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1. THE CAHN—HILLIARD EQUATION
The Cahn—Hilliard system

(1.1) %:/@Au, k>0, p=—alAu+ f(u), a>0,

usually rewritten, equivalently, as the fourth-order in space parabolic equation

(1.2) %+QHA2U_HAf<U) =0
which is precisely the equation known as the Cahn—Hilliard equation, was proposed
by J.W. Cahn' and J.E. Hilliard in 1958 (see [63]). These equations play an essential
role in materials science as they describe important qualitative features of two-phase
systems related with phase separation processes, assuming isotropy and a constant
temperature. This can be observed, e.g., when a binary alloy (e.g., Aluminium/Zinc,
see [390], or Iron/Chromium, see [309, 310, 311]) is cooled down sufficiently. One then
observes a partial nucleation (i.e., the apparition of nuclides in the material) or a total
nucleation, known as spinodal decomposition: the initially homogeneous material
quickly becomes inhomogeneous, resulting in a very finely dispersed microstructure.
In a second stage, which is called coarsening and occurs at a slower time scale, these
microstructures coarsen. Such phenomena play an essential role in the mechanical
properties of the material, e.g., strength, hardness, fracture, toughness and ductility.
We refer the reader to, e.g., [61, 63, 275, 280, 302, 303, 345, 347] for more details.
Here, u is the order parameter (we will consider a rescaled density of atoms or
concentration of one of the material’s components which takes values between —1

1John Werner Cahn (January 9, 1928-March 14, 2016) played a major role in materials science.
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2 A. MIRANVILLE

and 1, —1 and 1 corresponding to the pure states; the density of the second com-
ponent is —u, meaning that the total density is a conserved quantity”) and p is the
chemical potential (more precisely, the difference of chemical potentials between the
two components). Furthermore, f is the derivative of a double-well potential F'. A
thermodynamically relevant potential F' is the following logarithmic function which
follows from a mean-field model:

(1.3)  F(s)= %(1 —s%) + g[(l — 5)In(— S) + (1+s) ln(1 i 8)], s€ (—1,1),
0<0<d,.,
(1.4) f(s) = —ecs+§1niz,

although such a function is very often approximated by regular ones, typically,
F(s) = 1(s*—1)% ie., f(s) = s*—s; more generally, one can take F(s) = 1 (s*—?)?,
B € R. The logarithmic terms in (1.3) correspond to the entropy of mixing and 6
and 6, are proportional to the absolute temperature (assumed constant during the
process) and a critical temperature, respectively; the condition § < 6, ensures that F’
has indeed a double-well form and that phase separation can occur. Also note that
the polynomial approximation is reasonable when the quench is shallow, i.e., when
the absolute temperature is close to the critical one. Finally, s is the mobility and
« is related to the surface tension at the interface.

From a phenomenological point of view, the Cahn—Hilliard system can be derived
as follows.

One considers the following (total) free energy, called Ginzburg-Landau free en-

ergy:

(1.5) Vo (u, Vu) = /

(5IVul® + F(w)) de,

qQ 2

where 2 C R", n =1, 2 or 3, is the domain occupied by the material. The gradient
term in (1.5) was proposed in [63] in order to model the surface energy of the interface
(i.e., capillarity; note that such gradients go back to J.D. van der Waals, see [395]);
F' is also called homogeneous free energy.

One then has the mass balance

2If uy and up denote the densities of the two components, then, before rescaling, one has
ua +up = 1. Replacing u by 2u — 1, one obtains, after rescaling, usq +up = 0.
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ou ,
(1.6) T —divh,

where h is the mass flux which is related to the chemical potential u by the following
(postulated) constitutive equation which resembles the Fick’s law:

(1.7) h=—kVpu.

The usual definition of the chemical potential is that it is the derivative of the free
energy with respect to the order parameter. Here, such a definition is incompatible
with the presence of Vu in the free energy. Instead, u is defined as a variational de-
rivative of the free energy with respect to u, which yields (assuming proper boundary
conditions)

(1.8) p=—alu+ f(u);

hence the Cahn-Hilliard system. This variational derivative can be (formally) seen
by writing that, for a small variation,

g = /(&Vu -Vou+ f(u)du) dx,
0

where - denotes the usual Euclidean scalar product. Assuming compatible boundary
conditions and integrating by parts, this yields

ST — / (—alu + f(u))bu dz,
Q

from which the definition follows.
The Cahn—Hilliard system, in a bounded and regular domain €2, usually is endowed
with Neumann boundary conditions, namely,

0

(1.9) 8_’5 —=0, onT,

meaning that there is no mass flux at the boundary (note that h.v = —/{‘3—’:), and
0

(1.10) a—?: =0, on I,

which is a natural variational boundary condition (by natural, we mean that it allows
to write down a convenient variational /weak formulation in view of the mathematical
analysis of the problem; this boundary condition also yields that the interface is
orthogonal to the boundary). Here, I' = 9€) and v is the unit outer normal to the
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boundary. In particular, it follows from the first boundary condition that we have
the conservation of mass, i.e., of the spatial average of the order parameter, obtained
by (formally) integrating the first equation of (1.1) over 2,

(1.11) (u(t)) = v011< 5 /Q u(t,z) dz = (u(0)), Vit > 0.

If we have in mind the fourth-order in space Cahn—Hilliard equation, we can rewrite
these boundary conditions, equivalently, as

ou  O0Au
1.12 — = —= .
(1.12) v v 0, on
We can also consider periodic boundary conditions (in which case = II7, (0, L;),
L;>0,i=1, ---, n); in that case, we still have the conservation of mass. Note that

we generally do not consider Dirichlet boundary conditions, due precisely to the fact
that they do not yield the conservation of mass, although such boundary conditions
certainly simplify the mathematical analysis.

Now, the question of how the phase separation process (i.e., the spinodal de-
composition) is influenced by the presence of walls has gained much attention (see
[164, 165, 265] and the references therein). This problem has mainly been studied for
polymer mixtures (although it should also be important for other systems, such as
binary metallic alloys): from a technological point of view, binary polymer mixtures
are particularly interesting, since the occurring structures during the phase separa-
tion process may be frozen by a rapid quench into the glassy state; microstructures
at surfaces on very small length scales can be produced in this way.

We also recall that the usual variational boundary condition % = 0 on the bound-
ary yields that the interface is orthogonal to the boundary, meaning that the contact
line, when the interface between the two components meets the walls, is static, which
is not reasonable in many situations. This is the case, e.g., for mixtures of two immis-
cible fluids: in that case, the contact angle should be dynamic, due to the movements
of the fluids. This can also be the case in the context of binary alloys, whence the
need to define dynamic boundary conditions for the Cahn-Hilliard equation.

In that case, we again write that there is no mass flux at the boundary (i.e., that
(1.9) still holds). Then, in order to obtain the second boundary condition, following
the phenomenological derivation of the Cahn—Hilliard system, we consider, in addi-
tion to the usual Ginzburg-Landau free energy and assuming that the interactions
with the walls are short-ranged, a surface free energy of the form

(1.13) Up(u, Vi) = /

(SIVrul + G(w) do, ar >0,
T
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where Vr is the surface gradient and G is a surface potential. Thus, the total free
energy of the system reads

(1.14) U = U + Ur.

Writing finally that the system tends to minimize the excess surface energy, we are
led to postulate the following boundary condition:

10u ou
1.1 —-— —arA — = r
(1.15) G5~ orlru +g(u) + ay 0, on T,

i.e., there is a relaxation dynamics on the boundary. This boundary condition usually
is referred to as dynamic boundary condition, in the sense that the kinetics, i.e.,
%, appears explicitly. Here, Ar is the Laplace-Beltrami operator, ¢ = G’ and
d > 0 is some relaxation parameter. Furthermore, in the original derivation, one
has G(s) = %CL[‘SQ — brs, where ar > 0 accounts for a modification of the effective
interaction between the components at the walls and br characterizes the possible
preferential attraction (or repulsion) of one of the components by the walls (when br
vanishes, there is no preferential attraction). We can note that it follows from the

boundary conditions that, formally,

av 1,0u 1, 0u
e _EHEH%{*%Q) - 3”5\@2@) <0,
where || - ||x denotes the norm on the Banach space X; in the case of the classical

Neumann boundary conditions, one has

e _;HEH%*l(Q) <0.

We also refer the reader to [30, 166] for other physical derivations of the dynamic
boundary condition, obtained by taking the continuum limit of lattice models within
a direct mean-field approximation and by applying a density functional theory, re-
spectively, to [362] for the derivation of dynamic boundary conditions in the context
of two-phase fluid flows and to [372, 377] for an approach based on concentrated
capacity.

Actually, it would seem more reasonable, in the case of nonpermeable walls, to
write the conservation of mass both in the bulk €2 and on the boundary I, i.e.,

d
E(/ﬂudm—l—/ruda)—o.

Indeed, due to the interactions with the walls, one should expect some mass on the
boundary. We assume that the first equation of (1.1) still holds. Then, writing that
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M= 0u VY,

where 0 is the variational derivative mentioned above (note that, in the original
derivation, one has u = 9, Vq), we obtain the second equation of (1.1), together with
the boundary condition

0
p=—arAru+ g(u) + @a—u, on .
v

We now note that, owing to the first equation of (1.1), the above mass conservation
reads

ou ou

A class of boundary conditions which ensure this mass conservation reads

0 0
a—’LtL—f-BFAFU—’—Iia—IZ =0, onl, fr>0.
We can thus see that, when Sr > 0, we also have a Cahn-Hilliard type system on

the boundary. Note that, when fr = 0, it follows from the above that

av

dt
Similar dynamic boundary conditions, in the case of semipermeable walls, are con-
sidered in [174, 175, 185]. Furthermore, in [294], based on an energetic variational
approach and Onsager’s principle of maximum energy dissipation, one recovers these
dynamic boundary conditions, together with the no mass flux consition (1.9); in that
case, one has mass conservation in the bulk and on the boundary, separately.

The Cahn—Hilliard system/equation is now quite well understood, at least from a
mathematical point of view. In particular, one has a rather complete picture as far
as the existence, the uniqueness and the regularity of solutions and the asymptotic
behavior of the associated dynamical system are concerned. We refer the reader to
(among a huge literature), e.g., [5, 35, 59, 83, 89, 93, 96, 109, 122, 131, 141, 143, 147,
149, 152, 174, 175, 185, 198, 206, 207, 212, 264, 278, 287, 294, 297, 300, 324, 333,
334, 337, 341, 342, 343, 344, 345, 347, 360, 363, 370, 388, 412, 424]. As far as the
asymptotic behavior of the system is concerned, one has, in particular, the existence
of finite-dimensional attractors. Such sets give information on the global/ all possible
dynamics of the system. Furthermore, the finite dimensionality means, very roughly
speaking, that, even though the initial phase space is infinite-dimensional, the limit
dynamics can be described by a finite number of parameters. We refer the interested

= —#[ Vil 2y <0
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reader to, e.g., [19, 97, 134, 335, 388] for more details and discussions on this. One
also has the convergence of single trajectories to steady states.

We can note that we assumed so far that the mobility x is a strictly positive
constant. Actually, k is often expected to depend on the order parameter and to
degenerate at the singular points of f in the case of a logarithmic nonlinear term
(see [62, 147, 148, 191, 417]; see also [421] for a discussion in the context of immiscible
binary fluids). Note however that this essentially restricts the diffusion process to
the interfacial region and is observed, typically, in physical situations in which the
movements of atoms are confined to this region (see [364]). In that case, the first
equation of (1.1) reads

ou

Frie div(k(u)Vp),
where, typically, k(s) = 1 —s%. In particular, the existence of solutions to the Cahn—
Hilliard equation with degenerate mobilities and logarithmic nonlinearities is proved
n [147]; note that, up to now, only existence of weak solutions is known, nothing
else. The asymptotic behavior, and, more precisely, the existence of attractors, of the
Cahn—Hilliard equation with nonconstant and nondegenerating mobilities is studied
in [378, 379].

We can also note that the gradient term in the Ginzburg-Landau free energy (1.5)
accounts for the fact that the interactions between the material’s components are
assumed to be short-ranged. Actually, this term is obtained by approximation of a
nonlocal term which also accounts for long-ranged interactions (see [63]). The Cahn-
Hilliard equation, with a nonlocal term, was derived rigorously by G. Giacomin and
J.L. Lebowitz in [204, 205], based on stochastic arguments, by considering a lattice
gas with long range Kac potentials (i.e., the interaction energy between two particles
at x and y (z, y € Z") is given by v"K(v|z —y|), v > 0 being sent to 0 and K being
a smooth function). In that case, the (total) free energy reads

(116)  Wa(w) = [ [F(ul@) + (o) [ Klla = o)1 uly) do)do,

where T" is the n-dimensional torus. Furthermore, rewriting the total free energy in
the form

Wo(u) = / L) + k@)ut@)( = u(e) + 5 | Kl = yDluta) — u(y)* dy] de

where kq(x fw |z — y|) dy, one can, by expanding the last term and keeping
only some terms in the expansion, recover the Ginzburg-Landau free energy (this
is reasonable when the scale on which the free energy varies is large compared with
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~~1: the macroscopic evolution is observed here on the spatial scale y~! and time

scale v72); see also [307]. Such models were studied, e.g., in [3, 27, 173, 176, 177,
178, 181, 254] (see also [78, 133, 230, 231, 232, 415] for the numerical analysis and
simulations).

Now, it is interesting to note that the Cahn—Hilliard equation and some of its
variants are also relevant in other phenomena than phase separation in binary alloys.
We can mention, for instance, dealloying (this can be observed in corrosion processes,
see [154]), population dynamics (see [100]), tumor growth (see [18, 266]), bacterial
films (see [273]), thin films (see [349, 391]), chemistry (see [396]), image processing
(see [28, 29, 72, 79, 132]) and even in astronomy, with the rings of Saturn (see [394]),
and ecology (for instance, the clustering of mussels can be perfectly well described
by the Cahn—Hilliard equation, see [296] (see also Youtube,

https://www.youtube.com/watch?v=u-mEjfBaYks
and
https://www.youtube.com/watch?v=0YcXZ7Ho408,
for real mussels clustering and simulations, respectively); of course, in that case the
time scale is much larger, typically, weeks or months).

In particular, several such phenomena can be modeled by the following generalized
Cahn—Hilliard equation:

(1.17) % + arA%u — kAf(u) + g(z,u) =0, a, k>0

(here, a and x do not necessarily have the same physical meaning as in the original
Cahn—Hilliard equation). The above general equation contains, in particular, the
following models:

(i) Mixed Allen—Cahn/Cahn-Hilliard system. In that case, we consider the following
system of equations:

0
gu =?DAp—p, D, >0, p=—Au+ f(u)’
ot g2
which can be rewritten, equivalently, as
0
a—? +e2DA*u — A(Df(u) + u) + Lg) =0
€

and is indeed of the form above. In particular, without the term e2DAy in the
first equation, we have the Allen—-Cahn equation and, without the term —u, we have
the Cahn—Hilliard equation. These equations were proposed in order to account
for microscopic mechanisms such as surface diffusion and adsorption/desorption (see
(258, 260, 261, 308]) and were studied in [250, 251, 252, 253, 259].
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(i) Cahn-Hilliard-Oono® equation (see [317, 348, 397]). In that case,

g(x,s) = g(s) = PBs, f>0.

This function was proposed in [348] in order to account for long-ranged (i.e., nonlocal)
interactions in phase separation, but also to simplify numerical simulations, due to
the fact that we do not have to account for the conservation of mass, although it
seems that this equation has never been considered in simulations.

Actually, it can be surprising that nonlocal interactions can be described by such
a simple linear term. This can be seen by noting that one considers here the free
energy

(1.18) Ty = / IVl + Fw) + / u(y)g(y, 2u(z) dy) d,

where the function g describes the long-ranged interactions. In particular, in Oono’s
model and in three space dimensions, one takes

_ dnp
ly — x|
Note that the long-ranged interactions are repulsive when u(y) and wu(z) have op-

posite signs and thus favor the formation of interfaces (see [397] and the references
therein). Writing finally, as in the derivation of the classical Cahn-Hilliard equation,

(1.19) 9(y, )

)
(1.20) a_?; = kAD, T,

we find the Cahn—Hilliard—-Oono equation, noting that —ﬁ is the Green function

associated with the Laplace operator (see [397] and the references therein for more
details).

A variant of this model, proposed in [95] to model microphase separation of diblock
copolymers, consists in taking

ole.3) = 9(5) = Bls = g [ wola)da). 8> 0.

where ug is the initial condition. In that case, we have the conservation of mass and
efficient simulations, based on multigrid solvers, were performed in [17]. This variant
of the Cahn—Hilliard—Oono equation can also be coupled with the incompressible

3A better name would be Cahn-Hilliard-Oono—Puri equation; we will however keep the custom-
ary one.
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Navier—Stokes equations to model a chemically reacting binary fluid (see [246, 247];
see also [48] for the mathematical analysis).

(iii) Proliferation term. In that case,

g(x,s) =g(s) =As(s—1), A > 0.
This function was proposed in [266] in view of biological applications and, more
precisely, to model wound healing and tumor growth (in one space dimension; in
that case, one can think of a propagation front) and the clustering of malignant brain
tumor cells (in two space dimensions); see also [396] for other quadratic functions with
chemical applications and [18] for other polynomials with biological applications.

(iv) Fidelity term. In that case,

g(z,5) = Xoxap(z)(s — h(z)), Ao >0, D CQ, he L*Q),
where y denotes the indicator function, and we consider the following equation:

1
%-I—»SAQu— gAf(u) +g(z,u) =0, € > 0.

Written in this way, € corresponds to the interface thickness. This function g was
proposed in [28; 29] in view of applications to binary image inpainting (i.e., black
and white images). Here, h is a given (damaged) image and D is the inpainting (i.e.,
damaged) region. Furthermore, the fidelity term g(z, u) is added in order to keep the
solution u close to the image outside the inpainting region. The idea in this model is
to solve the equation up to steady state to obtain an inpainted (i.e., restored) version
u(z) of h(x).

The generalized equation (1.17) was studied in [318, 322] (see also [157]) under very
general assumptions on the additional term g, when endowed with Dirichlet boundary
conditions. In that case, one essentially recovers the results (well-posedness, regu-
larity and existence of finite-dimensional attractors) known for the original Cahn—
Hilliard equation. The case of Neumann boundary conditions is much more involved,
due to the fact that one no longer has the conservation of mass, i.e., of the spatial
average of the order parameter, when compared with the original Cahn—Hilliard
equation with Neumann boundary conditions (see [79, 80, 90, 157, 158, 197]).

Another variant of the Cahn-Hilliard equation is concerned with higher-order
Cahn—Hilliard models. More precisely, G. Caginalp and E. Esenturk recently pro-
posed in [60] (see also [76]) higher-order phase-field models in order to account for
anisotropic interfaces (see also [274, 387, 407] for other approaches which, however,
do not provide an explicit way to compute the anisotropy). More precisely, these
authors proposed the following modified free energy, in which we omit the tempera-
ture:



PRELIMINARY READING 11

(1.21) \IJHOGL—/ ZZ k| D*ul? + F(u)) dz, M €N,

i=1 |k|=1

where, for k = (ky, ke, k3) € (NU {0})3,

|k| = k1 + ko + ks
and, for k # (0,0,0),
Db _ BILd
Oz 0xk2 Oak?

(we agree that D99y = v). The corresponding higher-order Cahn-Hilliard equation
then reads

(1.22) % ~A Z(—1)i > aD*u— Af(u) =

|kl =i

For M =1 (anisotropic Cahn—Hilliard equation), we have an equation of the form

ou L 9%

and, for M = 2 (sixth-order anisotropic Cahn-Hilliard equation), we have an equa-
tion of the form

ou >
E—AMZ 43 2a 2 AZb —Af u) =
We studied in [86, 312] the corresponding hlgher—order isotropic model, namely,

(1.23) % —AP(~A)u — Af(u) =

where

:Zaisi, ap >0, M >1, s € R,

and, in [87], the anisotropic higher-order model (1.22) (there, numerical simulations
were also performed to illustrate the effects of the higher-order terms and of the
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anisotropy). Furthermore, these models contain sixth-order Cahn—Hilliard models.
We can note that there is currently a strong interest in the study of sixth-order Cahn—
Hilliard equations. Such equations arise in situations such as strong anisotropy effects
being taken into account in phase separation processes (see [393]), atomistic models of
crystal growth (see [28, 29, 153, 186]), the description of growing crystalline surfaces
with small slopes which undergo faceting (see [377]), oil-water-surfactant mixtures
(see [215, 216]) and mixtures of polymer molecules (see [121]). We refer the reader
to [74, 223, 227, 228, 229, 243, 276, 277, 304, 305, 317, 319, 320, 321, 323, 350, 351,
356, 357, 398, 399, 411] for the mathematical and numerical analysis of such models.

We can also note that the variant (1.17) can be relevant in the context of higher-
order models (we can mention, for instance, anisotropic effects in tumor growth). We
refer the reader to [88] for the analysis and numerical simulations of such models.

We finally mention several other important generalizations and variants of the
Cahn—Hilliard equation.

A first one consists in studying systems of Cahn-Hilliard equations to describe
phase separation in multicomponent alloys (see [56, 96, 112, 148, 149, 155, 191, 192,
193, 330]). Note that the Cahn-Hilliard equation can be rewritten, equivalently, as
a system of two (Cahn—Hilliard) equations. Let us indeed denote by A and B the
two components and consider, with obvious notation, the free energy

1
Vo(ua, Vua,up, Vug) = 3 /(%\VuAF + %|VUB\2 + F(ua) + F(ug)) dx.
Q
Then, the Cahn—Hilliard system (1.1) is equivalent, again with obvious notation and

noting that f is an odd function in both cases of interest, to

0 1
% = KA, pla = 5(—05AUA + f(ua)) (= 0y, V),
(9uB 1
o = KAuB, jip = 5(_CVAUB + f(uB)) (= Ouy¥a),

ua+up =0, pa+up=0.

Furthermore, we can see that

pa — g = —aluy + fua).

We also mention the stochastic Cahn—Hilliard equation (also called the Cahn—
Hilliard—Cook equation) which takes into account thermal fluctuations (see [33, 34,
37, 38, 68, 71, 116, 118, 123, 124, 142, 172, 217, 218, 233, 376]).

Then, an important generalization of the Cahn-Hilliard equation is the viscous
Cahn—Hilliard equation,
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—eA% + % + akA*u — kAf(u) =0, € >0,

proposed by A. Novick—Cohen in [344] to account for viscosity effects in the phase
separation of polymer/polymer systems (see also [20, 70, 98, 151]). The viscous
Cahn—Hilliard equation can also be seen as a particular case of the generalizations
proposed by M. Gurtin in [235] (which, in particular, also account for anisotropy)
and which are based on a microforce balance, i.e., a new balance law for interactions
at a microscopic level (see [41, 42, 44, 85, 139, 140, 211, 221, 314, 315, 316, 325, 326,
331, 336, 367, 368, 369, 408] for the mathematical analysis); we also refer the reader
to yet another approach proposed by P. Podio—Guidugli in [359] and studied in, e.g.,
(102, 103, 104, 105, 110].

Another important generalization of the Cahn—Hilliard equation is the hyperbolic
relaxation of the equation,

2
e% + % + akA*u — kAf(u) =0, € >0,
proposed in [187, 188, 189, 190, 281] to model the early stages of spinodal decompo-
sition in certain glasses (see also [43, 200, 201, 224, 225, 226, 375] for the mathemat-
ical analysis and [373, 374] for the hyperbolic relaxation of the Cahn—Hilliard—Oono
equation in the whole space). Actually, the hyperbolic relaxation of the equation is a
particular case of more general memory relaxations (for an exponentially decreasing
memory kernel) which were studied, e.g., in [111, 113, 115, 202, 203] (see also [361]).

We also mention the convective Cahn-Hilliard equation,

% + arA*u+u - Vu — kA f(u) =0,

which describes the dynamics of driven systems such as faceting of growing ther-
modynamically unstable crystal surfaces (see [135, 136, 137, 213, 291, 405] for the
mathematical analysis).

It is important to note that, in realistic physical systems, quenches are usually
carried out over a finite period of time, so that phase separation can begin before
the final quenching is reached. It is thus important to consider nonisothermal Cahn—
Hilliard models. Such models were derived and studied in [12, 13, 183, 184, 329, 382].

The Cahn—Hilliard equation can be coupled with the Allen—-Cahn equation which
describes the ordering of atoms during the phase separation process (see [11]). This
problem was studied, e.g., in [32, 120, 293, 327, 328, 346, 422].

It can also be coupled with the equations for elasticity or viscoelasticity, to account
for mechanical effects (see, e.g., [16, 31, 39, 40, 69, 128, 192, 193, 194, 314, 315, 352,
353, 354, 355, 366]).
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We also mention the coupling of the Cahn—Hilliard equation with the Navier—
Stokes equations in the context of two-phase (multiphase) flows (see, e.g., [2, 4, 48,
49, 50, 51, 52, 54, 67, 64, 84, 91, 99, 167, 168, 179, 180, 182, 210, 236, 242, 255, 267,
270, 272, 279, 292, 299, 332, 419, 423]) and some related models such as the Cahn—
Hilliard-Hele-Shaw and Cahn—Hilliard-Brinkman equations (see, e.g., [47, 114, 125,
126, 127, 162, 209, 240, 402, 404, 409, 418]). Related models can also be used to
model tumor growth (see, e.g., [101, 106, 107, 108, 119, 169, 195, 196, 257, 298]).

We finally refer the reader to, e.g., [1, 9, 10, 14, 15, 20, 21, 22, 23, 24, 25, 26,
36, 45, 51, 52, 53, 54, 55, 57, 58, 65, 66, 73, 75, 77, 92, 94, 117, 129, 130, 144, 145,
146, 150, 156, 159, 160, 161, 163, 169, 170, 171, 199, 214, 219, 220, 222, 234, 237,
238, 239, 241, 248, 249, 256, 262, 263, 265, 267, 268, 269, 270, 271, 272, 282, 283,
284, 285, 286, 288, 289, 295, 301, 306, 313, 338, 339, 364, 371, 380, 381, 385, 386,
392, 400, 401, 403, 406, 410, 413, 414, 416, 425, 426] for the numerical analysis and
simulations of the Cahn—Hilliard equation (and several of its generalizations). Note
that, as suggested in [146], it is in general preferable to build numerical schemes
for the Cahn-Hilliard system (1.1) rather than the equivalent fourth-order in space
Cahn—Hilliard equation. This has indeed the advantage of splitting the fourth-order
equation into a system of two second-order ones which is easier to deal with.

Notation. We denote by ||-|| the usual norms on L*(Q2) and L*(Q)" (with associated
scalar product ((+,-))). More generally, || - ||x denotes the norm on the Banach space
X.

In what follows, €2 is a bounded and regular (as regular as needed) domain of R”",
n=1,2or 3.

2. LINEAR OPERATORS [388]

We consider the spaces L*(€2) and H'(2) which, endowed with their usual scalar
products and associated norms, are Hilbert spaces.

Of course, (v,v) — ((Vu,Vv)) is not a scalar product in H'(2), as it is not
coercive.

To overcome this, we set

1 1
(uy = Vol(S)) /Qudx, u e L(Q),
(u)y = Vol(€)) (u,1), ue H1(Q),

where H () is the topological dual of H*(Q2), H~1(Q) = H*(R2)’, and (-, -) denotes
the duality pairing between H(Q2) and H'(Q).
We then set



PRELIMINARY READING 15

H=[*Q) = {ue L*(Q), (u) =0},
V=H(Q)=H(@Q)NH.
These spaces are also Hilbert spaces, when endowed with the induced scalar products.
Furthermore, ((-,-))y = ((V-,V:)) is a scalar product on V, with associated norm
| - ||, which is equivalent to the usual H!'-scalar product (owing to the Poincaré-
Wirtinger inequality; see below).

Let V! = {u € H1(Q), (u) = 0} be the topological dual of V. Then, we know
from Riesz’ representation theorem that, Vi € V', there exists a unique u € V such
that ((u,v))y = (l,v), Yo € V, where (-,-) also denotes the duality pairing between
V' and V.

Identifying H with its topological dual H’, we have the Hilbert triplet V C H =
H' C V', with dense, continuous and compact injections. Furthermore, if u and v
are in H and V, respectively, then (u,v) = ((u,v))q.

We can then define the linear operator A : V- — V' by

(Au,v) = ((u,v))y, Yu, v e V.
This operator is an isomorphism from V onto V.
We now set

DA =AY H)={ueV, Auc H} = {uc H(Q), —Au € L*(Q)},
called domain of A. Note indeed that, if ((u,v))y = ((f,v)), Yv € V and for f € H,
then

((Vu, Vo)) = ((f,v)), Yv € H'(Q)
(it suffices to replace v by v — (v)). Taking then v € D(Q) = C°(£2), it is easy to see
that —Au = f in the sense of distributions and thus in L?(Q).
Next, since u € H'(€2) and Au € L*(Q), the trace % can be defined in H~2(I)
and a generalized form of Green’s formula is valid for every v € H'(Q) (see [389];

see also [388], Chapter II, Example 2.5), yielding

_ _Ou 1
—<<AU,U>) - _<$’U>H_%(F),H%(F) + ((vu7vv))7 Vve H (Q)

We thus deduce that

ou

— 1
<5’U>H_%(F),H%(F) =0, Voe H (Q)7

so that
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)
a_ZZO’ on T

(in H~2(T")). Having this, it follows from classical elliptic regularity results (see
[6, 7, 8]) that u € H2(Q). Finally,

D(A)={ue H*(Q)NV, ? =0on I}
v
and Au= f, u € D(A) and f € H, is equivalent to

—Au = f, in Q, @:O, on I.
ov

Remark 2.1. More generally, if f € H™(Q2), m > 0, then u € H™(Q).

2.1. Spectral properties of the operator A. First note that A is selfadjoint (since
((-,+))v is symmetric). Furthermore, since V' C H is compact, then A~!' : H — H
is compact (and selfadjoint). Indeed, A~! : H — D(A) is continuous, so that
A~': H — V is also continuous (note that it follows from the regularity mentioned
above that the injection D(A) C V is continuous) and we conclude owing to the
compact injection V' C H.

We thus conclude that A~! is compact, selfadjoint and positive (as an operator
in H). Therefore, there exists an orthonormal basis (w;), j € N, of H formed of
eigenvectors of A:

A7 wy = pyw;, py — 0 as j — +oo, ;> 0.
Since w; = -~ A~1w; € D(A), then
Hj
1
ij = )\jwj, )\j = _,7

j
and w;, A, are eigenvectors/eigenvalues of A, where 0 < A\; < Ay < -+, \; = 400 as
J — +00 (note that (Aw;, w;) = \j||lw;||* > 0). Furthermore, the w,’s are orthogonal
in V for ((-,-))v. Indeed, if j # k, then

((wy, wi))v = (Awj, wi) = Aj((wy, wy)) = 0.

However, this family is not orthonormal, since

(Awj,w;) = ((wy, w))v = N llws||* = A;.
We can now compute the norms of u in terms or the spectral elements of A. Indeed:

e lfue H, u=73 " uw;, then [Jul]> = 372 |u,]*.
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o If u € V, then [jull} = (72, wywy, 250, wywy))v = 2252 [uy P ((wy, wy))v =
> o2y Ajlusl?. We also have

V= {U S H, U = ZU]‘U)J‘, Z)\j|uj|2 < +OO}

=1 =1
o If u € D(A), then Au = AQ_7Z, wjw;) = > 72 ujAw; = 372 Njujw; (the se-
quence converges) and |[ul|5 4 = [[Aul® = 2272, Aj|u;[? (graph norm). We also

have

D(A)={ue H, u= Zu]w], 2:/\2|u]|2 < 4o0}.
7=1
Furthermore, on D(A), the graph norm ||A - || is equlvalent to the usual H?-norm,
owing to the elliptic regularity results mentionned above.

2.2. The spaces D(A®) and the operators A*. We first consider the case az > 0.
By convention, D(A") = H and A° = I (identity operator). Then, for a > 0, we
set (see also above)

o0 o0

which we endow with the graph norm

> 1
lullpeasy = O A3 |uy[*)2
=1

and the associated scalar product

((u, Z)\ u;v;, u—Zqu], U—Zijj.

Endowed with this scalar product, D(A%) is a Hllbert space.
The operator A* : D(A®) — H is then defined by

o o
« _ o . . — . .
A% = E Afujwy, u= E UjW;.
7j=1 7=1

Example 2.2. (i) We recover the above convention and definition for o = 0 and
a=1.

(i) For a = 1, D(42) = V.
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(iii) For a = 2,

D(A*) ={u€H, u= iujwj, ik?]ujf < +oo} ={u € D(A), Au € D(A)}.

j=1 j=1

It thus follows for the elliptic regularity results of [6, 7, 8] that

ou  0Au
D(A%) = HQ)NV, =

Note that we recover the two (Neumann) boundary conditions associated with the

Cahn-Hilliard equation. Indeed, Au = f, u € D(A?) and f € H is equivalent to

=0on I'}.

ou  0Au
2. g o _
A*u = f, in Q, 9 5

Furthermore, the graph norm ||A% - || is equivalent to the usual H*-norm on D(A?).

=0, onI.

Remark 2.3. If @ > o/ > 0, then D(A®) C D(A®) with continuous, dense and
compact injection.

We now turn to the case oo < 0.

We consider, on H, the continuous norm (3 7, )\?a|uj|2)%, u =37 ujw;. Then,
by definition, D(A®) is the closure of H for this norm.

We thus have H C D(A%) with continuous injection (this injection is indeed
continuous, since Y722 A3*[u;* < AP 357 Juyf?).

Remark 2.4. a) If a > o/, o, o/ € R, then D(A®) C D(A®) with continuous, dense
and compact injection. Furthermore, if v > 0, then D(A%)" = D(A™*) (topological
dual).

b) We could have also defined D(A%), a < 0, as the topological dual of D(A™%).
The operator A% a < 0, is then defined as above, A% : D(A%*) — H.

Example 2.5. (i) For a = —1, D(A™!) = D(A)’, as mentioned above.
(i) For v = —1, D(A™2) = D(Az)' = V' and the graph norm, ||A~2 - ||, is equivalent
to the usual H'-norm on D(A™2).

Remark 2.6. The norm

wes (JA72 (u — (u))||? + (u)?)2

is a norm on H () which is equivalent to the usual H!-norm.
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We can note that D(A) € D(A2) =V c D(A°) = H c D(A~2) = V', with

continuous, dense and compact injections. Furthermore,

+oo +oo
lullf =~ Al = M)l = A ul?,
j=1 Jj=1
which yields the Poincaré type inequality

|lul| < YueV.

\/—HUHV’

Note that we can obtain similar estimates on the norms of all injections.

Remark 2.7. We deduce from the above the Poincaré—Wirtinger inequality

(2.1) |u — (u)|| < Yu € HY(Q).

\/—I|U|Iv,

2.3. The linear equation 2 + A%y = f(t). The linear equation associated with
the Cahn—Hilliard equation reads

ou 2

En + Au = f(x,t),
ou  OJAu

W oy OonlT.

Having in mind the operator A defined in the previous subsection, we can rewrite
this boundary value problem in the following functional form:

du 9

i + A%u = f(t).

In particular, if f € L*(0,T;H), u € L*(0,T; D(A?%)) and % € L*(0,T;H), T > 0
given, this equation makes sense in L?*(0,7T; H). Furthermore it is associated with
the variational formulation

Find w : [0,7] — D(A) such that

%((W)) + ((Au, Av)) = ((f(t),v)), Vv € D(A),

in the sense of distributions.
We have the following result (existence and uniqueness of weak solutions).

Theorem 2.8. We assume that f € L*(0,T; D(A™")) and uop € H, T > 0 given.
Then, the linear initial value problem
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(2.2) Z—? + A%*u = f(t) in D'(0,T; D(A™)),

(2.3) u(0) = up in H,

possesses a unique solution u such that u € C([0,T]; H) N L*(0,T; D(A)) and %
L*(0,T; D(A™Y)).

Remark 2.9. Note that, since D(A) € H C D(A™') = D(A)" with continuous
injections, then it follows from Lions’ theorem (see [290]; see also the next subsection
below) that, if w € L*(0,T; D(A)) and 2 € L*(0,T; D(A™")), then u € C([0,T; H).
Therefore, u(0) makes sense in H.
Proof. Uniqueness:

Let u; and wus be solutions to

d
U Ay = (1) in D0, T; D(A™Y)),
Ul(O) = Up,1 in H,
and
d;f + A%uy = fo(t) in D'(0,T; D(A™Y)),

Ug(O) = Up,2 in H.

Then, u = u; —ug, f = fi — fo and uy = w19 — ug satisty

(2.4) 3—? + A%u = f(t) in D'(0, T; D(A™)),

(2.5) u(0) = up in H.

The above equation is associated with the variational formulation

(2.6) %((u,v)) + ((Au, Av)) = (f(t),v) in D'(0,T), Yv € D(A),

where (-, ) denotes the duality product in D(A™).
Taking v = u in (2.6), we have

24 [ Au|* = (f(t
which yields, noting that
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1 1
[(F@ ] < 1 OllpanlAull < SIHF O + 5 IAul”
the differential inequality

d
el + 1 Aul® < 17O,
so that, integrating over [0,¢], 0 <t < T,

lu(®)1* < Nuoll® + 11 f11Z2(0.2.0(a-1y)-
This gives the continuous dependence with respect to the data (i.e., (ug, f) — u(t)
is continuous from H x L?(0,T; D(A™1)) onto H), as well as the uniqueness (taking
fi = fo and uy g = ugp).
Existence:
The proof of existence is based on a standard Galerkin scheme.

We consider, for m € N given, the following approximated problem:
Find w, =Y ", wiw;, u; = u;(t), i =1, -+, m, such that

(2.7) %((um,v)) + (A, Av)) = (f(t),v), Yv € W, = Span(wy, « - -, Wy, ),

(28) um<0) = uO,mu
where g, is the projection (in H) of uy onto W,,,

m
Uo,m = Z((an w;))w;.
i=1
Here, the w;’s are eigenfunctions of A as constructed above. Note that the u;’s do
not depend on m, since the problem is linear. Furthermore, (2.7) is equivalent to
(taking v =w;, it =1, -+, m, in (2.7))

du; ‘
cZ‘ 0 2 = (ft),w), i=1, -, m,
so that
2 2 t 2
Ul(t) = €_>\¢tu7j,0 + €_>\¢t/ 6)\1'8<f(3)7wi> d57 1 = 1’ ceem,
0

where u; o = ((ug, w;)).
We thus have the existence of the maximal solution u,, to (2.7); actually, this
solution is global and defined on [0, T7].
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We now take v = w; in (2.7) and multiply the resulting equation by u; to find

du;
u; Uiy A = (f(t), uw;).
dt
du;

Summing over ¢ = 1, ---, m and noting that wu;

|, we obtain

—1ld.
dt 2dt‘ul

1d 9 9
5l + [ Aun | = (£(2), )

which yields, proceeding as above,

d
Zlumll” + [ Awn]* < [ F(O)Dca)-

Therefore, u,, is bounded, independently of m, in L*(0,T; D(A)) and L*°(0,T; H).
Hence, up to a subsequence which we do not relabel, there exists u € L*(0,7; H) N
L*(0,T; D(A)) such that u,, — w in L>(0,T; H) weak star and in L?(0,T; D(A))
weak. This allows to pass to the limit in (2.7) and finish the proof of existence (the

regularity on % immediately follows from the equation and the regularity on u and

dt
f)-
U

We also have the following result (existence and uniqueness of strong solutions).

Theorem 2.10. We assume that ug € D(A) and f € L*(0,T; H). Then, the solution
u to (2.2) given in Theorem 2.8 satisfies u € C([0,T]; D(A)) N L*(0,T; D(A?)) and
dv e [2(0,T; H) and is a strong solution to (2.2) (i.e., (2.2) holds in L*(0,T; H)).

Remark 2.11. Note that D(A?%) C D(A) C H with continuous injections. There-

fore, u € L*(0,T;D(A?) and % € L*(0,T;H) imply that u € C([0,T]; D(A)).

Therefore, u(0) makes sense in D(A).
Proof. Owing to the regularity on f, (2.6) and (2.7) now read

(2.9) %((u,v)) + ((Au, Av)) = ((f(t),v)) in D'(0,T), Yv € D(A),
and

(2.10) %((um,v)) + ((Aup, Av)) = ((f(2),v)), Yo € Wy,
respectively.

We take v = w; in (2.10) and multiply the resulting equation by A?u;. This yields

dui
dt

Mui—= + X |u| = ((f(t), Nuw)).
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Summing over ¢ = 1, -- -, m, we have

1d 2 2 2 _
At 4 A2 = ((F(2), Au),

Noting that

|((F(2), Aw))| < (I F O[] A < ciollf(t)|!|!z42um||,

where ¢y is such that || A%u,,|| > co||Au,|| and depends on \; (see the previous
subsection), this yields

d 2 2 2 1 2
_ < — .
dtHAum” + HA um” > C(Q)Hf(t)H

Therefore, u,, is bounded, independently of m, in L?(0,T; D(A)) and L?(0,T; D(A?))
and we can pass to the limit as above.
O

Note that, if u € L>(0,T; H) N L?(0,T; D(A)) is solution to (2.2), then

d
A‘ld—? + Au= A" f(t) in LX0,T; H)

and conversely.
We will actually consider a weaker formulation of (2.2), namely,

(2.11) Al% + Au= A" f(t) in L*(0,T; V"),

(2.12) u(0) = up in V',

which is associated with the variational formulation
Find u : [0,7] — V such that

(2.13) %((A‘lu, ) + (Au,v) = (AL F(t), ) in D(0,T), Yo € V.,

where (-,-) denotes the duality product in V’. Note that A™'% = % and recall
that V/ = D(A™2).
We have the following result (existence and uniqueness of very weak solutions).

Theorem 2.12. We assume that ug € V' and f € L*(0,T; D(A~2)). Then, (2.11)-
(2.12) possesses a unique solution u such that v € C([0,T]; V') N L*(0,T;V) and
du ¢ 12(0,T; D(A™2)).
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Remark 2.13. Note that V C V/ C D(A~2) with continuous injections. Therefore,
w e LX0,T;V) and & € L2(0,T; D(A™2)) imply that u € C([0,T]; V’). Therefore,
u(0) makes sense in V’. Also note that, if f € L2(0,7;D(A"2)), then A7Lf €
L*(0,T;V"); the same holds for 2.
Proof. Uniqueness:

Let u; and wuy be solutions to

d
A*1% + Auy = A7 £ (1) in D0, T; V'),

U1 (0) = U0,1 n V/7

and

Al% + Auy = A7V fo(t) in D'(0,T; V"),
UQ(O) = Up,2 in V/.

Then, u = u; —ug, f = fi — f2 and wy = w19 — ug satisfy

du

(2.14) AT

+ Au= A f(t) in D'(0,T; V'),
(2.15) uw(0) = up in V.
The above equation is associated with the variational formulation

(2.16) %((A_lu, v)) + (Au,v) = (A" f(t),v) in D'(0,T), Yv € V.

Taking v = w in (2.16), we have

1d _
Sl + lalf = (AL (2), ),

where || - ||y = [[A7% - ||. Noting that [(A~"f(t),u)| < 1O 45, lullv this yields
the differential inequality

d, o 2 2
gl =+ el < WFOT, -4
so that, integrating over [0,¢], 0 <t < T,

a2 < ol + U1, 0o
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This gives the continuous dependence with respect to the data (i.e., (ug, f) — u(t)
is continuous from V' x L2(0,T; D(A™2)) onto V'), as well as the uniqueness.
Existence:

We again employ a Galerkin scheme.

We consider, for m € N given, the approximated problem
Find w,, = Y ", wjw;, u; = u;(t), i =1, - -+, m, such that

d
7 (A7 i, 0) + (A, 0)) = (f(2),0), Vo € Wy,
um(o) = Uo,m,
where ug,, is the projection (in V’) of ug onto W,,,. Note that here we have enough
regularity to write a scalar product in H, instead of a duality product.
Taking v = w;, multiplying the resulting equation by u; and summing over ¢ =
1, ---, m, we find

1d

§allumllz_1 +llumli = (F(t), um),

which yields

d
gillumlZs 4 lunlly < IFOI 3,

Therefore, u,, is bounded independently of m in L>(0,7;V"’) and L*(0,T;V). We
can then pass to the limit in the approximated problems and finish the proof of the
theorem.

O

Remark 2.14. Assuming more regularity on uy and f, we can obtain more regularity
on the solutions and recover the strong formulation, in particular.

3. AUBIN-LIONS COMPACTNESS RESULTS [383]

Let Xy, X and X; be three Banach spaces such that X C X, C X; with dense
and continuous injections, where X C Xj is compact. Let p > 1, 1 < ¢ < +00 and
T > 0 be given. We set

d
W = {ue LP(0,T; X), d_:: e L9(0,T; X))},

e If p < +o00, then the embedding W € LP(0,T; X,) is compact.
e If p = +o00, then the embedding W € C([0,T7]; Xo) is compact.
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Remark 3.1. When p = ¢ = 2 and the injections are only dense and continuous,
we recover Lions’ theorem, namely, W C C(]0,T']; X,) with continuous injection (see
[290]; see also [384] for insightful discussions on Lions’ theorem).

4. SOME USEFUL INEQUALITIES

4.1. Interpolation inequalities [388]. Let m € NU {0} and s € (0,1). Then,

(4.1) ||| mets () < c||u||§,m(9)\|u|]};£+l(ﬂ), Yu € H™(Q),
where § =1 — s and 1 — 6 = s. It is understood here that H°(Q2) = L?(Q).
Example 4.1. There holds, Yu € H'(Q),

1 1
< cful]2[Jul| F -

(12) el 3.0

Let mg > my > 0, my, my € NU{0}, and s € (my, my). Then,

(4.3) Jull s () < CHUH?‘I’M(Q)Hu“}-l_w?z(ﬂ)? Vu € H™(Q),
where § = 22==2 and 1 — 0 = ==L,
mo—mi ma2—mj

Example 4.2. (i) There holds, Vu € H*(Q),

2 1
(4.4) lullrzy < ellull f o el sy -

(ii) There holds, Yu € H*(Q),

3 1
(4.5) lull 3 ) < ellellin @ llull s -

Remark 4.3. a) One important question is to find in an easy way the coefficients in
the above interpolation inequalities. This can be done in several ways. One possibil-
ity is via a dimensional analysis, based on lengths. Let us consider the interpolation
inequality (4.3). In R™, a volume corresponds to the dimension L". Then, a deriva-
tive corresponds to L~!. Thus, for instance, the norm of u in H™ (Q) corresponds
to (L"L=2™)z and, by analogy, the norm of u in H*(Q), even for s noninteger, to
(L"L2%)2. Therefore, we have, in (4.3), (L"L™2)2 = (L”L*le)g(L”L*QmQ)%, SO
that s = 0my + (1 — 6)ms and the result follows.

b) In particular, we can see that the coefficients are independent of the space dimen-
sion 7.
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4.2. Agmon’s inequalities [388]. There holds, in two space dimensions,

1 1
(4.6) oy < cllull?[|ull ey, Yu € H* ().

Furthermore, there holds, both in two and three space dimensions,

1 1
(4.7) lullio) < ellull i gyl ey, Yu € HA(Q).

Remark 4.4. Note that, interpolating as above, i.e., with exponents %, one obtains

the spaces H'(€) and H2((2), respectively, and that, in two space dimensions (resp.,

three space dimensions), L>°()) is not continuously embedded into H'(Q2) (resp.,
3

H(Q)).

4.3. Moser—Trudinger’s inequality [340]. Let Q be a bounded smooth domain
of R%. Then, there exists a positive constant C such that

(4.8) / i@ gy < e Mine vy e HY(Q),
Q

Remark 4.5. This inequality is also related to the limit case in the continuous
embedding of H'(Q) into LP(2) in two space dimensions and to an Orlicz space.
Note that such an inequality is not available in three space dimensions.

5. ASYMPTOTIC BEHAVIOR OF DISSIPATIVE SYSTEMS: GLOBAL ATTRACTORS

Our aim in this section is to review some basic results in the theory of attractors for
dissipative (parabolic) partial differential equations. More details and developments
on this subject can be found, e.g., in [19], [335] and [388].

Let E be a Banach space endowed with the norm ||.||g. Let then {S(t), ¢ > 0} be
a family of (nonlinear) operators acting on F,

Sit): E—E, t>0.
We assume that this family of operators satisfies the following properties:
S(0) =1 (identity operator),
S(t+s)=S(t)oS(s), Vs, t >0,
and we say that it forms a semigroup acting on E. We will also need some continuity
property and we assume that the mapping

S(t): E— E, v~ S(t)x,

is continuous, Vt > 0.
We first start with some terminology.
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e For ug € FE, the trajectory starting at wy (or positive trajectory) is the set
UtZ()S(t)uO.
e For ug € E, a trajectory ending at uy (or negative trajectory), if it exists, is a set
of the form
{u(t), u(t) € S(—t) tug, t <0}

(note that such a set, if it exists, is not necessarily unique).
e For uy € E, a complete trajectory containing uyg, if it exists, is the union of the
trajectory starting at uy and of a trajectory ending at ug. In particular, fixed points
are complete trajectories (x € E is a fixed point if S(t)z =z, Vi > 0).
e A set X C E is positively invariant by S(t) if S(t)X C X, ¥Vt > 0 (thus, any
trajectory starting from X remains in X).
e A set X C E is negatively invariant by S(¢) if X € S(¢)X, V¢t > 0 (thus, for every
x € X, there exists a trajectory ending at x which is contained in X).
e A set X C F is invariant by S(t) if S(t)X = X, Vit > 0.

For instance, complete trajectories or unions of complete trajectories are invariant
by S(t). A more complicated (and essential in view of the construction of the global
attractor) invariant set is an w-limit set.

Definition 5.1. Let z € E. The w-limit set of x is the set
w(z) = NezoUrzS (D)2
Similarly, if B C E is a nonempty set, the w-limit set of B is the set
w(B) = Ny0Ur>5S(t) B.
An important (and easy to see) characterization of w-limit sets is the following:
x € w(B) iff I(zx)ken, xr € B, Yk € N, I(tx)ren, t — +00 as k — 400,

such that S(ty)x — = as k — +o0.

We have the following result (which is again essential in view of the construction
of the global attractor).

Proposition 5.2. Let X C E be such that X # () and U4, S(t)X is relatively
compact in E for some ty > 0. Then, w(X) is nonempty, compact and invariant.

Proof. First, note that, since X # 0, U;>:S(6)X # 0, Vs > 0. Therefore, the sets
Ui>sS(t) X, s > to, are nonempty and compact sets which decrease as s increases:
their intersection, namely, w(X), is a nonempty and compact set.

Let us now prove that w(X) is invariant by S(t).

Let y € S(t)w(X), for a given ¢ > 0. Then, there exists € w(X) such that
y = S(t)z. Furthermore, owing to the characterization of w-limit sets, there exist
xp € X and t; — 400 such that S(tx)zr, — x as k — +o0o0. Then, by continuity
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of S(t), S(t) o S(ty)xr — S(t)xr = y as k — +oo. Since, owing to the semigroup
properties, S(t) o S(tx)xr = S(t + tr)xk, where t 4+t — 400 as k — +o0, it follows
that y € w(X) and S(t)w(X) C w(X), Vt > 0.

Let now = € w(X). Then, there exists ty — +o0o and x; € X such that S(ty)zr —
x as k — 400. Since Uiy, S(t)X is relatively compact in E, it is easy to see that
the sequence S(ty — t)xy is relatively compact in E for ¢, —t > 0 (i.e., for k large
enough). Therefore, there exists a subsequence k; and y € E such that

S(ty, — t)xg, — y as k; — +00.
This yields that y € w(X) (indeed, tx, — t — 400 as k; — +00). Finally, since
and, by continuity,
S(t) o S(ty, — t)xr, — S(t)y as k; — +o0,
we have (of course, S(ty, )z, — = as k; — +00)
z=S5t)y,

ie., x € S(t)w(X). Therefore, w(X) C S(t)w(X), Vt > 0, which finishes the proof of
the proposition. O

e A set X C E attracts the bounded sets of E' (we also say that it is an attracting
set) if, VB C E bounded,

distg(S(t)B, X) — 0 as t — 400,
where distg denotes the Hausdorff semidistance between sets, defined by

distg(A, B) = sup inf ||a — b||g.
a€EA beB

Note in particular that distp(A, B) # distg(B, A). Furthermore, distg(A, B) = 0
only implies A C B. This attraction property is equivalent to the following (natural)
property:

Ve >0, VB C E bounded, 3ty = to(B) such that t >ty = S(t)B C U,

where U, is the e-neighborhood of X i.e., the union of all open balls with radius e
and with centers in X.

e A bounded set By C E is a bounded absorbing set for S(t) if, VB C E bounded,
Jty = to(B) such that ¢ > ¢, implies S(t)B C By.

Note that the existence of a bounded absorbing set is sometimes used as a math-
ematical definition of dissipativity (from a physical point of view, roughly speaking,
a dissipative system exhibits some kind of energy dissipation phenomenon).

We are now ready to give the definition of a global attractor.



30 A. MIRANVILLE

Definition 5.3. A set A C FE is a global attractor for the semigroup S(t) if the
following properties hold:

(i) A is compact in FE.

This essentially says that a global attractor is much thinner than the phase space E;
indeed, in applications, F usually is an infinite-dimensional function space (typically,
L3(2), L>(Q) or H}(Q)) and, in infinite dimensions, a compact set cannot contain
a ball and is nowhere dense.

(ii) A is invariant by S(t), S(t)A = A, Vt > 0.

(iii) A is an attracting set.

We first note that a global attractor, if it exists, is unique. Indeed, if A’ is a second
global attractor, then, since A’ is bounded in E, distg(S(t)A’, A) — 0 as t — 400
and, since, owing to the invariance, S(t)A" = A’, there remains distg(A’, A) = 0, so
that A/ ¢ A= A. Similarly, A C A and A= A'.

Furthermore, it is easy to see that A is the smallest (for the inclusion) closed set
which enjoys the attraction property and thus appears as a suitable set in view of
the study of the asymptotic behavior of the system. Indeed, let X C E be a closed
attracting set. Then, distg(S(t)A, X) — 0 as t — +oo, i.e., distg(A, X) = 0, so
that A C X = X.

Finally, A is the largest (again, for the inclusion) bounded invariant set. Indeed,
let X be a bounded invariant set. Then, distg(S(¢)X,.A) — 0 as t — +o00, which
implies, since X is invariant and A is closed, that X C A.

Remark 5.4. a) The global attractor is also called the universal attractor (in the
sense that it attracts all the bounded subsets of the phase space) or the maximal
attractor.

b) The existence of the global attractor implies the existence of a bounded absorbing
set. Indeed, any e-neighborhood of the global attractor is a bounded absorbing set.

We have, concerning the existence of the global attractor, the following result.

Theorem 5.5. We assume that S(t) possesses a bounded absorbing set By and that,
VB C E bounded, 3ty = to(B) > 0 such that Ui, S(t)B is relatively compact in E.
Then, S(t) possesses the global attractor A and A = w(By).

Proof. 1t actually suffices, in view of Proposition 5.2, to prove that w(Bp) is an
attracting set (indeed, we already know that w(Bj) is a nonempty, compact and
invariant set).

We will argue by contradiction.

Let us assume that w(Bp) is not an attracting set. Then, there exists B; C
E bounded such that distg(S(t)By,w(By)) does not tend to 0 as ¢ tends to +oo.
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Therefore, there exist § > 0 and t; — 400 such that
Vk € N, diStE(S(tk)Bl,W(BQ)) > 4.

Thus, by definition of the Hausdorff semidistance, necessarily, Vk € N, b, € B; such
that

DO >

We recall that By is an absorbing set. Therefore, if ¢, > t; = t;(By), t1 > 0,
S(tx)B1 C By (indeed, ty, — +00 as k — +o0) and S(t;)b, € By if k is large enough.

Using now the fact that Ui, S(¢)B, is relatively compact for some ¢, > 0, we
deduce that the sequence {S(tx)bx, k € N} is relatively compact. Therefore, there
exists a subsequence (ty,,by,) and b € E such that

S(tkz)bkl — b as :I{Zz — +00.
Writing, for k; large enough so that ¢;, —¢; > 0,
S(te, )bk, = S(te, — t1) o S(t1)by,

and noting that S(t1)bx, € By, we deduce that b € w(By) (indeed, ty, —t; — +00 as
k; — +00). This leads to a contradiction, since, by continuity, (5.1) yields, at the
limit,

N S

distg(b, w(By)) >
This finishes the proof of the theorem. U

In particular, if S(t) possesses a bounded absorbing set B; such that B; is relatively
compact in E, then, VB C FE bounded, 3ty = to(B) > 0 such that S(t)B C By,
Vt > to, which implies that U;>.,S(t)B C By is relatively compact. Therefore, owing
to Theorem 5.5, S(t) possesses the global attractor A. In particular, this is the case
for many parabolic systems. However, this cannot work for, e.g., weakly damped
wave equations (indeed, in that case, there is no regularizing effect). In such a case,
we have, for instance, the following result.

Theorem 5.6. We assume that S(t) possesses a compact attracting set K. Then,
S(t) possesses the global attractor A and A = w(K).

Remark 5.7. a) We can also prove, in Theorems 5.5 and 5.6, that the global at-
tractor A is connected.

b) It follows from the invariance property that the global attractor A has the following
structure:

A ={z € E, 3 a bounded complete trajectory containing z}.
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Note that any bounded complete trajectory lies in A (indeed, it is a bounded invariant
set).

It has been early conjectured that the global attractor should be, in some proper
sense, finite-dimensional, meaning that the dynamics, restricted to this set, should
be described by a finite number of parameters, even though the initial phase space
is infinite-dimensional. However, the global attractor is expected to have a very
complicated geometric structure (this should be compared with strange attractors
in finite dimensions (i.e., for systems of ODE’s in R", n > 3) which are, typically,
homeomorphic to the product of some R™ and some Cantor set). Therefore, we need
to use other dimensions than the usual notion of dimension to measure the dimension
of the global attractor; in particular, one usually considers covering dimensions such
as the Hausdorff dimension or the entropy (or box-counting) dimension. Actually, we
will only consider here the entropy dimension which we will call the fractal dimension.
This dimension is defined as follows.

Definition 5.8. Let X C E be a (relatively) compact set. For € > 0, let N (X) (if
it is necessary to precise the topology, we will also use the notation N (X, F)) be
the minimal number of balls of radius € which are necessary to cover X. Then, the
fractal dimension of X is the quantity (which belongs to [0, +o0])

log, N (X In N (X
dimpX = limsup og2—(1)<: lim sup n—(l))
e—0t 1Og2 P e—0t+ In <

Furthermore, the quantity H.(X)(= H(X,E)) = log, N(X) is called the Kol-
mogorov e-entropy of X.

The fractal dimension satisfies the following properties:
e dimp(X; x X5) < dimp(X;) + dimp(X5).
o If f: X; — Xy is Lipschitz continuous, then dimpXs < dimpXj.
e If X is a smooth m-dimensional manifold, then dimpX = m.

It is also important to note that, for sets which are not manifolds, the fractal
dimension can be noninteger; for instance, we have, in the case of the ternary Cantor
set,

In 2

0 <dimpX = — < 1.
Img ln3<

Furthermore, it follows from the definition that, if the minimal number of balls of
radius € which are necessary to cover X satisfies

1 1
N(X) < c(g)d (ie., H(X) < dln -+ d, d =Inec),
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where ¢ and d are independent of €, then

Now, an interest for considering the fractal dimension over other dimensions is
given by the (modified) Holder-Mané theorem (see [244]). First, we need the following
definition (see [245]).

Definition 5.9. A Borel set X of a Banach space E is prevalent if there exists a
compactly supported probability measure p such that u(X +z) = 1, Vo € E. A
non-Borel set which contains a prevalent set is also prevalent.

We do not wish to go into details here and will just mention that prevalence extends
the notion of “Lebesgue almost every” from Euclidean to infinite-dimensional spaces.

Theorem 5.10. (Modified Hélder-Mané theorem) Assume that E is a Hilbert space
and let X C E be a compact set such that dimpX = d and m > 2d be an integer.
Then, almost every (in the sense of prevalence) bounded linear projector P : E — R™
15 one-to-one on X and has a Holder continuous inverse.

It follows from this theorem that, if the global attractor A has finite fractal dimen-
sion, then, fixing a projector P satisfying the assumptions of the theorem, the reduced
dynamical system (S(t), A), S(t) = PoS(t)o P71, A = P(A), is a finite-dimensional
dynamical system (in R™) which is Hélder continuous with respect to the initial data
(note that such a result does not hold for other dimensions and, in particular, for the
Hausdorff dimension which is also often considered in the theory of global attractors;
see however [365] for partial results for the Hausdorff dimension). This shows that
the fractal dimension plays a fundamental role in the finite-dimensional reduction
of infinite-dimensional dynamical systems, although Theorem 5.10 is not completely
satisfactory, since the reduced dynamical system is not Lipschitz continuous and
cannot thus be realized as a well-posed system of ODE’s (indeed, one would need
the Mané projectors to be Lipschitz continuous and sufficient conditions on A which
would ensure that this holds are not known).

We now give a general method to prove the finite fractal dimensionality of a
compact set (see [420]).

Theorem 5.11. Let X be a compact subset of E. We assume that there exist a
Banach space Ey, with norm ||.||g,, such that Ey is compactly embedded into E and
a mapping L : X — X such that L(X) = X and

(52) ||LZE1 — LZ'QHEI < C||I’1 — ZEQHE, \V/ZL‘l, To € X, c> 0.

Then, the fractal dimension of X is finite and satisfies

(53) dlmFX S H%(BE1 (Oa 1)7 E)?
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where Bg, (0,1) is the unit ball in Ey (note that it is relatively compact in E, so that
its i—entropy is finite).

Proof. Let {Bg(k;,€), i =1, ---, N} be an e-covering of X (note that X is compact)
with balls in £ with centers k; € X, i =1, -+, N.. Then, owing to (5.2), the system

{Bg, (L(k;),ce), i=1, ---, N}

of balls of radius ce in E; covers the set L(X), i.e., it also covers X, since L(X) = X.

In a second step, we cover each of these balls with radius ce in E; by a finite
number of balls with radius { in £. By definition, the minimal number of such balls
is given by

Ne(Bg, (L(ki), ce), E) = N<(Bg, (0, ce), E) = Nﬁ(BEl(O, 1),E)=N.

Here, we have used the fact that E is a Banach, and thus a vector, space. If such a
ball of radius § does not intersect X, there is nothing to say and we forget it. Let us
now consider the balls of radius § which intersect X (and which still form a covering
of X'). Note that the centers of these balls of radius { do not necessarily belong to
X. Now, by considering balls of radius §, we can construct balls which still cover
X, but now with centers in X (we need this to apply (5.2)), in £ and with the same
number of balls.

We thus deduce that

N1 (X, E) < NN.(X, ),

so that
(5.4) He (X, E) <HA(X, E) + log, NV.

We will now prove (5.3) by proceeding recursively (i.e., by using (5.4) recursively).
First, note that, since X is compact in F/, then there exist o € X and ¢y > 0 such
that X C Bg(zo, €), so that

(5.5) Heo (X, E) = 0.

Iterating (5.4) k times (starting from the e;-covering by one ball) and using (5.5),
we have

(5.6) Heo (X, E) < klogy N.

‘0
ok

Let now € > 0 be arbitrary and fix & = k(€) such that

(5.7) D ce<

Then, obviously, owing to the first of (5.7),
N(X,E) < N« (X, E),
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so that, owing to (5.6) and the second of (5.7),
H.(X, E) < klog, N < (log,  + 1) log, '
which yields (5.3). This finishes the proof of the theorem. O

Remark 5.12. a) In applications to parabolic PDE’s; one usually proves (5.2) for,
say, L = S(1). Then, owing to the invariance property (i.e., S(1)A = A), one
deduces that the global attractor A has finite fractal dimension. For weakly damped
hyperbolic systems, however, (5.2) cannot hold (we again recall that there is no
regularizing effect), but one can prove weaker versions of (5.2).

b) It is also important to obtain sharp estimates on the fractal dimension of the
global attractor in terms of the physical parameters of the problem. Actually, the
above approach does not give the best estimates in general. Sharp estimates are
usually obtained by the so-called volume contraction method, based on the Lyapunov
exponents. This second approach, however, requires additional assumptions, namely,
the differentiability of the semigroup, which may be difficult to prove (and may even
not hold) in certain situations.

¢) The existence of the finite-dimensional global attractor A has been proved for
a large number of important (dissipative) equations in mathematical physics, such
as the two-dimensional incompressible Navier-Stokes equations, reaction-diffusion
systems, weakly damped wave equations, pattern-formation equations, etc.
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