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Abstract

This is the list of open problems contributed by { Participants of NSF-CBMS Conference
on Additive Combinatorics from a Geometric Viewpoint } \ {Jozsef Solymosi} who gave
quite a few as exercises.

Rafal Bystrzycki

Let G be an abelian group and let Γ be a dissociated set in G (a dissociated set is a set with all
subset sums distinct). Let us define

Σ(Γ) :=

{∑
a∈A

a : A ⊂ Γ

}
.

One can ask the following questions:

• Is Γ determined uniquely by S = Σ(Γ) ?

• Can Γ be found with an efficient algorithm taking S as an input?

In general, already the answer to the first question is negative in some cases (i.e. if |G| is even),
but one can still try to get some conditions satisfied by a group G, which are sufficient to ensure
positive answers to those questions. The most interesting case seems to be G = Z/pZ for a large
prime p and |S| < p1−c for some constant 0 < c < 1.

Gregory Clark

In his 1977 paper [13], Newman proved the necessary and sufficient conditions for an integer tile
A = [a1, ..., ak], where k is a prime power, to tile the integer line. By his own admission:

”The very simplest interesting case is that of k = 3. If we normalize matters so that our
triple is 0, a, b with (a, b) = 1 the theorem states that tessellation occurs if and only if a and
b are, in some order, 1 and 2 (mod 3). Surely this special case deserves to have a completely
trivial proof-but we have not been able to find one!”

The necessity is immediate: such a tile will clearly tessellate; however, the sufficiency still
requires proof.

Problems from Seva Lev and Ilya Shkredov were communicated by Misha Rudnev.
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There has been progress made towards his main question: how can we extend the main
theorem of Paper 1 to composite numbers (see [3]) but it appears the answer to Newman’s
”simple” question remains unanswered.

Alexander Clifton, asked by Bruce Landman

Definition 1 For a set D ⊂ N, a D-diffsequence of length k is a sequence x1 < x2 < · · · < xk
where xi − xi−1 ∈ D for i = 2, · · · , k.

Definition 2 A set D is r-accessible if every r-coloring of N contains arbitrarily long monochro-
matic D-diffsequences.

The set of primes is not 3-accessible. Is it 2-accessible? If so, what can be said about the
smallest N such that every 2-coloring of [1, N ] contains a monochromatic {primes}-diffsequence
of length k?

Joshua Cooper

The following problem is due to Dudeney (1917), and there very little known about it, despite
its extraordinary simplicity and its connection with the important Heilbronn Triangle Problem.
This is sometimes called the “no-three-in-a-line” problem.

Question 1 What is the size nothree(n) of the smallest subset S of [n]× [n] so that no three
points of S are collinear?

Call any such set S “triple-free”. Erdős’s construction for the Heilbronn Triangle Problem,
appearing in the appendix of Roth’s 1951 [16] paper on the topic, is the set {(x, x2) : x ∈ Zn}
projected into R2, and the reason it provides a decent lower bound is precisely that it is triple-
free. Clearly, if |S| > 2n, then by the Pigeonhole Principle at least three points will occur on
the same line {j} × [n] for some j ∈ [n], so nothree(n) ≤ 2n. (Indeed, the same is true for the
lines [n] × {j} as well.) Surely, there are enough lines intersecting [n] × [n] in many points so
that nothree(n) < 2n? Indeed, Ellman and Pegg, Jr. (2005), correcting a mistake by Guy and
Kelly [8], make a compelling heuristic argument that nothree(n) = π/

√
3 · n+ o(n) ≈ 1.814n.

Surprisingly, however, there are constructions known for all n ≤ 46 of 2n points in [n]× [n] with
no three collinear.

From the other direction, Hall, Jackson, Sudbery, and Wild [10] showed that nothree(n) ≥
3/2 · n + o(n). Since one can easily show that any triple-free set of size exactly 2n can be
decomposed into the disjoint union of the graphs of two permutations of n, it is reasonable
to study these as well. Cooper and Solymosi [2] showed that any permutation σ of Zn, for n
prime, must admit three collinear points in its graph {(x, σ(x)) : x ∈ Zn}; indeed, they showed
that there are always at least d(n− 1)/4e such collinear triples. However, there are many more
collinearities in Zn×Zn than in [n]× [n], and they do not resolve this question for n composite.
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Dong Dong: Boundedness of a trilinear operator in finite fields

This was asked by Bourgain and Chang [1]. Let p be a prime and Fp be the finite field. Define
a trilinear operator by

T (f1, f2, f3)(x) =
1

p

∑
y∈Fp

f1(x+ y)f2(x+ y2)f3(x+ y3). (1)

Is there a δ > 0 such that

‖T (f1, f2, f3)− Ef1Ef2Ef3‖1 . p−δ‖f1‖∞‖f2‖∞‖f3‖∞ (2)

holds for all complex valued functions f1, f2, f3 defined on Fp? Here

Ef :=
1

p

∑
x

f(x)

and

‖f‖1 :=
1

p

∑
x

|f(x)|.

The above estimate implies the polynomial Szemerédi theorem in finite fields: the main
result in [15]. See also [1, 5, 14] for different treatments of the 3-term case. The estimate is
proved to be true if we replace p−δ with o(p) on the right-hand-side [7].

Yifan Jing

Definition 3 A star edge coloring of a graph G is a proper edge coloring of E(G) without
bicolored cycles of length 4 or paths of length 4. We use χ′(G) to denote the minimum number
of colors we used in a star edge coloring of G.

Conjecture 1 (Dvořák, Mohar and Šámal, 2010 [6]) χ′(Kn) = Θ(n).

Instead of working on Kn, we can work on the graph Kn,n, which has a better structure in
its line graph. Then the problem becomes the following: we color all the vertices in a n×n grid,
such that every two vertices lie in the same row or column have different colors, and all the four
vertices in a zigzag path of length four are not bi-colored. Here the four vertices on a zigzag path
of length four have the form (a, b), (c, b), (c, d), (e, d) or (a, b), (a, c), (d, c), (d, e), see Figure 1.

The best lower bound of χ′(Kn,n) is (2 − o(1))n, by using a simple counting argument.
The best upper bound is given by [6], which is still far away from Θ(n). Their method is the
following. They colour the vertex (i, j) by i+ j, and then remove all the arithmetic progressions
of length 3.

Actually we can do it in a more general way. Suppose two sets A and B both have cardinality
n, and we color the vertex (i, j) by ai + bj . In this general setting, probably we can improve the
upper bound a little bit, but Szemerédi Theorem tells us we can never get a linear bound in this
setting. A new construction is needed.
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Figure 1: Zigzag paths of length four.

Seva Lev

1. Almost-blocking sets in finite affine planes. For an odd prime power q, a blocking set in the
affine plane F2

q is a set blocking (meeting) every line.

A union of two non-parallel lines is a blocking set of size 2q− 1, and it is well-known that
this is the smallest possible size of a blocking set in F2

q . A very simple proof goes as follows.
Suppose that B ⊂ F2

q is a blocking set. Translating B appropriately, we can assume that
0 ∈ B, and we let then B0 := B \ {0}. The new set B0 blocks every line not passing
through the origin; that is, every line of the form ax+ by = 1 with a, b ∈ Fq not equal to
0 simultaneously. As a result, the polynomial

P (x, y) :=
∏

(a,b)∈B0

(ax+ by − 1)

vanishes at every point of F2
q with the exception of the origin. Now, if we had |B0| <

2p − 2, then P (x, y) would be a linear combination of monomials of the form xmyn with
min{m,n} < p− 1, while for every such monomial,∑

x,y∈Fq

xmyn = 0;

this would lead to ∑
x,y∈Fq

P (x, y) = 0,

a contradiction.

Suppose now that B ⊂ F2
q blocks every line with the possible exception of at

most one line in every direction. What is the smallest possible size of such an
“almost blocking” set?

If B ⊂ F2
q is almost blocking, then pairing in an arbitrary way the non-blocked lines and

adding to B the intersection points of these pairs of lines we get a “usual” blocking set;
since we had to add at most (q + 1)/2 points, this gives

|B| > (2q − 1)− q + 1

2
=

3

2
(q − 1).
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On the other hand, it is not difficult to construct almost-blocking sets B ⊂ F2
q with

|B| < 2q −√q.

Is the smallest possible size of an almost blocking set “essentially 3
2 q” or “essentially 2q”

(or neither)?

2. Weighting pencils. Suppose that p is a prime, and k < p/2 a positive integer.

Consider a system of k pencils in the affine plane F2
p, where each pencil is just a set of p

parallel lines in some direction (unique for each pencil). Suppose, furthermore, that the
p lines of every pencil are assigned some integer weights so that the weight functions are
not constant; that is, the lines of a pencil cannot all share the same common weight. To
every point x ∈ F2

p there corresponds a unique line from every pencil incident to x, and we
define the weight of x to be the sum of the weights of these k lines. How many zero-weight
points can there be?

Clearly, for k = 1 we can have just p points with non-zero weights (and cannot have fewer
than that). For k = 2 there can be as few as 2(p− 1) non-zero-weight points; it is easy to
prove this and to construct an example with that many non-zero-weight points. For k = 3
it is not difficult to assign the weights so that there are 3p − 5 non-zero-weight points,
which turns out to be sharp for p large enough.

Is it true that for any 3 6 k < p/2 there are at least 3p− 5 points with non-zero
weights?

3. ”Small” zero divisors in C[Z/pZ]

If p is a prime, and a, b are non-zero elements of the group algebra C[Z/pZ] satisfying
a ∗ b = 0, then

|supp a|+ |supp b| > p+ 2.

This is easy to prove using characters, but is there a reasonably simple elementary argu-
ment? Is this fact somehow related to the Cauchy-Davenport theorem? How does it extend
onto the group algebras C[Z/mZ] with m composite?

Vlad Alexandru Matei

1. The first one has to do with the so-called diophantine tuples over finite fields. The starting
paper is [4] I worked over the last summer with a group of high school trying to crack at
least an elementary upper bound for a set A ⊂ Fp such that ab + 1 is a square for any
a 6= b ∈ A. Unlike the Paley graph I could not see any elementary argument.

What you can prove in a similar way is that you get a pseudorandom graph and you can
control things a bit. What is sadder, is that I tried, without any luck, to get this work
in F2

p at least. It should be true that the maximum such set should have size p, with the
obvious example being Fp.
Brendan Murphy showed me that you can use the same approach as for Paley using char-
acters to show that you get the same bound as for Paley

√
p. This finishes the second part.
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The question is whether we can go beyond
√
p. My guess is that this would as hard as

Paley. Alternatively one can use the sum product graph to get a weaker bound c
√
p

2. Another intriguing numerical experiment that I did with my students, is to do ab+ a non-
quad residue. It seems that there is actually a discrepancy in the maximal size of such a
set with the maximal size for ab+ 1 even for small values of p.

3. The first problem is to show that if p ≡ 1 mod 4 is prime, and a set A ⊂ Fp has the
property that the difference of any two elements of A is a square, then A is ”small”. (Basic
details can be found here). If Q is the set of squares in Fp, one can write the assumption
as A−A ⊆ Q.

The second problem, to my knowledge first posed by A. Sarkozy several years ago, is to
determine whether the set of all squares is as a sumset; that is, whether Q = A + B
with some A,B ⊂ Fp, each of cardinality at least 2. The conjectural answer is, of course,
negative, provided that p is sufficiently large.

Both problems just mentioned seem to be quite tough; but, maybe, the following combi-
nation of the two is more tractable:

For a prime p ≡ 1 mod 4 does there exist A ⊂ Fp such that Q = A−A?

Compared to the first of the two aforementioned problems, we now assume that every
quadratic residue is representable as a difference of two elements of A; compared to the
second problem we assume that B =?A. Is there a way to utilize these extra assumptions?

A funny observation is that sets A with the property in question do exist for p = 5 and
also for p = 13; however, it would be very plausible to conjecture that these values of p are
exceptional. (In this direction, Peter Mueller has verified computationally that no other
exceptions of this sort occur for p < 1000.)

Giorgis Petridis et al

1. Let Γ ⊂ (F×p := Fp \ {0}) (prime p) be a multiplicative subgroup. Konyagin and Heath-

Brown [9] proved that if |Γ| ≥ p2/3, then |Γ + Γ| = Ω(p). Can one do better? Does there
exist an absolute c > 0 such that if |Γ| ≥ p2/3−c, then |Γ + Γ| = Ωc(p)?

2. (Misha Rudnev) Related to the above question.

(a) V’yugin and Shkredov [18] boosted the [9] application of Stepanov’s method to sums
of multiplicative subgroups to a variant of the Szemerédi-Trotter incidence bound
(with the same numerology), which applies in F2

p to (sufficiently small in terms of p)
sets of points and lines, which are Cartesian products of sets invariant with respect
to multiplication by a multiplicative subgroup Γ. This enabled them to prove that
|Γ − Γ| � |Γ|5/3 (as well as |Γ + Γ| � |Γ|8/5) but only for |Γ| < √p, regarding the
previous question. For the state of the art estimates and references see [12].

However, the Stepanov-type approach does not seem to work if one replaces the
multiplicative subgroup by a geometric progression G, say G = {1, g, . . . , g|G|−1},
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where g is a generator of F×p : one only knows, for any |G| that |G±G| � min(|G|3/2, p).
Problem: improve this, say for |G| < √p.

(b) As far as similarity with applications of the Szemerédi-Trotter theorem to real/complex
sets with “small but not too small” multiplicative doubling is concerned, [12] presents
inequalities with the same powers of |A| replacing |Γ|, for, say A ⊂ R : |AA| = K|A|,
the bound now also depending on powers of K, where K ∼ |A|ε. For much smaller
K the subspace theorem gives much stronger bounds but they break down around
K ∼ log |A|.
Curiously, the above-mentioned “multiplicative subgroup Szemerédi-Trotter theo-
rem” enables somewhat stronger consequences than the Szemerédi-Trotter theorem
itself, applied to sets with small multiplicative doubling.

Namely, for a set A, let a k-fence, k ≥ 2 be a subset {a1, . . . , ak} ⊂ A, which is fixed
within A up to a translation. I.e., the set of k− 1 differences Dk−1 := {ai − ai−1, i =
2, . . . , k} is fixed. What is the maximum number Mk(A) of translated copies of a
k-fence in a set A with small multiplicative doubling?

To this effect, V’yugin and Shkredov [18] prove that if |Γ| is a sufficiently small
multiplicative subgroup, then for any k-fence,M2(Γ)� |Γ|2/3, and then the maximum
of Mk(Γ) goes nicely to |Γ|1/2 as k grows. Never mind that presumably M2(Γ) . 1.

However, no estimate of this kind is known over the reals in the following context.
Suppose |AA| = K|A|, forA ⊂ R andK ∼ |A|ε. The Szemerédi-Trotter theorem easily
implies that M2(A)� K4/3|A|2/3. Can one prove Mk(A)�K(k) |A|2/3−δk , where the
symbol �K(k) swallows a power of K that would depend on k in a reasonable way?
The known bound for the maximum number of appearances of a 3-fence inside A is
just the one for a 2-fence, not better. A tempting 2D-analogue of this question is,
of course, the maximum number of realisations of a given triangle in A ⊂ R2, where
there seems to be no better known general bound than O(|A|4/3) – the one for a single
distance.

3. (Boris Bukh). Let A ⊂ Z (or even a subset of any commutative group). Define

A+ 2.A = {a+ 2b : a, b ∈ A}.

Suppose that |A+A| ≤ K|A|. Plünnecke’s inequality implies

|A+ 2.A| ≤ |A+A+A| ≤ K3|A|.

Can one do better? Does there exist an absolute c > 0 such that |A+ 2.A| ≤ c−1K3−c|A|?
Both inequalities above are sharp in some cases but it seems unlikely that they would both
be essentially sharp for the same set.

Cosmin Pohoata

A problem of Lê and Tao from [11] asks to estimate the size of the largest subset A inside
{1, . . . , n} such that A−A∩K = {0}, where K represents the set of integers only having digits
0 or 1 in base 3. In the survey, they mention that the density Hales-Jewett theorem implies that
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|A| = o(n). I’d like to revive this nice question by also providing a short argument for the fact
that |A| = O(n/ log n).

Proof. Consider the translates of A of the form

Ak := A+
{

1 + 3 + . . .+ 3k
}
,

where 1 ≤ k ≤ log3 n. Note that if A is in {1, .., n} then Ak is in {1, . . . , 2n}. Also, from
A − A ∩K = {0} it is easy to see that these sets are disjoint. In particular, log3 n · |A| ≤ 2n,
which proves the claim.

�
It would be interesting to improve on this easy estimate. The simple argument resembles a

bit the proof of the classical Minkowsky lattice point theorem theorem. It would be interesting if
more (nontrivial) geometry of numbers could be used to say new things about intersective sets.

Also, two new questions:

1. What is the largest A ⊂ Fnp with the property that if (x, x + d, x + 2d) is a three-term
progression in A3 with d ∈ 0, 1n, then d = 0?

In the paper above, Lê mentions a construction of Alon, which provides an example of a
set A in Fnp of size |A| � (p− 1)n/p

√
n with this property: consider the set of all vectors

(a0, . . . , an−1) with 0 ≤ ai ≤ p− 2 and such that

n−1∑
i=0

ai =

⌊
n(p− 2)

2

⌋
(as integers).

In fact, this example has the stronger property that A−A ∩ {0, 1}n = {0}.

2. What is the largest A ⊂ {1, . . . , n} with the property that if (x, x+d, x+2d) is a three-term
progression in A3 with d ∈ K, then d = 0? Here, K stands again for the set of integers
only having digits 0 or 1 in base 3.

Clearly, the Behrend subset of size |A| � n exp−c
√
logn without nontrivial three-term

progressions is an example of such a set.

Ilya Shkredov

1. Let Γ be a subgroup of F∗p, |Γ| > pε. Prove that there is k = k(ε) such that (Γ−Γ)k = Fp.

2. Let A ⊆ Fp be a sufficiently small set, say, |A| < √p such that |AA| 6 M |A|. Prove that
the number of collinear triples in A× A is OM (|A|4). Prove that the number of solutions
to the equation a1 + a2 + a3 = a4 + a5 + a6, aj ∈ A is OM (|A|4).

George Shakan

1. Improve on the bound∑
b∈B

E+(A, bA)� |A|3|B|(max(|B|−1/3, (p/|A|)−1/3).
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2. The Hilbert cube number is bounded by (2r)2
m
. Improve this.

3. Prove† that |A + A| & |A|2d+(A)−1. See [17] for definitions and context. As a warm up,
one may wish to prove |A+A| & |A|5/3d+(A)−2/3.

Michael Tait

Here is a problem which to my knowledge is open: what is the largest set of perfect squares up
to n such that x2 +y2 = z2 +w2 implies that {x, y} = {z, w}? That is, what is the largest size of
a Sidon subset of perfect squares? Cilleruelo and his student did some work on Sidon sequences
of squares rather than sets. I’m not sure if anyone has published anything regarding this, but

the best that I can do is to show that this largest size is somewhere between roughly n1/3

polylogn

and o(n1/2).
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