NSF-CBMS Conference
The Cahn-Hilliard equation: recent advances and applications

List of lectures

The Cahn-Hilliard equation was proposed by J.W. Cahn (who died on March
14, 2016) and J.E. Hilliard in order to describe phase separation processes in binary
alloys. More precisely, when an homogeneous binary alloy is cooled down sufficiently,
one can observe a total phase separation (called spinodal decomposition) and one
obtains a fine-grained structure. This, in turn, can have essential consequences on
the mechanical properties of the system, e.g., strength or aging.

This equation is particularly popular among material scientists, engineers and
physicists. Indeed, it is simple to state (it is a fourth-order in space parabolic equa-
tion), easy to implement numerically and gives very good and precise simulations (in
2 and even 3D). It reads (taking all physical contants equal to 1)
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8—1: + A%u — Af(u) = 0.
It usually is associated with Neumann boundary conditions,
Ou  O0Au 0
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on the boundary. Furthermore, one usually considers a cubic nonlinear term,
f(5> = 83 -5,

but such a nonlinear term is an approximation of thermodynamically relevant loga-
rithmic nonlinear terms of the form

0, 1+s
f(s) = 905—1—21111_8
From a mathematical point of view, a lot has been done (from a theoretical and
also a numerical/simulation point of view); it suffices to type Cahn on mathscinet
to see how popular this equation was and still is. Nevertheless, the equation still is
very much studied (one can again see mathscinet) and indeed a lot has still to be
done. In the lectures, we present the state of the art, but also present and discuss
important open problems.
It is also interesting and important to note that the Cahn-Hilliard equation, or
some of its variants, has applications in other areas/contexts, in which phase sep-
aration and/or coarsening/clustering processes can be observed or come into play.

We can mention, for instance, population dynamics, bacterial films, wound healing
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and tumor growth, thin films, image processing (image denoising and inpainting in
particular) and even the rings of Saturn and the clustering of mussels. In particular,
several interesting variants of the equation (with applications, e.g., to tumor growth
and image processing) can be written in the form

0

8—1; + A%u — Af(u) + g(x,u) = 0.

Essential (mathematical) difficulties arise from the fact that, when endowing the
equation with Neumann boundary conditions, one no longer has the conservation of

the average of the order parameter, contrary to the original Cahn-Hilliard equation.

LECTURE 1: THE CAHN-HILLIARD EQUATION

In this lecture, we introduce the equation and its (phenomenological) derivation.

We also discuss in details the boundary conditions. In particular, we can note that
the usual Neumann boundary conditions yield a contact angle (when the interface
between the two components meets the boundary/walls (e.g., in a confined system))
of 7. Now, in several situations (e.g., for the study of immiscible binary mixtures),
it is necessary to have a contact angle which moves from its equilibrium state. Hence
the necessity to introduce dynamic boundary conditions. One can consider several
approaches to define such boundary conditions, based on energy principles and (dif-
ferent versions of) mass conservation. We present, discuss and compare the different
approaches.

We finally introduce several important variants and generalizations of the Cahn-
Hilliard equation.

LECTURE 2: THE CAHN-HILLIARD EQUATION WITH REGULAR NONLINEAR
TERMS - PART ONE

In this lecture, we discuss the mathematical analysis of the equation. Here, we
consider regular nonlinear terms (a typical choice being the usual cubic nonlinear
term f(s) = s* — s) and standard (Neumann) boundary conditions.

We first present the functional framework (linear operators, linear problem, in
particular).

We then discuss the well-posedness and regularity of solutions, as well as the
asymptotic behavior of the system (existence of global attractors).

LECTURE 3: THE CAHN-HILLIARD EQUATION WITH REGULAR NONLINEAR
TERMS - PART TWO

In this second part, we give an improved regularity result, allowing to address
polynomials with arbitrary odd degree (with a strictly positive leading coefficient)
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in 3D. We then discuss the finite-dimensionality of the global attractor. We finally
discuss the numerical analysis of the equation.

LECTURE 4: THE CAHN-HILLIARD EQUATION WITH LOGARITHMIC NONLINEAR
TERMS - PART ONE

In this lecture, we address the case of logarithmic nonlinear terms. Indeed, the
usual cubic/regular nonlinear terms are approximations of thermodynamically rele-
vant logarithmic nonlinear terms which follow from a mean-field model. Such non-
linear terms induce additional mathematical questions and an essential issue (not
completely solved in 3D) is the separation from the pure states/singular points of
the nonlinear term, namely an estimate of the form

|lu(®)||pe <1 =9, 6 €(0,1),

at least after some transient time (0 possibly depending on a final time 7).
We can note that such nonlinear terms force the order parameter to stay in the
physically relevant interval, i.e.,

—1l<u<xl1

almost everywhere; this does not hold in the case of regular nonlinear terms (we
give very simple counterexamples). The separation from the pure states mentioned
above, which holds in 2D, says that, actually, there is always a certain amount of
the two alloys components during the phase separation.

In this first part, we discuss the well-posedness (we can mention that several
approaches can be used to prove the existence of a solution) and start discussing the
asymptotic behavior of the system.

LECTURE 5: THE CAHN-HILLIARD EQUATION WITH LOGARITHMIC NONLINEAR
TERMS - PART TWO

The second part is devoted to the study of the strict separation property from the
pure states and further discussions on the asymptotic behavior of the system.

LECTURE 6: THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY
CONDITIONS

In this lecture, we address the Cahn-Hilliard equation with dynamic boundary con-
ditions. As already mentioned, such boundary conditions are important to account
for the interactions with the walls, in particular, as already mentioned, to account
for dynamic contact angles. One possible dynamic boundary condition reads



%—Apu—l—g(u)—f—%
on the boundary, where Ar is the Laplace-Beltrami operator and ¢ is a surface
nonlinear term, assumed regular.

We address the well-posedness, regularity and asymptotic behavior of the sys-
tems, in the case of regular nonlinear terms. In particular, we discuss different
possibilities/approximation schemes for the existence of solutions. Indeed, different
approaches are needed, depending on the type of dynamic boundary conditions that
we consider.

We also address dynamic boundary conditions and logarithmic nonlinear terms.
In that case, we can prove the nonexistence of classical solutions, i.e., of solutions
in the sense of distributions, due to the fact that one of the pure states can be
present in a set with non-zero measure on the walls. We thus give suitable notions
of solutions to describe such solutions: these can be defined by duality techniques or
by a variational inequality.

We again address the well-posedness, regularity and asymptotic behavior of the
corresponding systems.

=0

LECTURE 7: THE CAHN-HILLIARD-OONO EQUATION

The Cahn-Hilliard-Oono equation,

ou
E—FAZU—Af(u)—l—Bu:O, 8 >0,
was introduced in order to account for long-ranged (i.e., nonlocal) effects in the phase
separation process.

We show in this lecture that the additional simple linear term already leads to sev-
eral additional difficulties, especially when considering logarithmic nonlinear terms.

We also discuss the dynamics of the equation when [ goes to 0.

LECTURE 8: THE CAHN-HILLIARD EQUATION IN IMAGE INPAINTING

In this lecture, we explain how the Cahn-Hilliard equation can be used in image
processing, in particular, for image denoising and restoration. We present in partic-
ular a Cahn-Hilliard model proposed by A. Bertozzi, S. Esedoglu and A. Gillette in
view of binary image inpainting which reads

b A% Af() + gl 0) =0,

where



g(x,s) = Xoxa\p(@)(s — h(x)), Ao >0, DCQ, he L*(Q),
x denoting the indicator function. Here, h is the damaged image and D is the
damaged region.

We then discuss the mathematical analysis of the models and present numerical
simulations which show that such models are particularly efficient, compared to other
approaches. We also address several open problems (e.g., uniqueness and regular-
ity when considering logarithmic nonlinear terms; numerical simulations show that
considering logarithmic nonlinear terms improves the efficiency of the algorithms).

We finally discuss several extensions of this model (for multicolor images and
grayscale images).

LECTURE 9: THE CAHN-HILLIARD EQUATION WITH A PROLIFERATION TERM

In this lecture, we introduce variants of the Cahn-Hilliard equation in wiew of the
modeling of tumor growth. More precisely, we consider the generalized equation

g A%~ AT () 4 glu) = 0.
where g is a polynomial; typically, g(s) = s* — s.

In particular, we show that the choice of the nonlinear terms is crucial, as one
may have blow up in finite time if one is not careful enough; such a blow up can be
avoided by considering logarithmic nonlinear terms f.

We also discuss how to account for nutrients and energitic aspects (e.g., oxygen)

in tumor growth models based on the Cahn-Hilliard equation.

LECTURE 10: FURTHER GENERALIZATIONS OF THE CAHN-HILLIARD EQUATION

In this lecture, we discuss the approach due to M. Gurtin and based on a separate
balance law for internal microforces. In particular, this allows to generalize the
Cahn-Hilliard equation to account for important effects such as deformations and
heat transfers. It is interesting to note that several such effects (e.g., heat transfers)
lead to mathematically challenging (and still open) problems.
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