xo)

oy > 0, requires

The second assertion of the maximum principle, with the strict inequality
the same type of argument used in the case where c(zo) = 0 [8].

Theorem A.2. If the coefficients of the elliptic operator (A.4) are bounded functions and
c(z) <0 in Q, then the BVP (A.6)-(A.7) has at most one solution if 0 < B < 1; if 6 =1 then a
solution is unique up to an addilive constant.

Proof. If u;, us are two solutions, then the difference v = u; — uy satisfies the homogeneous

equation Lv=20in Q, and the bOUHd&I‘Y condition
aN v on 9. 8
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Suppose v # constant. Then by the maximum principle, if v takes positive values in  then its
positive maximum can be attained only at boundary points. At one such point zg, g—]\’,(xo) >0
so that

v

a—N(xO) + (1 — B)v(ze) > 0,

which is a contradiction to Eq. (A.8). Hence if v # constant, then v < 0, and similarly —v <0,
so that v = 0, a contradiction. We conclude that v = constant and then, from Eq. (A.8) it
follows that v =0if 0 < g < 1.

We now turn to the question of existence. We begin with some definitions.

A function w(x) is said to be Holder continuous with exponent (0 < & < 1) in a domain

Q if

Hoo(w) = sup 2B =wO
syen |2 —yl*
z#Y
We introduce the following norms:
lw|cay = |w|pe@) + Hao(w),

and, more generally,

m
|w|cm+a(m = Z ‘Dk'l,U|Loo(Q) -+ Ha,Q(Dm'LU),
k=0

where D*w is the vector whose components are all the partial derivatives of order k of w. We
denote by C™1%(Q) the Banach space of functions w with norm |w|cm+e(q).

We make the following assumptions:

aij, bi, ¢ and f belong to C*(Q?), (A.5) holds, and c¢(z) <0 in & (A.9)

the boundary 02 can be represented locally by functions
z; = ®;(x1, .., Tj—1, Tjt+1, ..., Tn) (for some j) which belong (A.10)

to C?** and g(z) is in C?*® in these local coordinates.

Theorem A.3. If the assumptions (A.9), (A.10) hold and 0 < B < 1 then there exists a
unique solution u of the BVP (A.6), (A.7), which belongs to C***(Q).

One can prove the theorem first for the special case of the Laplace operator, and then use a
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method of continuity to prove the theorem for
Li=(1-0)A+0L, 0<6<1,

starting from 8 = 0 and ending at # = 1. The tool to accomplish this procedure relies on C?+%
a priori estimates for elliptic equations; for details see [8].
In the case of the Neumann BVP (8 = 1) f and g must satisfy a specific condition in order

for a solution u to exist. For example, when L = A, then by integration,

L= 2= o= oo

so that fan g must be equal to fQ f

A.2 Parabolic equations

We introduce a parabolic operator 2 — L in a domain Qr = {(z,t);x € Q(¢), 0 < t < T},

where
0
L= Z;am Ty t) Er 8% +i2::b z,t)— 61,'1 + c(z, 1), (A.11)
Z ai;(z,1)&& > v|€)* for all (z,t) € Qr and € € R, (A.12)
ij=1

where v > 0 and a;; = aj;. We consider the initial-boundary value problem (IBVP) for a

function wu(z, t):

% — Lu= f(z,t) in Qr, (A.13)

5% + (1 —B)u=g(z,t) on lateral boundary 9,Qr = {(z,t); z € I0(t), 0 <t < T}, (A.14)

u(z,0) = h(z) on Q(0) (A.15)
where 0 < T <o00,0< <1,
ou - du
8_N — P aij(l',t)n]'a—mi,

and 7 = (ni,...,ny,) is the outward normal to the boundary 0Q(t) of Q(t). Eq. (A.13) is also

called a diffusion equation.
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Analogously, to Theorem A.1l, the maximum principle for parabolic equations asserts the
following;:

Theorem A.4 Assume that the coefficient a;j, bi, ¢ are bounded in Qr, T < oo, that (A.13)
holds, and that c(z,t) <0 in Qp. If

0
8_1;_LUSO in Qp,

and if u takes its positive mazimum in Qy, at some point (xo,to) where Tg € N(ty), 0 < to < T,
then u(x,t) = u(xg, to) for all points (z,t) for which there is a curve (§(7),7) witht < 17 <1,
such that

E(r) e Q) for t<T<ty, and &)=z, &(to)= o

If, on the other hand, zo € OQ(to) and 2%(zo,to) = 0 then the same assertion holds.

This theorem can be used to prove uniqueness of the IBVP. We note that the condition ¢ < 0
is not needed for the proof of uniqueness. Indeed, if we set u = e’w then the parabolic problem
for v becomes a parabolic problem for w with different f and g, and with ¢(z,t) replaced by
c(z,t) — A, and we simply choose A such that c¢(z,t) — A < 0 in Q7. From Theorem A.4 with u
replaced by —u we conclude the following:

Theorem A.5. Consider the IBVP (A.18)-(A.15). If f > 0inQr, g > 0 in G2y and h > 0
in Q(0), then u > 0 in Q.

We introduce the following notation.

Ho 0, (w) = sup |w(m’t) — w(y, S)'

@0, [T —yl* + [t — 8o/’
(@,0)#(5)

|w|C‘"'“‘/2 (QT) = |w|L°°(QT) T Ha,QT(w)’

2
|wlgatantarz(Qr) = W]z + Y 1Diw|gaarzg + [Wilgaar(ay)
j=1

where DJw is the vector whose components are all the j-th order derivatives of w with respect

to the variables x4, ..., Zp.

To prove existence of solutions of the IBVP we need to make assumptions similar to (A.9),(A.10):

aij, bi, ¢ and f belong to C**/?(Qr); (A.16)
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the lateral boundary 0ol can be represented in local coordinates by
functions x; = ®;(Z1, .., Zj_1, Tji1, ey Tn, t) Which belong to 2t/ (A.17)

and g(z,t) belongs to C?**1*%/2 jn these local coordinates;

h(z) belongs to C***(Q(0)) and satisfies the following compatability condition:
There exists a C2t*112/2(Q(t4)) function, for some #, > 0, which statisfies (A.18)

(A.14) on 9y, and coincides with A in an Q(0)-neighborhood of 9€(0).

Theorem A.6. [8] If the assumptions (A.12) and (A.16)-(A.18) hold then there exists a
unique solution of the IBVP (A.13)-(A.15) which belongs to C*Te1+e/2(Qp),

A.3. Nonlinear equations and systems

Consider the case where in the BVP (A.6),(A.7) f is a nonlinear function of u and Du:
f = f(z,u, Du). (A.19)

To prove uniqueness we take the difference v = u; — uy between two solutions uq, uy and derive
for v a linear equation with coefficients which involve u;(z), Du;(z) (i = 1,2), and then apply the
maximum principle. To prove existence we use an iteration method, or a fixed point theorem:

We take any function @ in C?t(), set

and define u as the solution of (A.6),(A.7) for this f(z). We then consider the mapping W : & — u
in an appropriate closed subset of C***(Q) and prove that it is a contraction mapping and hence
has a unique fixed point, which is then the solution of (A.6),(A.7) for the function f given by
(A.19). The proof that W is a contraction mapping can be carried out under some assumptions

on f; for example, if f(z,u,w) and its first derivatives are in C*, and

|f (2,9, w)] < A+ e(ful + wl])
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where A, € are positive constants and ¢ is sufficiently small.

The same procedures for uniqueness and existence apply to a parabolic IBVP with
f = f('r’t7 u’ ‘Dzu);

in particular, one can prove that if f is any smooth function in all its variables then there exists
a unique smooth solution in a small ¢-interval [8].

In models that arise in biology we do not have just one but several parabolic equations:

5 5? )
m Z anii (7, 8) 5 g’; +Zbk,i(x,t)$ +p(z, t)ue = fu(w,t, @, Dyl) in Qp, (A.20)
i,j=1 I = :

with boundary and initial conditions

auk

ﬁkaNk

+ (1 — Be)ur = gx(z,t) on Oofdr, (A.21)

up = hy  on Q(0), (A.22)

where g}fl’“ . szzl ak,ij(a:,t)mg“’“ 0<B,<1,k=12,..,m, and 4 = (1, ..., Uy,); notice that
the equations are coupled through the functions fy(z,t, 4, D ).

As in the case of one equation, existence and uniqueness can be proved for a small time
interval.

In order to extend the solution to all of Q7, we need to establish a priori estimates of the

following type:

If a solution @ € C*+®1+2/2(Q ) exists for some 0 < 7 < T, then
| fi(x, b, d4(z, 1), Dpti(z,t))|canrzg,) < U(T)

where ¥(7) is a bounded function in any interval 0 <7 <T —¢, € > 0.
Since in biological models the wuy represent concentrations of species, it is important to es-

tablish that the uy are positive, or at least non-negative, functions. This is the case under the
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following assumption:

fulz, t, @, D@) = f2(x,t, 4, D@)uy, + fi(z,t, 4, DQ) (A.23)
where fi(z,t,4, D) >0 for any @, Dd, 1 <k <m. '

Indeed, we can then join f2 to ¢t to obtain a system with ¢, — fi instead of ¢, and then use the
transformation

up = eMwy  with A > ¢ — fP

for all k, as in the case of Theorem A.5. We thus have the following result:

Theorem A.7. Let @ be a solution in C?*T®(Qr) of (A.20)-(A.22) such that (A.23) holds
in Qp. If g > 0 on 8oQr and hy > 0 on Q(0) for k = 1,2,...,m, then u, > 0 in Qr for all
k=1,..,m.

In the mathematical models that we encounter in this book the parabolic systems have the

following form:

% + GkV . (V;guk') - AkV2uk =S Fk(ﬁ, D'lj), 1 S k S m, (A24)

where @ = (U1, ...,Un), O > 0, Ay are positive constants, and V;; is the velocity of species ug.
Equations of this form are called advection-diffusion equations. Such equations are based on
the mass conservation law plus diffusion. The velocity V;, arise form internal pressure among the
species, but they can also include chemotaxis.

As a result of this pressure the lateral boundary of (ly varies in time with velocity 17, that
is, the velocity in the direction of the outward normal 7 is V - . Then the boundary conditions,

dictated by both diffusion and conservation of mass, take the form

where u{ is the density of u, from outside the boundary.
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A.4. Free boundary problems

Most of the problems in this book are free boundary problems, where the PDE system
needs to be solved in a domain whose boundary, or a portion of it, is not known. A very simple
example of a free boundary problem is the Stefan problem which represents the melting of a

thin block of ice, as shown in Fig. A.1.

Ice at zero
temperature

u=h(x) $(0)

Fig. A.1. Melting of ice at zero temperature; g(t) > 0 for ¢t > 0, h(z) > 0 for 0 < z < 5(0). The ice occupies the
interval s(t) < z < oco.

By the maximum principle, v > 0 in the water region Q7 = {(z,t), 0 <z < s(t), 0 < t < T}
and u,(s(t),t) < 0, so that
ds(t)

—— > 0;
dt ’

hence the free boundary = = s(t) is strictly monotone increasing.
There are different methods to prove existence and uniqueness for the Stefan problem. One

method uses a change variables,

Yy = ﬁ, 'U(y’t) =u(m,t)

to obtain a parabolic problem in a fixed domain:

1 Y
vt—?vyy—l—?vy for 0<y<1, t>0,
v(0,t) = g(t), wv(l,t)=0 for ¢t>0, (A.26)

v(y,0) = h(ys(0)) for 0<y<1
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where § = ds/dt, together with

s(t)s(t) = —vy(1,t) for t >0,
Sle=o0 = s(0).

(A.27)

We can then use a fixed point argument: Given any function s(¢) in C'™® we solve the system

(A.26) and define a new function 3(t) by
ds .
s(t)% = —u,(1,¢t) and 3(0) = s(0).

One can show that the mapping s — § is a contraction, in some subset of C**%(0,y), provided
to is small, and its fixed point is then the unique solution to the Stefan problem for 0 < ¢ < ;.

To extend the solution to all ¢ > 0 we need to establish an a priori bound on ds/dt and then
proceed step-by-step to extend the local solution; details can be found in [8].

The above method extends to parabolic systems (as in A.24) where all the variables are

radially symmetric, and the free boundary r = R(t) is given by a law of the following form:

dR

=% = G(R, i, D) —reo (A.28)

Here we make a change of variables

= 0k ve(T, 1) = ug(r, )
and derive a parabolic system for the v, in the fixed domain 0 < 7 < 1, 0 <t < T. For any

function R(t) we solve the system for the v, and define a new function R(t) by

One then shows that the mapping R — R has a unique fixed point. Simple numerical examples
with MATLAB-based codes are given in [48].

Quite often the parabolic equations that occur in models of biological processes which involve
cells and cytokines are based on conservation of mass, and the cells are moving with a common
velocity V', while also subject to diffusion. In such cases we assume that the free boundary is

moving with the velocity V of the cells. The density p of the extracellular tissue where the cells
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are moving satisfies a conservation of mass equation,

Op =
E"’v‘(Pv)—fr)

with some function f,. We do not prescribe boundary conditions for p since the free boundary
is a characteristic surface, so that the values of p on the free boundary are determined from the
values of p at t = 0 by solving an ODE for p along characteristic curves; see [48] for details.

We finally mention a special but a very important free boundary problem for a function w:
Au = f(z,t) in Qr, (A.29)

u=7k on Gfdr (vy>0) (A.30)

where £ is the mean curvature (k > 0 when ( is a sphere),

Q(t)|t=0 = ©(0) is prescribed, (A.31)
ou
Vo= —5= (A.32)

where V,, is the velocity of the boundary points in the direction of the outward normal. The case
f = 01is known as the Hele-Shaw problem. In this case the stationary solutions (i.e., solution

with V,, = 0) are spheres, since the equations

AUZOinQanda—uzo on 0Of)
on

imply that u = constant, so that Kk = constant, and therefore €2 is necessarily a sphere.

It is known that if £2(0) is a smooth function, then there exists a smooth solution to the free
boundary problem (A.29)-(A.32) for some interval 0 < ¢ < tp, but the solution may not exists
for all ¢ > 0, even in the case where f = 0. On the other hand, when f = 0 and the boundary
082(0) is ‘very close’ to a sphere r = R, then there exists a unique solution for all ¢ > 0 and its

free boundary converges to a sphere r = R; as t — oo.
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