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Expanded account of the lectures

Lecture 1: The Cahn–Hilliard equation

In this lecture, we introduce the equation and its (phenomenological) derivation.
The Cahn–Hilliard equation was proposed by J.W. Cahn (who died on March

14, 2016) and J.E. Hilliard in order to describe phase separation processes in binary
alloys. More precisely, when an homogeneous binary alloy is cooled down sufficiently,
one can observe a total phase separation (called spinodal decomposition) and one
obtains a fine-grained structure. This, in turn, can have essential consequences on
the mechanical properties of the system, e.g., strength or aging.

This equation is particularly popular among material scientists, engineers and
physicists. Indeed, it is simple to state (it is a fourth-order in space parabolic equa-
tion), easy to implement numerically and gives very good and precise simulations (in
2 and even 3D). It reads

∂u

∂t
+ ακ∆2u− κ∆f(u) = 0, α, κ > 0.

Here, one usually considers a cubic nonlinear term,

f(s) = s3 − s,
but such a nonlinear term is an approximation of thermodynamically relevant loga-
rithmic nonlinear terms of the form

f(s) = −θcs+
θ

2
ln

1 + s

1− s
, 0 < θ < θc, s ∈ (−1, 1).

From a mathematical point of view, a lot has been done (from a theoretical and
also a numerical/simulation point of view); it suffices to type Cahn on mathscinet to
see how popular this equation was and still is. Nevertheless, the equation still is very
much studied (one can again see mathscinet) and indeed a lot is still to be done.

We also discuss in details the boundary conditions.
In general, one considers Neumann boundary conditions, namely,

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ,

where Γ is the boundary of the domain Ω occupied by the material and ν is the
unit outer normal vector to the boundary. One can also consider periodic boundary
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conditions, but not Dirichlet boundary conditions. Indeed, one important property
of the Cahn–Hilliard equation is the conservation of mass, i.e., of the spatial average
of the order parameter.

In particular, we can note that the usual Neumann boundary conditions yield a
contact angle (when the interface between the two components meets the bound-
ary/walls (e.g., in a confined system)) of π

2
. Now, in several situations (e.g., for

the study of immiscible binary mixtures), it is necessary to have a contact angle
which moves from its equilibrium state. Hence the necessity to introduce dynamic
boundary conditions. One can consider several approaches to define such boundary
conditions, based on energy principles and (different versions of) mass conservation.
Two types of dynamic boundary conditions read

1

d

∂u

∂t
− αΓ∆Γu+ g(u) + α

∂u

∂ν
= 0 on Γ, d > 0,

∂µ

∂ν
= 0 on Γ,

where

µ = −α∆u+ f(u)

is the chemical potential, and

µ = −αΓ∆Γu+ g(u) + α
∂u

∂ν
on Γ, αΓ ≥ 0,

∂u

∂t
= βΓ∆Γµ− κ

∂µ

∂ν
on Γ, βΓ ≥ 0.

Here, ∆Γ is the Laplace–Beltrami operator. Note that the first set of boundary
conditions again yields the conservation of mass in the bulk, while the second one
yields a total mass conservation, in the bulk and on the boundary.

It is also interesting and important to note that the Cahn–Hilliard equation, or
some of its variants, has applications in other areas/contexts, in which phase sep-
aration and/or coarsening/clustering processes can be observed or come into play.
We can mention, for instance, population dynamics, bacterial films, wound healing
and tumor growth, thin films, image processing (image denoising and inpainting in
particular) and even the rings of Saturn and the clustering of mussels. In particular,
several interesting variants of the equation (with applications, e.g., to tumor growth
and image processing) can be written in the form

∂u

∂t
+ ακ∆2u− κ∆f(u) + g(x, u) = 0.
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Essential (mathematical) difficulties arise from the fact that, when endowing the
equation with Neumann boundary conditions, one no longer has the conservation of
the average of the order parameter, contrary to the original Cahn–Hilliard equation.

We finally introduce several important variants and generalizations of the Cahn–
Hilliard equation. We mention in particular:

• Higher-order Cahn–Hilliard equations,

∂u

∂t
−∆

M∑
i=1

(−1)i
∑
|k|=i

akD2ku−∆f(u) = 0,

where (we consider here the case n = 3), for k = (k1, k2, k3) ∈ (N ∪ {0})3,

|k| = k1 + k2 + k3

and

Dk =
∂|k|

∂xk11 ∂x
k2
2 ∂x

k3
3

.

Such equations account for anisotropic interfaces.

• The viscous Cahn–Hilliard equation,

−β∆
∂u

∂t
+
∂u

∂t
+ ακ∆2u− κ∆f(u) = 0, β > 0,

proposed by A. Novick–Cohen to account for viscosity effects in the phase separation
of polymer/polymer systems.

• The hyperbolic Cahn–Hilliard equation,

β
∂2u

∂t2
+
∂u

∂t
+ ακ∆2u− κ∆f(u) = 0, β > 0,

proposed to model the early stages of spinodal decomposition in certain glasses.

• The Cahn–Hilliard–Navier–Stokes equations,

∂u

∂t
− ξdivD(u) + (u · ∇)u+∇p = εµ∇ρ,

divu = 0,

∂ρ

∂t
+ (u · ∇)ρ = κ∆µ,

µ = −ε∆ρ+
1

ε
f(ρ).
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Here, u = (u1, u2) or u = (u1, u2, u3) is the velocity of the mixture, D(u) = 1
2
(∇u +

t∇u) is the deformation tensor, p is the pressure, ρ is the order parameter, defining
the phase/fluid (it takes the value 1 in one of the fluids, the value −1 in the other
one and varies continuously in the (diffuse) interface between the two fluids) and
µ is the chemical potential. Furthermore, ξ > 0 is the kinematic viscosity of the
mixture, κ > 0 is the mobility of the mixture (we assume here that ξ and κ are
constants), ε > 0 is related to the thickness of the interface and the nonlinear term
f is the derivative of a double-well potential F . Finally, the term εµ∇ρ is called the
Korteweg force.

These equations model mixtures of immiscible fluids.
Two major issues are uniqueness (for logarithmic nonlinear terms) and proper

boundary conditions. In particular, uniqueness has only been proved recently for
weak solutions in 2D. Furthermore, the usual no slip boundary condition is not
realistic and one needs to define proper dynamic boundary conditions. Possible
boundary conditions are the following:

u · ν = 0,
∂µ

∂ν
= 0 on Γ,

ξ(D(u) · ν)Γ+βuΓ = L(ρ)∇Γρ on Γ,

∂ρ

∂t
+ uΓ · ∇Γρ = −l0L(ρ) on Γ,

where

L(ρ) = −γ∆Γρ+ ε
∂ρ

∂ν
+ ζρ+ g(ρ).

Here, l0, β, ζ and γ > 0 are four phenomenological parameters, β being a slip
coefficient. Furthermore, for any vector v : Γ → Rn, vν = v · ν is the normal
component of the vector field, while vΓ = v − (vν)ν is the tangential component
of v. Finally, the function g is a nonlinear function of the local composition which
accounts for the interfacial energy at the mixture-wall interface.

Note that, while the existence of weak solutions are known, both for regular and
logarithmic nonlinear terms, uniqueness and additional regularity are still open prob-
lems.

Lectures 2 and 3: The Cahn–Hilliard equation with regular
nonlinear terms

In these lecture, we discuss the mathematical analysis of the equation. Here, we
consider regular nonlinear terms (a typical choice being the usual cubic nonlinear
term f(s) = s3 − s) and standard (Neumann) boundary conditions.
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We first present the functional framework (linear operators, linear problem, func-
tional form of the equation).

In particular, we define the operators A = −∆ and A2, associated with Neumann
boundary conditions and acting on functions with vanishing spatial average. We can
note that, setting

〈u〉 =
1

Vol(Ω)

∫
Ω

u dx, u ∈ L1(Ω),

〈u〉 =
1

Vol(Ω)
〈u, 1〉, u ∈ H−1(Ω),

H = L̇2(Ω) = {u ∈ L2(Ω), 〈u〉 = 0},
V = Ḣ1(Ω) = H1(Ω) ∩H,

we can see that

V ′ = {u ∈ H−1(Ω), 〈u〉 = 0},

D(A) = {u ∈ H2(Ω) ∩ V, ∂u
∂ν

= 0 on Γ},

D(A2) = {u ∈ H4(Ω) ∩ V, ∂u
∂ν

=
∂∆u

∂ν
= 0 on Γ}.

Furthermore, we can see that Au = f , u ∈ D(A) and f ∈ H, is equivalent to

−∆u = f in Ω,
∂u

∂ν
= 0 on Γ

and A2u = f , u ∈ D(A2) and f ∈ H, is equivalent to

∆2u = f in Ω,
∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ.

This allows to write the Cahn–Hilliard equation in functional form, namely,

du

dt
+ A2u+ Af(u) = 0,

where v = v − 〈v〉. We also consider the weaker formulation

A−1du

dt
+ Au+ f(u) = 0.

We then discuss the well-posedness and regularity of solutions, as well as the
asymptotic behavior of the system (existence of global attractors).

As far as the well-posedness and regularity are concerned, we prove the following
results, for the cubic nonlinear term.
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Theorem 1. We assume that u0 ∈ H1(Ω), i.e., u0 ∈ V . Then, the problem pos-
sesses a unique weak solution u = u + κ such that u ∈ L∞(R+;V ) ∩ C([0, T ];V ) ∩
L2(0, T ;D(A

3
2 )) and ∂u

∂t
∈ L2(R+;V ′), ∀T > 0.

Theorem 2. We assume that u0 ∈ H2(Ω), with ∂u0
∂ν

= 0 on Γ, i.e., u0 ∈ D(A).
Then, the solution u = u + κ satisfies u ∈ C([0, T ];D(A)) ∩ L2(0, T ;D(A2)) and
∂u
∂t
∈ L2(0, T ;H), ∀T > 0. Furthermore, it is a strong solution, i.e.,

du

dt
+ A2u+ Af(u) = 0 in L2(0, T ;H).

We then prove the existence of the global attractor which is the unique compact
subset of the phase space which is invariant and attracts all bounded subsets of initial
data as time goes to infinity; as it is the smallest closed set enjoying these properties,
it appears as a suitable object in view of the study of the large time behavior of the
system.

Theorem 3. The semigroup S(t) associated with the problem possesses the global
attractor A0 on V which is bounded in H2(Ω).

Here, the spatial average is set, for simplicity, equal to 0. Furthermore, the global
attractor has finite fractal dimension, meaning, roughly speaking, that, even though
the phase space is infinite-dimensional, the asymptotic behavior of the system can
be described by a finite number of parameters.

Theorem 4. The global attractor A0 has finite fractal dimension for the topology of
V ′.

We finally discuss the viscous Cahn–Hilliard equation for which one has higher
regularity in time, allowing to employ the comparison principle for second-order in
space parabolic equations.

In the second part, we give an improved regularity result, allowing to address
polynomials with arbitrary odd degree (with a strictly positive leading coefficient)
in 3D.

More precisely, we make the following assumptions on f :

f is of class C2, f(0) = 0,

f ′(s) ≥ −c0, c0 ≥ 0, s ∈ R,
f(s)s ≥ c1F (s)− c2, F (s) ≥ −c3, c1 > 0, c2, c3 ≥ 0, s ∈ R,

|f(s)| ≤ εF (s) + cε, ∀ε > 0, s ∈ R,
where F (s) =

∫ s
0
f(ξ) dξ.
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In particular, these assumptions are satisfied by polynomials of degree 2p+ 1 with
a positive leading coefficient, p ≥ 1 (and, of course, by the usual cubic nonlinear term
f(s) = s3 − s). Furthermore, the last assumption says that the growth of f cannot
be exponential at infinity. Actually, it is not needed when the spatial average of the
order parameter κ vanishes; it is however needed when κ 6= 0 in order to handle the
spatial average of f(u).

We have the following result.

Theorem 5. We assume that u0 ∈ H2(Ω), with ∂u0
∂ν

= 0 on Γ. Then, the problem
possesses a unique solution u such that u(t) ∈ H2(Ω), ∀t ≥ 0.

This result is proved by a more careful treatment of the nonlinear term; we use
here in an essential way the continuous embedding H2(Ω) ⊂ C(Ω).

We next discuss the higher-order Cahn–Hilliard models introduced in the first
lecture. The strategy essentially follows the above one, with simplifications due to
the fact that Hk(Ω) ⊂ C(Ω) for k ≥ 0. Note however that we cannot consider here
Neumann boundary conditions in general.

We finally discuss the numerical analysis of the equation. In particular, we stress
that, in view of the numerical analysis of the problem, as well as the construction
of efficient algorithms, it is more convenient to rewrite the equation as an equivalent
system of two second-order in space equations which is easier to handle.

Lectures 4 and 5: The Cahn–Hilliard equation with logarithmic
nonlinear terms

In these lectures, we address the case of logarithmic nonlinear terms. Indeed,
the usual cubic/regular nonlinear terms are approximations of thermodynamically
relevant logarithmic nonlinear terms which follow from a mean-field model. Such
nonlinear terms induce additional mathematical questions and an essential issue (not
completely solved in 3D) is the separation from the pure states/singular points of
the nonlinear term, namely, an estimate of the form

‖u(t)‖L∞ ≤ 1− δ, δ ∈ (0, 1),

at least after some transient time (δ possibly depending on a final time T ).
We thus take

f(s) = −θcs+
θ

2
ln

1 + s

1− s
, 0 < θ < θc, s ∈ (−1, 1),

and we set c0 = θc. This function satisfies

f ′ ≥ −c0,
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f(s) = f1(s)− c0s, f
′
1 ≥ 0,

f(s)s ≥ F (s)− c1 ≥ −c2, c1, c2 ≥ 0,

f(s)s ≥ c3|f(s)| − c4, c3 > 0, c4 ≥ 0,

f(s)(s−m) ≥ F (s)− cm, cm ≥ 0,

f(s)(s−m) ≥ cm|f(s)| − c′m, cm > 0, c′m ≥ 0,

where the constants cm and c′m depend continuously on m.
Next, we define, for N ∈ N, the approximated functions fN ∈ C1(R) as

fN(s) = f(−1 +
1

N
) + f ′(−1 +

1

N
)(s+ 1− 1

N
), s < −1 +

1

N
,

fN(s) = f(s), |s| ≤ 1− 1

N
,

fN(s) = f(1− 1

N
) + f ′(1− 1

N
)(s− 1 +

1

N
), s > 1− 1

N
.

We easily see that fN is odd and

f ′N ≥ −c0.

Furthermore, we can write fN(s) = f1,N(s)− c0s, where f ′1,N ≥ 0.
The function fN also enjoys the following properties, for N large enough:

fN(s)s ≥ FN(s)− c5 ≥ −c6, c5, c6 ≥ 0, s ∈ R,

fN(s)s ≥ c7|fN(s)| − c8, c7 > 0, c8 ≥ 0, s ∈ R,
where the constants ci, i = 5, · · ·, 8, are independent of N , and, more generally:

fN(s)(s−m) ≥ cm(|fN(s)|+ FN(s))− c′m,
cm > 0, c′m ≥ 0, s ∈ R, m ∈ (−1, 1),

where the constants cm and c′m are independent of N and depend continuously on
m.

We finally introduce the approximated problems

∂uN
∂t

+ ∆2uN −∆fN(uN) = 0,

∂uN
∂ν

=
∂∆uN
∂ν

= 0 on Γ,

uN |t=0 = u0.
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Noting that fN has a linear growth at infinity, it is easy to adapt what is done in
the regular case and prove the existence and uniqueness of the solutions to the ap-
proximated problems (note that we still have the conservation of the spatial average
of the order parameter here).

We then obtain a priori estimates on the solutions uN which are independent of
N . This allows us to pass to the limit N → +∞ in the approximated problems. The
crucial step, to prove the existence of a solution to the original problem, consists in
deriving an a priori estimate independent of N on fN(uN) in L2(Ω× (0, T )), T > 0.

This allows to prove the following result.

Theorem 6. We assume that u0 is given such that u0 ∈ H1(Ω) and −1 < u0(x) < 1,
a.e. x. Then, the problem possesses a unique (weak) solution such that, ∀T > 0,

u ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω))

and

∂u

∂t
∈ L2(0, T ;H1(Ω)′).

Furthermore, −1 < u(x, t) < 1, a.e. (x, t).

We thus see that such nonlinear terms force the order parameter to stay in the
physically relevant interval; this does not hold in the case of regular nonlinear terms
(we can give very simple counterexamples).

We can also prove the existence of global attractors; note however that the finite
fractal dimensionality is a very delicate issue which necessitates sophisticated tools,
due to the lack of strict separation for the pure states at this stage (such a strict
separation does not hold in 3D though).

We next study the strict separation property from the pure states, as well as
additional regularity on the solutions. More precisely, we have the following results.

Proposition 7. The solution u satisfies

∂u

∂t
∈ L∞(r,+∞;H−1(Ω)) ∩ L2(r, T ;H1(Ω)),

∀r < T , r > 0 and T > 0 given.

Proposition 8. We assume that 2 ≤ p < +∞, when n = 2, and 2 ≤ p ≤ 6, when
n = 3. Then, the solution u further satisfies

‖f(u)‖L∞(r,t;Lp(Ω)) ≤ c,

‖u(t)‖W 2,p(Ω) ≤ c,

∀t ≥ r, r > 0 given, where the constant c depends on the H1(Ω)-norm of u0.
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Proposition 9. We assume that n = 1. Then, there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1− δ, t ≥ r,

r > 0 given.

Proposition 10. We assume that n = 2. Then, the following holds for every t ≥ r,
r > 0 given, and for every p ∈ N:

‖f ′(u)‖Lp(Ω×(r,t)) ≤ c,

where the constant c depends on p.

Proposition 11. We assume that n = 2. Then, the weak solution u further satisfies

∂u

∂t
∈ L∞(r,+∞;H) ∩ L2(r, T ;H2(Ω)),

∀r < T , r > 0 and T > 0 given.

Theorem 12. We assume that n = 2. Then, there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1− δ, t ≥ r,

r > 0 given.

We again mention that the strict separation is not known in three space dimen-
sions. Furthermore, the strict separation allows to prove in a simple way the finite-
dimensionality of the global attractors.

In the second part, we discuss the viscous Cahn–Hilliard equation. In particular,
for this equation, one has the strict separation from the pure states, even in 3D. This
is due to the fact that we can now use the comparison principle for second-order in
space parabolic equations, owing to a higher regularity in time of the solutions.

We finally consider higher-order Cahn–Hilliard models. In that case however, we
are not able to derive a uniform estimate on fN(uN) and thus cannot pass to the limit
in the approximated problems, meaning that we are not able to prove the existence
of a classical solution. We can however prove the existence of weaker solutions, based
on variational inequalities.

Lecture 6: The Cahn–Hilliard equation with dynamic boundary
conditions

In this lecture, we address the Cahn-Hilliard equation with dynamic boundary con-
ditions. As already mentioned, such boundary conditions are important to account
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for the interactions with the walls, in particular, to account for dynamic contact
angles.

We start by the study of the following problem:

∂u

∂t
= ∆µ,

µ = −∆u+ f(u),

∂u

∂t
= ∆Γµ−

∂µ

∂ν
on Γ,

µ = −∆Γu+
∂u

∂ν
+ g(u) on Γ,

u|t=0 = u0,

where ∆Γ denotes the Laplace–Beltrami operator. Note that we have the total (in
the bulk and on the boundary) mass conservation

d

dt
(

∫
Ω

u dx

∫
Γ

u dΣ) = 0.

We assume that f is the usual cubic nonlinear term, f(s) = s3 − s, and that g is
affine, g(s) = as+ b, a > 0.

We start by introducing proper linear operators. To do so, we set

H = L2(Ω), HΓ = L2(Γ), H = H ×HΓ,

V = H1(Ω), VΓ = H1(Γ)

V = {
(
ϕ
ψ

)
∈ V × VΓ, ϕ|Γ = ψ},

Ḣ = {φ =

(
ϕ
ψ

)
∈ H, 〈φ〉 = 0},

V̇ = V ∩ Ḣ,

〈φ〉 =
1

Vol(Ω) + |Γ|
(

∫
Ω

ϕdx+

∫
Γ

ψ dΣ).

We then introduce the linear operator

Aφ =

(
−∆ϕ

−∆Γϕ+ ∂ϕ
∂ν

)
, φ =

(
ϕ
ϕ

)
.

We can prove that D(A) = V̇ ∩ (H2(Ω)×H2(Γ)) and the norm ‖A · ‖H is equivalent
to the usual H2(Ω) ×H2(Γ)-one on D(A). Furthermore, for k ∈ N, the embedding
D(Ak) ⊂ H2k(Ω)×H2k(Γ) is continuous. Furthermore, the norm ‖Ak·‖H is equivalent
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to the usual H2k(Ω) × H2k(Γ)-one on D(Ak). Note that we can also consider the
operator A as an operator from V onto V ′.

Having this, we can rewrite the equations in the following functional form:

dU

dt
= −AW,

W = AU + F(U),

U |t=0 = U0 in V ′,

for T > 0 given, where U =

(
u
u

)
, U0 =

(
u0

u0

)
, W =

(
µ
µ

)
and F(U) =(

f(u)
g(u)

)
. We aslo set

φ = φ−
(
〈φ〉
〈φ〉

)
,

so that

A−1dU

dt
= −W,

where 〈W 〉 = 〈F(U)〉. We also have the equivalent formulations

dU

dt
+ A2U + AF(U) = 0

and

A−1dU

dt
+ AU + F(U) = 0.

We can prove the following.

Theorem 13. We assume that U0 ∈ V. Then, the problem possesses a unique weak
solution U = U + κ such that U ∈ L∞(R+; V̇) ∩ C([0, T ]; V̇ ′) ∩ L2(0, T ;D(A)) and
∂U
∂t
∈ L2(R+; V̇ ′), ∀T > 0. Furthermore,

A−1dU

dt
+ AU + F(U) = 0 in L2(0, T ; Ḣ).

Having this, we can obtain, by bootstrap arguments, additional regularity when
t > 0. This allows to recover the original problem, for t > 0. We can also prove the
existence of global attractors.

We then consider a logarithmic nonlinear term,
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f(s) = −θcs+
θ

2
ln

1 + s

1− s
, 0 < θ < θc, s ∈ (−1, 1).

In that case, we again approximate f as in the previous talk. We then consider the
approximated problems

A−1dUN

dt
+ AUN + FN(UN) = 0,

UN(0) = U0,

where

FN(UN) =

(
fN(uN)
g(uN)

)
.

However, we are not able to derive uniform estimates on fN(uN) and thus cannot
pass to the limit in the nonlinear term. We can however prove the existence of a
very weak solutions by duality arguments.

We can also introduce a weaker notion of a solution which satisfies the following
variational inequality:

((A−1dU

dt
, U −W ))H + ((U,U −W ))V̇ + ((f1(w), u− w))

≤ c0((u, u− w))− ((g(u), u− w))Γ,

for almost every t > 0 and for every test function W = W (x) such that W ∈ V ,
f(w) ∈ L1(Ω) and 〈W 〉 = 〈W0〉.

We have the following result.

Theorem 14. We assume that U0 ∈ V. Then, the problem possesses at most one
variational solution U such that U(0) = U0. In particular, such a solution solution
satisfies, ∀T > 0,

(i) U ∈ C([0, T ];V ′) ∩ L∞(0, T ;V).

(ii) ∂U
∂t
∈ L2(0, T ; V̇ ′).

(iii) f(u) ∈ L1(Ω× (0, T )).

(iv) −1 < u(x, t) < 1, a.e. (x, t).

(v) U(0) = U0.

(vi) 〈U(t)〉 = 〈U0〉, ∀t ≥ 0.

(vii) The variational inequality is satisfied for almost every t > 0 and for every test
function W = W (x) such that W ∈ V, f(w) ∈ L1(Ω) and 〈W 〉 = 〈W0〉.
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Unfortunately, we are not able to prove the existence of a variational solution.
We also discuss the following dynamic boundary condition:

∂u

∂t
−∆Γu+ g(u) +

∂u

∂ν
= 0 onΓ,

together with

∂µ

∂ν
= 0 on Γ.

In the case of logarithmic nonlinear terms, we can now prove the existence and
uniqueness of variational solutions.

Furthermore, we can be more precise and give sufficient conditions ensuring the
existence of classical solutions. More precisely, we have the following.

Theorem 15. We assume that

lim
s→±1

F1(s) = +∞,

where F1 is any antiderivative of f1. Then, a variational solution is a classical one.

Note that this cannot hold for the logarithmic nonlinear terms.

Theorem 16. We assume that

±g(±1) > 0.

Then, a variational solution is a classical one.

In particular, when the sign conditions are not satisfied, the order parameter can
reach the pure states on parts of, or even on the whole, boundary. We show numerical
simulations illustrating this.

Lecture 7: The Cahn–Hilliard–Oono equation

The Cahn-Hilliard-Oono equation,

∂u

∂t
+ ∆2u−∆f(u) + βu = 0, β > 0,

was introduced in order to account for long-ranged (i.e., nonlocal) effects in the phase
separation process.

We show in this lecture that the additional simple linear term already leads to sev-
eral additional difficulties, especially when considering logarithmic nonlinear terms.

First, in the case of the usual cubic nonlinear term f(s) = s3 − s, we can prove
the existence and uniqueness of solutions and the existence of the global attractor
for the associated semigroup Sβ(t) on
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ΦM = {v ∈ L2(Ω), |〈v〉| ≤M}, M ≥ 0.

Theorem 17. The semigroup Sβ(t) possesses the finite-dimensional (for the H−1(Ω)-
topology) global attractor AMβ on the phase space ΦM which is compact in L2(Ω) and

bounded in H1(Ω).

We also discuss the dynamics of the equation when β goes to 0. More precisely,
we can construct robust, as β goes to 0+, exponential attractors (an exponential
attractor is a compact subset of the phase space which is only positively invariant by
the flow, but has finite fractal dimension, contains the global attractor and attracts
exponentially fast all bounded sets of initial data). Indeed, setting

Φ̃M = {v ∈ H−1(Ω), |〈v〉| ≤M}, M ≥ 0,

we have the following result.

Theorem 18. For every β ∈ [0, β0], β0 > 0 given, the semigroup Sβ(t) acting on

Φ̃M possesses an exponential attractor MM
β on Φ̃M such that

1. The set MM
ε has finite fractal dimension in H−1(Ω),

dimFMM
β ≤ c.

2. The set MM
β is positively invariant by Sβ(t),

Sβ(t)MM
β ⊂MM

β , t ≥ 0.

3. The set MM
β attracts all bounded subsets of Φ̃M exponentially fast, i.e., for every

bounded subset B of Φ̃M , there exists a constant c = c(B) such that

distH−1(Ω)(Sβ(t)B,MM
β ) ≤ ce−c

′t, t ≥ 0, c′ > 0.

4. The family of sets MM
β is Hölder continuous at 0,

distsym(MM
β ,MM

0 ) ≤ cβc
′
, c′ ∈ (0, 1).

Furthermore, all constants are independent of β and can be computed explicitly.

This shows that the dynamics of the Cahn–Hilliard–Oono equation is, in some
proper sense, close to that of the limit Cahn–Hilliard equation when β is small.

In the case of logarithmic nonlinear terms, we recover the results obtained for
the Cahn–Hilliard equation. As already mentioned, the proofs are however more
involved. More precisely, we have the following results.
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Theorem 19. We assume that u0 is given such that u0 ∈ H1(Ω) and −1 < u0(x) <
1, a.e. x, with |〈u0〉| < 1. Then, the problem possesses a unique (weak) solution such
that, ∀T > 0,

u ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)),

∂u

∂t
∈ L2(0, T ;H1(Ω)′),

µ ∈ L2(0, T ;H1(Ω)).

Furthermore, −1 < u(x, t) < 1, a.e. (x, t).

Proposition 20. The solution u satisfies

∂u

∂t
∈ L∞(r,+∞;H−1(Ω)) ∩ L2(r, T ;H1(Ω)),

∀r < T , r > 0 and T > 0 given.

Proposition 21. We assume that 2 ≤ p < +∞, when n = 2, and 2 ≤ p ≤ 6, when
n = 3. Then, the solution u further satisfies

‖f(u)‖L∞(r,t;Lp(Ω)) ≤ c,

‖u(t)‖W 2,p(Ω) ≤ c,

∀t ≥ r, r > 0 given, where the constant c depends on the H1(Ω)-norm of u0.

Proposition 22. We assume that n = 1. Then there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1− δ, t ≥ r,

r > 0 given.

Proposition 23. We assume that n = 2. Then, the following holds for every t ≥ r,
r > 0 given, and for every p ∈ N:

‖f ′(u)‖Lp(Ω×(r,t)) ≤ c,

where the constant c depends on p.

Proposition 24. We assume that n = 2. Then, the weak solution u further satisfies

∂u

∂t
∈ L∞(r,+∞;H) ∩ L2(r, T ;H2(Ω)),

∀r < T , r > 0 and T > 0 given.
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Theorem 25. We assume that n = 2. Then, there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1− δ, t ≥ r,

r > 0 given.

Lecture 8: The Cahn–Hilliard equation in image inpainting

In this lecture, we explain how the Cahn–Hilliard equation can be used in image
restoration. We present in particular a Cahn–Hilliard model proposed by A. Bertozzi,
S. Esedoglu and A. Gillette in view of binary (i.e., black and white) image inpainting
which reads

∂u

∂t
+ ∆2u−∆f(u) + g(x, u) = 0,

where

g(x, s) = λ0χΩ\D(x)(s− h(x)), λ0 > 0, D ⊂ Ω, h ∈ L2(Ω),

χ denoting the indicator function. Here, h is the damaged image and D is the
damaged region.

We then discuss the mathematical analysis of the models.
We first consider the usual cubic nonlinear term.
We have, in that case, the following.

Theorem 26. We assume that u0 ∈ L2(Ω). Then, the problem possesses a unique
weak solution u such that u ∈ C([0, T ];L2(Ω)w) ∩ L2(0, T ;H2(Ω)), ∀T > 0.

The main difficulty here is to deal with the equation for the spatial average of the
order parameter which reads

d〈u〉
dt

+
1

Vol(Ω)

∫
Ω\D

u dx = 0.

To do so, we set

u = 〈u〉+ v

and have (taking for simplicity h = 0 and λ0 = 1)

d〈u〉
dt

+ c0〈u〉 = − 1

Vol(Ω)

∫
Ω\D

v dx, c0 =
Vol(Ω\D)

Vol(Ω)
,

where v is solution to
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∂
∂t

(−∆)−1v −∆v + f(〈u〉+ v)− 〈f(〈u〉+ v)〉
+(−∆)−1(χΩ\D(x)u− 〈χΩ\D(x)u〉) = 0.

We then prove that v is globally bounded and can thus obtain global in time and
dissipative estimates. We also use in a crucial way the following coercivity relation:

((f(〈u〉+ v)− 〈f(〈u〉+ v)〉, v))
= ((f(〈u〉+ v)− f(〈u〉), v))
≥ c0

2

∫
Ω

(v4 + v2〈u〉2) dx− ‖v‖2.

We also have the following.

Theorem 27. The semigroup S(t) possesses the finite-dimensional (for the H−1(Ω)-
topology) global attractor A such that A is compact in L2(Ω) and bounded in H4(Ω).

An important open problem is the convergence of trajectories to steady states.
Indeed, the final inpainting result is expected to be an equilibrium.

We then consider a logarithmic nonlinear term. Note that such nonlinear terms
give better numerical results.

However, since we need the coercivity relation employed in the case of regular non-
linear terms, we need to approximate the logarithmic nonlinear term more carefully.
More precisely, we write F (s) = θc

2
(1 − s2) + F1(s) and set f1 = F ′1 ≥ 0. We then

introduce, for N ∈ N, the approximated functions F1,N ∈ C4(R) defined as

F
(4)
1,N(s) = F

(4)
1 (1− 1

N
), s > 1− 1

N
,

F
(4)
1,N(s) = F

(4)
1 (s), |s| ≤ 1− 1

N
,

F
(4)
1,N(s) = F

(4)
1 (−1 +

1

N
), s < −1 +

1

N
,

F
(k)
1,N(0) = F

(k)
1 (0), k = 0, 1, 2, 3,

so that

F1,N(s) =
4∑

k=0

1

k!
F

(k)
1 (1− 1

N
)(s− 1 +

1

N
)k, s > 1− 1

N
,

F1,N(s) = F1(s), |s| ≤ 1− 1

N
,

F1,N(s) =
4∑

k=0

1

k!
F

(k)
1 (−1 +

1

N
)(s+ 1− 1

N
)k, s < −1 +

1

N
.

Setting FN(s) = θc
2

(1− s2) + F1,N(s), f1,N = F ′1,N and fN = F ′N , we can prove that
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f ′1,N ≥ 0, f ′N ≥ −c0, c0 = θc,

FN ≥ −c1, c1 ≥ 0,

fN(s)(s−m) ≥ c2(m)(FN(s) + |fN(s)|)− c3(m),

c2 > 0, c3 ≥ 0, s ∈ R, m ∈ (−1, 1),

where the constants ci, i = 1, 2, 3, are independent of N , for N large enough.
We further have the following coercivity relation which is essential to derive proper

a priori estimates.

Proposition 28. The following holds for N large enough:

(fN(s+ a)− fN(a))s ≥ c4(s4 + a2s2)− c5, c4 > 0, c5 ≥ 0, s, a ∈ R,

where the constants c4 and c5 are independent of N .

In that case, we once more need to obtain a uniform estimate on fN(uN). In
particular, this necessitates to have a strict separation property on 〈uN〉. However,
due to the fact that we no longer have the conservation of mass, this can only be
proved locally in time. This then yields the following.

Theorem 29. We assume that u0 ∈ H1(Ω), |〈u0〉| < 1 and −1 < u0(x) < 1, a.e.
x ∈ Ω. Then, there exists T0 = T0(u0) > 0 and a solution u to the problem on
[0, T0] such that u ∈ C([0, T0];H1(Ω)w)∩L2(0, T0;H2(Ω)) and ∂u

∂t
∈ L2(0, T0;H−1(Ω)).

Furthermore, −1 < u(x, t) < 1, a.e. (x, t) ∈ Ω× (0, T0).

Having this, we can now rewrite the equation in the following equivalent form (we
again take h = 0 and λ0 = 1):

∂u

∂t
+ ∆2u−∆f(u) + u− χD(x)u = 0

and prove the

Theorem 30. The solution u is global in time.

We note that uniqueness and additional regularity are open problems.
We also discuss several extensions of this model (for multicolor images and graysca-

le images).
We finally discuss the numerical analysis and present several numerical simulations

which show that such models are efficient.



20

Lecture 9: The Cahn–Hilliard equation with a proliferation term

In this lecture, we introduce variants of the Cahn–Hilliard equation in wiew of
biological and medical applications. More precisely, we consider the generalized
equation

∂u

∂t
+ ∆2u−∆f(u) + g(u) = 0,

where g is a polynomial; typically, g(s) = s2−s. This equation models wound healing
and tumor growth in 1D and the clustering of malignant brain tumor cells in 2D.

We can note that, here, we can have blow up in finite time. This can easily be
seen, when u0 < 0, by considering spatially homogeneous solutions. Of course, such
an initial datum is not biologically relevant, but numerical simulations show that we
can also have blow up in finite for biologically relevant initial data, i.e., which belong
to [0, 1]. This shows that the choice of the nonlinear terms is crucial, as one may
have blow up in finite time if one is not careful enough; we will see that such a blow
up can be avoided by considering logarithmic nonlinear terms f .

Again one difficulty, as far as the mathematical analysis is concerned, is to handle
the equation for the order parameter which reads

d〈u〉
dt

+ 〈g(u)〉 = 0.

Setting u = 〈u〉+ u, we have

〈g(u)〉 = 〈u2 + 2〈u〉u+ 〈u〉2 − 〈u〉 − u〉
= g(〈u〉) + 〈u2〉+ 2〈u〉〈u〉 − 〈u〉

= g(〈u〉) + 〈u2〉,
so that

d〈u〉
dt

+ g(〈u〉) = −〈u2〉.

We can prove a local well-posedness result.

Proposition 31. For every u0 ∈ L2(Ω), there exists T0 = T0(‖u0‖) > 0 and a
unique solution u to the problem such that u ∈ C([0, T0);L2(Ω)w) ∩ L4(Ω× (0, T )) ∩
L2(0, T ;H2(Ω)), ∀T < T0.

Next, we show that either 〈u〉 is positive (and is thus uniformly (in time) bounded)
or 〈u〉 tends to−∞ as time goes to +∞, at least exponentially fast (if it exists globally
in time). Actually, we can do better and prove that, in the second case, 〈u〉 (and
also u) blows up in finite time.
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We first see that the function u = u− 〈u〉 satisfies

∂u

∂t
+ ∆2u−∆f(u+ 〈u〉) + g(u+ 〈u〉)− 〈g(u+ 〈u〉)〉 = 0,

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ,

u|t=0 = u0(= u0 − 〈u0〉).
Proceeding as in the previous talk, we can prove that u is globally bounded.

Considering then the Riccati ODE y′ + y2 − y = 0, whose solution reads

y(t) =
1

y(T )
y(T )−1

et−T − 1
+ 1, t ≥ T,

we deduce the following, employing the comparison principle.

Theorem 32. If 〈u(T )〉 < 0, for some T ≥ 0 (and, in particular, if 〈u0〉 < 0), then
the solution to the problem blows up in finite time. Furthermore, the blow up time
T+ satisfies

T+ ≤ T + ln
〈u(T )〉 − 1

〈u(T )〉
.

We deduce from this the following corollaries.

Corollary 33. Let u be a solution to the problem. Then, either u blows up in finite
time or it exists globally in time and 0 ≤ 〈u(t)〉 ≤ 1, ∀t ≥ 0.

Corollary 34. Let u be a global in time solution to the problem. Then, u is dissipa-
tive in L2(Ω).

We finally have the following result.

Theorem 35. Let u be a nonvanishing solution to the problem such that u(t) ∈ [0, 1],
∀t ≥ 0. Then, u(t) tends to 1 in H1(Ω) as t→ +∞.

Next, we consider a logarithmic nonlinear term. We approximate the singular
nonlinear term as in the previous talk and again prove the existence of a local in
time solution, due to the fact that the solutions to the approximated problems may
blow up in finite time. We thus have the following.

Theorem 36. We assume that u0 ∈ H1(Ω), |〈u0〉| < 1 and −1 < u0(x) < 1, a.e.
x ∈ Ω. Then, there exists T = T (u0) > 0 and a solution u to the problem on
[0, T ] such that u ∈ C([0, T ];H1(Ω)w) ∩ L2(0, T ;H2(Ω)) ∩ L4(Ω × (0, T )) and ∂u

∂t
∈

L2(0, T ;H−1(Ω)). Furthermore, −1 < u(x, t) < 1, a.e. (x, t) ∈ Ω× (0, T ).

Proceeding as in the previous talk, we also have the following.
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Theorem 37. The solution u is global in time.

Again, uniqueness and further regularity are open problems.
We finally discuss how to account for nutrients in tumor growth models based on

the Cahn-Hilliard equation.

Lecture 10: Further generalizations of the Cahn–Hilliard equation

In this last lecture, we discuss the approach due to M. Gurtin and based on a
separate balance law for internal microforces. The corresponding models read

∂u

∂t
− div(a(Z)

∂u

∂t
) = div(B(Z)∇µ),

µ− b(Z) · ∇µ = β(Z)
∂u

∂t
− α∆u+ f(u),

where

β(Z)(
∂u

∂t
)2 + (a(Z) + b(Z)) · ∇µ∂u

∂t
+B(Z)∇µ · ∇µ ≥ 0

for all fields. These models contain the original and viscous Cahn–Hilliard equations.
This approach also allows to generalize the Cahn-Hilliard equation to account

for important effects such as deformations and heat transfers. In particular, if we
account for heat transfers, we have the following models:

∂u

∂t
= div(A∇µ

θ
+B∇1

θ
),

∂e

∂t
= −div(C∇µ

θ
+D∇1

θ
− α(u, θ)

∂u

∂t
∇u), α > 0,

µ = 2c(θ − θc)u+
1

2
∂uα(u, θ)|∇u|2 − div(α(u, θ)∇u) + f(u), c, θc > 0,

e = cV θ − cθcu2 +
1

2
(α(u, θ)− ∂θα(u, θ))|∇u|2 + F (u), cV > 0,

where θ is the absolute temperature and e is the internal energy and for proper
constitutive moduli A, B, C and D (four matrices such that A and D are positive
semidefinite).

These equations seem particularly difficult to study. Let us indeed consider the
simplest case A = D = I, B = C = 0, α = 1 constant, θc = 0, cV = 1 and c = 0. In
that case, the equations read

∂u

∂t
= ∆

µ

θ
,

µ = −∆u+ f(u),
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∂θ

∂t
+ ∆

1

θ
= −f(u)

∂u

∂t
+
∂u

∂t
∆u.

We can then prove that we have the conservation of the energy,

d

dt

∫
Ω

(
1

2
|∇u|2 + F (u) + θ) dx = 0,

and that is all.
We then discuss, in a simple case (and without thermal effects), the difficulties

related to defining and studying dynamic boundary conditions in the models of M.
Gurtin.

We finally discuss the hyperbolic relaxation of the Cahn–Hilliard equation,

β
∂2u

∂t2
+
∂u

∂t
+ ∆2u−∆f(u) = 0, β > 0,

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ,

u|t=0 = u0,
∂u

∂t
|t=0 = u1.

Here, we no longer have the conservation of mass; more precisely, the following
holds:

〈u(t)〉 = 〈u0〉e−
t
β + 〈βu1 + u0〉(1− e−

t
β ), t ≥ 0.

Note that, for a fixed t ≥ 0,

lim
β→0+

〈u(t)〉 = 〈u0〉.

A major difficulty is to define a good notion of a solution, ensuring well-posedness
in 2 and 3D. One possibility is to consider bounded energy solutions, i.e., solutions
such that the total free energy belongs to L∞(0, T ), T > 0, and whose existence
can be proved by implementation of a standard Galerkin scheme. Furthermore, in
two space dimensions, one can also prove the uniqueness. However, in three space
dimensions, the uniqueness of such solutions is still an open problem.

We can note that the case of logarithmic nonlinear terms is still to be addressed. To
illustrate the difficulties we have to face, we discuss the existence of solutions for the
damped wave equation (i.e., the hyperbolic relaxation of the Allen–Cahn equation).
More precisely, we can only prove the existence of strong solutions, when β is small
and the initial datum is not too large. This result is obtained via a perturbation
argument, based on the fact that, when β is small, the solution is close to that of
the limit equation, and the dissipativity provided by the equation.
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