
The Cahn-Hilliard equation
with dynamic boundary conditions

Alain Miranville

Université de Poitiers, France

NSF-CBMS Conference
The Cahn–Hilliard equation : recent advances and applications



First dynamic boundary conditions (G.R. Goldstein-A. Miranville-G.
Schimperna) :

Total free energy : Ψ = ΨΩ + ΨΓ

ΨΩ(u,∇u) =

∫
Ω

(
α

2
|∇u|2 + F(u))dx

ΨΓ(u,∇Γu) =

∫
Γ
(
αΓ

2
|∇Γu|2 + G(u))dx

Total mass conservation : d
dt (
∫

Ω udx +
∫

Γ udσ) = 0

→ ∂u
∂t = βΓ∆Γw− κ∂w

∂ν on Γ, βΓ ≥ 0

Second boundary condition : w is a variational derivative of the total free
energy Ψ w.r.t. u

→ w = −αΓ∆Γu + g(u) + α ∂u
∂ν on Γ

Cahn-Hilliard type equation on the boundary



Equations :

∂u
∂t

= ∆µ

µ = −∆u + f (u)

∂u
∂t

= η∆Γµ−
∂µ

∂ν
on Γ, η > 0

µ = −σ∆Γu +
∂u
∂ν

+ g(u) on Γ, σ > 0

u|t=0 = u0

One space dimension : the Laplace–Beltrami operator does not appear in the
equations

η = 0, σ = 0 : no diffusion on the boundary



Integrate the first equation over Ω :

d
dt

∫
Ω

u dx =

∫
Γ

∂µ

∂ν
dΣ = −

∫
Γ

∂u
∂t

dΣ

→ Total mass conservation :

d
dt

(

∫
Ω

u dx +

∫
Γ

u dΣ) = 0

f (s) = s3 − s, g(s) = as + b, a > 0

Thus :

f ′ ≥ −1, g′ = a > 0

f (s)(s− m) ≥ c1F(s)− c2(m) ≥ −c3(m), c1 > 0, c2, c3 ≥ 0, s, m ∈ R

g(s)(s− m) ≥ c4G(s)− c5(m) ≥ −c6(m), c4 > 0, c5, c6 ≥ 0, s, m ∈ R

F(s) =
∫ s

0 f (ξ) dξ, G(s) =
∫ s

0 g(ξ) dξ
ci, i = 1, · · · , 6, depend continuously on m



Linear operators :

Spaces :

• H = L2(Ω), HΓ = L2(Γ),H = H × HΓ

Scalar products and associated norms, ((·, ·)), ‖ · ‖, ((·, ·))Γ, ‖ · ‖Γ, ((·, ·))H,
‖ · ‖H

• V = H1(Ω), VΓ = H1(Γ), V = {
(
ϕ
ψ

)
∈ V × VΓ, ϕ|Γ = ψ}

Set, for φ =

(
ϕ
ψ

)
∈ H × HΓ :

〈φ〉 =
1

Vol(Ω) + |Γ|
(

∫
Ω
ϕ dx +

∫
Γ
ψ dΣ)

Ḣ = {φ =

(
ϕ
ψ

)
∈ H, 〈φ〉 = 0}

V̇ = V ∩ Ḣ



V̇ ⊂ Ḣ ⊂ V̇ ′ : dense, continuous, compact

Lemma : The norm ‖ · ‖2
V̇ = ‖∇ · ‖2 + ‖∇Γ · ‖2 is equivalent to the usual

H1(Ω)× H1(Γ)-one on V̇ .

Bilinear form :

a : V̇ × V̇ → R, (φ,Θ) 7→ ((∇ϕ,∇θ)) + ((∇Γϕ,∇Γθ))Γ

φ =

(
ϕ
ϕ

)
Θ =

(
θ
θ

)
a : symmetric, continuous, coercive on V̇



Linear operator :

A : V̇ → V̇ ′

〈Aφ,Θ〉V̇ ′,V̇ = a(φ,Θ), φ, Θ ∈ V̇

A : positive, selfadjoint, unbounded linear operator

Domain of A in Ḣ :

D(A) = {φ ∈ V̇, ∃Ξ ∈ Ḣ, ((Ξ,Θ))H = a(φ,Θ), ∀Θ ∈ V̇}

A : isomorphism from V̇ onto V̇ ′ and from D(A) onto Ḣ

A−1 : selfadjoint, compact operator on Ḣ

→We can define the powers of A : As, s ∈ R



Proposition : The space D(A) satisfies D(A) = V̇ ∩ (H2(Ω)× H2(Γ)) and
the norm ‖A · ‖H is equivalent to the usual H2(Ω)× H2(Γ)-one on D(A).

We have

Aφ =

(
−∆ϕ

−∆Γϕ+ ∂ϕ
∂ν

)
φ =

(
ϕ
ϕ

)
Proposition : For k ∈ N, the embedding D(Ak) ⊂ H2k(Ω)× H2k(Γ) is
continuous. Furthermore, the norm ‖Ak · ‖H is equivalent to the usual
H2k(Ω)× H2k(Γ)-one on D(Ak).



Proposition : For k ∈ N ∪ {0}, the embedding
D(Ak+ 1

2 ) ⊂ H2k+1(Ω)× H2k+1(Γ) is continuous and the norm ‖Ak+ 1
2 · ‖H is

equivalent to the usual H2k+1(Ω)× H2k+1(Γ)-one on D(Ak+ 1
2 ).

D(A−
1
2 ) = V̇ ′

V̇ ′ = {φ ∈ V ′, 〈φ〉 = 0}, 〈φ〉 = 1
Vol(Ω)+|Γ|〈φ, 1〉V ′,V

‖ · ‖−1 = ‖A−
1
2 · ‖H : equivalent to the usual V ′-norm on V̇ ′

Remark : a can also be defined on V × V

→ A : operator from V onto V ′



Functional setting :

η = σ = 1

Equations in functional form :

dU
dt

= −AW in D′(0,T;D(A−1))

W = AU + F(U) in D′(0,T;V ′)

U|t=0 = U0 in V ′

U =

(
u
u

)
, U0 =

(
u0
u0

)
W =

(
µ
µ

)
, F(U) =

(
f (u)
g(u)

)



Set

φ = φ−
(
〈φ〉
〈φ〉

)
〈φ〉 = 0

Equivalent formulation :

A−1 dU
dt

= −W in D′(0,T; V̇ ′)

Note that

〈W〉 = 〈F(U)〉

Aφ = Aφ



Equivalent formulations :

dU
dt

+ A2U + AF(U) = 0 in D′(0,T; D(A−1))

A−1 dU
dt

+ AU + F(U) = 0 in D′(0,T; V̇ ′)

Existence and uniqueness of solutions (〈U0〉 = 0 for simplicity) :

A−1 dU
dt

+ AU + F(U) = 0 in D′(0,T; V̇ ′)

U|t=0 = U0 in V̇ ′

A priori estimates :

Scalar product in Ḣ by dU
dt :

d
dt

(‖U‖2
V̇ + 2

∫
Ω

F(u) dx + 2
∫

Γ
G(u) dΣ) + 2‖∂U

∂t
‖2
−1 = 0



Scalar product by U :

d
dt
‖U‖2

−1 + c(‖U‖2
V̇ + 2

∫
Ω

F(u) dx + 2
∫

Γ
G(u) dΣ) ≤ c′, c > 0

Sum the two :

dE
dt

+ c(E + ‖∂U
∂t
‖2
−1) ≤ c′, c > 0

E = ‖U‖2
V̇ + ‖U‖2

−1 + 2
∫

Ω
F(u) dx + 2

∫
Γ

G(u) dΣ

E ≥ c‖U‖2
V̇ − c′, c > 0



Scalar product by AU :

d
dt
‖U‖2

H + ‖AU‖2
H ≤ ‖F(U)‖2

H

‖F(U)‖2
H ≤ c(‖u‖6

L6(Ω) + ‖u‖2
Γ + 1)

≤ c(‖u‖6
H1(Ω) + ‖u‖2

Γ + 1)

≤ c(‖U‖6
V̇ + 1)

Thus :

d
dt
‖U‖2

H + ‖AU‖2
H ≤ c(‖U‖6

V̇ + 1)

Remark : No higher-order estimate



Theorem : We assume that U0 ∈ V . Then, the problem possesses a unique
weak solution U = U + κ such that
U ∈ L∞(R+; V̇) ∩ C([0,T]; V̇ ′) ∩ L2(0,T; D(A)) and ∂U

∂t ∈ L2(R+; V̇ ′),
∀T > 0. Furthermore,

A−1 dU
dt

+ AU + F(U) = 0 in L2(0,T; Ḣ).

Remark : U ∈ L2(0,T; H2(Ω)× H2(Γ)), ∀T > 0.



A−1 dU
dt ∈ L2(0,T; H1(Ω)× H1(Γ)), T > 0

g affine : g(u) ∈ L∞(0,T; H1(Γ))

H1(Ω) ⊂ L6(Ω) : f (u) ∈ L∞(0,T; L2(Ω))

∇f (u) = f ′(u)∇u (Agmon’s inequality) :

‖∇f (u)‖L2(Ω) ≤ c(‖u‖2
L∞(Ω) + 1)‖∇u‖

≤ c(‖u‖2
H1(Ω)‖u‖H2(Ω) + ‖u‖H1(Ω)),

→ f (u) ∈ L2(0,T; H1(Ω)), F(U) ∈ L2(0,T; H1(Ω)× H1(Γ))



Thus :

AU = G(t), G =

(
g1
g2

)
G ∈ L2(0,T; H1(Ω)× H1(Γ))

Elliptic problem :

−∆u = g1

−∆Γu + u +
∂u
∂ν

= g2 + u on Γ

→ U ∈ L2(0,T; H3(Ω)× H3(Γ))



Differentiate

A−1 dU
dt

+ AU + F(U) = 0

with respect to time :

A−1 d
dt

dU
dt

+ A
dU
dt

+ F ′(U).
dU
dt

= 0

F ′(U).
dU
dt

=

(
f ′(u)∂u

∂t
g′(u)∂u

∂t

)
Scalar product of the above equation by dU

dt :

1
2

d
dt
‖∂U
∂t
‖2
−1 + ‖∂U

∂t
‖2
V̇ ≤ c‖∂U

∂t
‖2
H

interpolation inequality ‖∂U
∂t ‖

2
H ≤ ‖

∂U
∂t ‖

2
−1‖

∂U
∂t ‖

2
V̇ :



d
dt
‖∂U
∂t
‖2
−1 + ‖∂U

∂t
‖2
V̇ ≤ c‖∂U

∂t
‖2
−1

→ ∂U
∂t ∈ L∞(r,T;V ′) ∩ L2(r,T; H1(Ω)× H1(Γ)), T > r, r > 0

‖∆f (u)‖ ≤ c(‖u2∆u‖+ ‖∆u‖+ ‖u|∇u|2‖) : f (u) ∈ L2(0,T; H2(Ω))

Elliptic problem :

AU = G(t)

G ∈ L2(r,T; H2(Ω)× H2(Γ))

→ U ∈ L2(r,T; H4(Ω)× H4(Γ))

→ The solution is strong as soon as t > 0



We cannot write

dU
dt

+ A2U + AF(U) = 0

in L2(r,T;H) (F(U(t)) does not belong to D(A))

We can write

dU
dt

+ A(AU + F(U)) = 0 in L2(r,T;H)

→ dU
dt + A(AU + F(U)) = 0 in L2(r,T;H)

Thus :

dU
dt

= −AW in L2(r,T;H)

W = AU + F(U) in L2(r,T;H)

→We recover the original Cahn-Hilliard system for t > 0



Continuous (for the V ′-topology) semigroup

S(t) : Vκ → Vκ, U0 7→ U(t), t ≥ 0

Vκ = {U ∈ V, 〈U〉 = κ}

Theorem : The semigroup S(t) possesses the global attractor Aκ on V ′κ for
the V ′-topology.



Logarithmic nonlinear terms :

First proof : duality arguments

Approximated problems :

A−1 dUN

dt
+ AUN + FN(U) = 0

UN(0) = U0

FN(U) =

(
fN(u)
g(u)

)
A priori estimates :

dEN

dt
+ c(EN + ‖∂UN

∂t
‖2
−1 + ‖fN(uN)‖L1(Ω)) ≤ c′, c > 0

EN = ‖UN‖2
V̇ + ‖UN‖2

−1 + 2
∫

Ω
FN(uN) dx + 2

∫
Γ

G(uN) dΣ

EN ≥ c‖UN‖2
V̇ − c′, c > 0



No estimate on fN(uN) (in L2)

We have :

FN(UN) = −A−1 dUN

dt
− AUN

→FN(UN) is bounded, independently of N, in L2(0,T; V̇ ′)

→FN(UN)→ ξ in L2(0,T; V̇ ′) weakly

At the limit :

A−1 dU
dt

+ AU + ξ = 0 in L2(0,T; V̇ ′)

ξ can be related to F(U) via subdifferentials



Different approach : variational solutions

Equation :

A−1 dU
dt

+ AU + F(U) = 0

f : logarithmic nonlinear term (f ′ ≥ −c0)

Scalar product inH by U −W, W = W(x) =

(
w(x)
w(x)

)
∈ V , 〈W〉 = 〈U0〉

(f = f1 − c0s) :

((A−1 dU
dt
,U −W))H + ((U,U −W))V̇ + ((f1(u), u− w))

−c0((u, u− w)) + ((g(u), u− w))Γ = 0



f1 is monotone increasing :

((A−1 dU
dt
,U −W))H + ((U,U −W))V̇ + ((f1(w), u− w))

≤ c0((u, u− w))− ((g(u), u− w))Γ

Definition : Let U0 belong to V . Then, a function U is a variational solution,
with initial datum U0, if, ∀T > 0,
(i) U ∈ C([0,T];V ′) ∩ L∞(0,T;V).
(ii) ∂U

∂t ∈ L2(0,T; V̇ ′).
(iii) f (u) ∈ L1(Ω× (0,T)).
(iv) −1 < u(x, t) < 1, a.e. (x, t).
(v) U(0) = U0.
(vi) 〈U(t)〉 = 〈U0〉, ∀t ≥ 0.
(vii) The variational inequality is satisfied for almost every t > 0 and for every
test function W = W(x) such that W ∈ V , f (w) ∈ L1(Ω) and 〈W〉 = 〈W0〉.



Theorem : We assume that U0 ∈ V . Then, the problem possesses at most one
variational solution U such that U(0) = U0.

We need to take as test functions the solutions themselves

We call admissible any function W = W(x, t) such that W satisfies the
regularity properties of a variational solution and 〈W(t)〉 = 〈U0〉, t ≥ 0
(W ∈ C([0,T];Vw), ∀T > 0)

Take W = W(t) :∫ t

s
(((A−1 dU

dt
,U −W))H + ((U,U −W))V̇ + ((f1(w), u− w))) dτ

≤
∫ t

s
(c0((u, u− w))− ((g(u), u− w))Γ) dτ, ∀t > s > 0



Can be used in the definition

We need a second variational inequality

Set, for any admissible test function W :

Zα = (1− α)U + αW, α ∈ (0, 1]

|f1| is convex :

|f1(zα)| ≤ |f1(u)|+ |f1(w)| ∈ L1(Ω× (0,T)), T > 0

→ Zα is an admissible test function

Take W = Zα, divide by α :

∫ t

s
(((A−1 dU

dt
,U −W))H + ((U,U −W))V̇ + ((f1(zα), u− w))) dτ

≤
∫ t

s
(c0((u, u− w))− ((g(u), u− w))Γ) dτ, ∀t > s > 0



Pass to the limit α→ 0+ (Lebesgue’s theorem) :∫ t

s
(((A−1 dU

dt
,U −W))H + ((U,U −W))V̇ + ((f1(u), u− w))) dτ

≤
∫ t

s
(c0((u, u− w))− ((g(u), u− w))Γ) dτ, ∀t > s > 0

Consider two variational solutions U1, U2, with initial data U1,0, U2,0 having
the same total mass, take U = U1, W = U2 in the first VI, U = U2 and
W = U1 in the second :



∫ t

s
(((A−1 dU1

dt
,U1 − U2))H + ((U1,U1 − U2))V̇ + ((f1(u2), u1 − u2))) dτ

≤
∫ t

s
(c0((u1, u1 − u2))− ((g(u1), u1 − u2))Γ) dτ, ∀t > s > 0∫ t

s
(((A−1 dU2

dt
,U2 − U1))H + ((U2,U2 − U1))V̇ + ((f1(u2), u2 − u1))) dτ

≤
∫ t

s
(c0((u2, u2 − u1))− ((g(u2), u2 − u1))Γ) dτ, ∀t > s > 0

Sum (U1 and U2 have the same total mass) :

1
2

(‖U1(t)− U2(t)‖2
−1 − ‖U1(s)− U2(s)‖2

−1) +

∫ t

s
‖U1 − U2‖2

V̇ dτ

≤
∫ t

s
(c0‖u1 − u2‖2 − ((g(u1)− g(u2), u1 − u2))Γ) dτ



Thus :

‖U1(t)− U2(t)‖2
−1 − ‖U1(s)− U2(s)‖2

−1 + 2
∫ t

s
‖U1 − U2‖2

V̇ dτ

≤ c
∫ t

s
‖U1 − U2‖2

H dτ

Interpolation inequality ‖U1 − U2‖H ≤ ‖U1 − U2‖
1
2
−1‖U1 − U2‖

1
2

V̇ :

‖U1(t)− U2(t)‖2
−1 ≤ ‖U1(s)− U2(s)‖2

−1 + c
∫ t

s
‖U1 − U2‖2

−1 dτ

Gronwall’s lemma :

‖U1(t)− U2(t)‖−1 ≤ ec(t−s)‖U1(s)− U2(s)‖−1, t ≥ s > 0

Let s go to 0 :

‖U1(t)− U2(t)‖−1 ≤ ect‖U1,0 − U2,0‖−1, t ≥ 0



Remarks :

UN satisfies a corresponding variational inequality

We cannot pass to the limit (not enough regularity on UN)

We can consider more regular test functions : we lose the uniqueness



Second dynamic boundary conditions :

First boundary condition : no mass flux at the boundary :

∂w
∂ν

= 0 on Γ

Second boundary condition : we consider, in addition to the Ginzburg-Landau
free energy

ΨΩ(u,∇u) =

∫
Ω

(
α

2
|∇u|2 + F(u))dx



the surface free energy

ΨΓ(u,∇u) =

∫
Γ
(
αΓ

2
|∇Γu|2 + G(u))dx

αΓ > 0
∇Γ : surface gradient

Original surface potential : G(s) = 1
2 aΓs2 + bΓs, aΓ > 0



Total energy : Ψ = ΨΩ + ΨΓ

The system tends to minimize the excess surface energy :

1
d
∂u
∂t
− αΓ∆Γu + g(u) + α

∂u
∂ν

= 0 on Γ

d > 0 : relaxation parameter
∆Γ : Laplace-Beltrami operator
g = G′

→ Dynamic boundary condition



Regular potentials : the system is well understood

Contributors : R. Chill, C.G. Gal, E. Fašangová, A. Miranville, J. Pruess, R.
Racke, H. Wu, S. Zelik, S. Zheng, ...

Singular potentials : more complicated

First existence and uniqueness result : G. Gilardi-A. Miranville-G.
Schimperna

For f singular and g regular : sign assumptions on g near the singular points of
f :

g(1) > 0, g(−1) < 0

Forces the order parameter to stay away from ±1 on Γ

Question :

•What happens when the sign conditions are not satisfied?



Nonexistence of classical solutions :

When the sign conditions are not satisfied, we can have nonexistence of
classical solutions

We consider the scalar ODE

y′′ − f (y) = 0, x ∈ (−1, 1)
y′(±1) = K > 0

Assumptions :

• f is singular at ±1
• F(±1) < +∞ (F′ = f )
• f is odd

Satisfied by the usual logarithmic potentials



When K is small : existence and uniqueness of a solution which is separated
from the singular values (‖y‖L∞(−1,1) < 1) and is odd

Standard interior regularity estimates yield

|y′(x)| ≤ c0, |y(x)| ≤ 1− δ

x ∈ (−1
2 ,

1
2), δ > 0, c0 independent of K

Multiply the equation by y′ and integrate over (0, 1) :

|1
2

K2 − F(y(1))| ≤ c1

c1 (and F(±1)) independent of K

This inequality cannot hold when K is large

→We do not have a classical solution



Since y is odd, the ODE can be rewritten as

y′′ − f (y) =< y′′ − f (y) >

< . >= 1
Vol(˙)

∫
Ω .dx

→ 1D stationary Cahn-Hilliard system with dynamic BCs



Convergence of a sequence of solutions to regularized problems :

∂u
∂t = ∆w
w = −∆u + f0(u) + λu, λ ∈ R
∂w
∂ν = 0 on Γ
∂ψ
∂t −∆Γψ + g0(ψ) + ψ + ∂u

∂ν = 0 on Γ
ψ = u|Γ

f (s) = f0(s) + λs, g(s) = g0(s) + s

Assumptions :

• f0 ∈ C2(−1, 1), f0(0) = 0
• lims→±1 f0(s) = ±∞, lims→±1 f ′0(s) = +∞
• f ′0 ≥ 0, sgn(s)f ′′0 (s) ≥ 0
• g0 ∈ C2(R), ‖g0‖C2(R) ≤ c



Regularized potential :

f0,N(s) = f0(s), |s| ≤ 1− 1
N

f0,N(s) = f0(1− 1
N ) + f ′0(1− 1

N )(s− 1 + 1
N )

s > 1− 1
N

f0,N(s) = f0(−1 + 1
N ) + f ′0(−1 + 1

N )(s + 1− 1
N )

s < −1 + 1
N

Regularized problem : f0 replaced by f0,N

Existence and uniqueness of the solution uN to the regularized problem



Satisfies, for N large enough

‖uN(t)‖2
Cα(Ω) + ‖uN(t)‖2

H2(Γ)
+ ‖uN(t)‖2

H2(Ωε)
+ ‖uN(t)‖2

H1(Ω)
+

‖∂uN
∂t (t)‖2

H−1(Ω)
+ ‖∂uN

∂t (t)‖2
L2(Γ)

+

‖∇DτuN(t)‖2
L2(Ω)(n−1)n + ‖f0,N(uN(t))‖L1(Ω)+∫ t+1

t (‖∂uN
∂t (s)‖2

H−1(Ω)
+ ‖∂uN

∂t (s)‖2
L2(Γ)

)ds ≤
ce−βt(1 + ‖uN(0)‖2

H1(Ω)
+ ‖uN(0)‖2

H1(Γ)
+

‖∂uN
∂t (0)‖2

H−1(Ω)
+ ‖∂uN

∂t (0)‖2
L2(Γ)

)2 + c′

Ωε = {x ∈ Ω, d(x,Γ) > ε}, ε > 0
DτuN = ∇un − ∂uN

∂ν ν
α > 0, β > 0, c, c′ independent of N

Remark : Actually, uN(t) ∈ H2(Ω), but this regularity does not pass to the
limit



Smoothing property :

‖∂uN
∂t (t)‖2

H−1(Ω)
+ ‖∂uN

∂t (t)‖2
L2(Γ)

≤
c
t (1 + ‖uN(0)− 〈uN(0)〉‖2

H−1(Ω)
+ ‖uN(0)‖2

L2(Γ)
)

t ∈ (0, 1], c independent of N

Lipschitz estimate :

‖u1(t)− u2(t)‖H−1(Ω)+

‖u1(t)− u2(t)‖L2(Γ) ≤
cec′t(‖u1(0)− u2(0)‖H−1(Ω)+

‖u1(0)− u2(0)‖L2(Γ))

〈u1(0)〉 = 〈u2(0) = m, t ≥ 0

c, c′ independent of t, N, u1, u2

uN converges to some function u



We wish to call u the "generalized" solution to the singular problem

Variational solutions :

We set

B(u, v) = (∇u,∇v)Ω + λ(u, v)Ω+
+L((−∆)−1u, v)Ω + (∇Γu,∇Γv)Γ

u, v ∈ H1(Ω)⊗ H1(Γ) = {w, w ∈ H1(Ω), w|Γ ∈ H1(Γ)}

L > 0 chosen s.t.

‖∇u‖2
L2(Ω)n + λ‖u‖2

L2(Ω)
+ L‖u‖2

H−1(Ω)
≥

1
2‖u‖

2
H1(Ω)

, u ∈ H1(Ω), 〈u〉 = 0

u = u− 〈u〉
(., .)Ω, (., .)Γ : scalar products in L2(Ω) and L2(Γ)



We rewrite the problem as

(−∆)−1 ∂u
∂t −∆u+

f0(u) + λu− 〈w〉 = 0
w = −∆u + f0(u) + λu
∂ψ
∂t −∆Γψ + g(ψ) + ∂u

∂ν = 0 on Γ
ψ = u|Γ
u|t=0 = u0, ψ|t=0 = ψ0

We multiply the first equation by u− v, v = v(x) s.t.

〈u(t)− v〉 = 0, t ≥ 0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(u, u− v) + (f0(u), u− v)Ω =
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ



Positivity of B and monotonicity of f0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(v, u− v) + (f0(v), u− v)Ω ≤
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ

Variational inequality (VI)

We set

Φ = {(u, ψ) ∈ L∞(Ω)× L∞(Γ),
‖u‖L∞(Ω) ≤ 1, ‖ψ‖L∞(Γ) ≤ 1}



Definition : Let (u0, ψ0) ∈ Φ. Then, (u, ψ) is a variational solution if

(i) u(t)|Γ = ψ(t) a.e. t > 0, u(0) = u0, ψ(0) = ψ0 ;

(ii) −1 < u(t, x) < 1 a.e. (t, x) ∈ R+ × Ω ;

(iii) (u, ψ) ∈ C([0,+∞); H−1(Ω)× L2(Γ)) ∩ L2(0,T; H1(Ω)× H1(Γ)),
T > 0 ;

(iv) f (u) ∈ L1((0,T)× Ω), T > 0 ;

(v) (∂u
∂t ,

∂ψ
∂t ) ∈ L2(τ,T; H−1(Ω)× L2(Γ)), T > τ > 0 ;

(vi) 〈u(t)〉 = 〈u0〉, t ≥ 0 ;

(vii) the variational inequality (VI) is satisfied for a.e. t > 0 and every test
function v = v(x) s.t. v ∈ H1(Ω)⊗ H1(Γ), f (v) ∈ L1(Ω), 〈v〉 = 〈u0〉.

Remark : u(t)|Γ = ψ(t) only for t > 0



• A variational solution, if it exists, is unique

• ∀(u0, ψ0) ∈ Φ, ∃ a variational solution and (uN , ψN = un|Γ) converges (for
a subsequence) to a variational solution

• The variational solutions satisfy the a priori estimates mentioned earlier

• The variational solutions satisfy the smoothing and Lipschitz properties



A variational solution does not necessarily solve the equations in the usual
sense

True if u(t) ∈ H2(Ω)

A variational solution solves the first equation

(−∆)−1 ∂u
∂t −∆u+

f0(u) + λu− 〈w〉 = 0 in D′

Does not necessarily satisfy the dynamic boundary condition

More precisely, the trace

∂u
∂ν

= [
∂u
∂ν

]int

exists in L∞(τ,T; L1(Γ)), 0 < τ < T



(uN , ψN) satisfies

∂ψN

∂t
−∆ΓψN + g(ψN) +

∂uN

∂ν
= 0 on Γ

in L∞(τ,T; L2(Γ)), T > τ > 0, and the limit

[
∂u
∂ν

]ext = lim
N→+∞

∂uN

∂ν

exists in L∞(τ,T; L2(Γ)) weak star

→ ∂ψ

∂t
−∆Γψ + g(ψ) + [

∂u
∂ν

]ext = 0 on Γ

→ A variational solution is a classical one if

[
∂u
∂ν

]int = [
∂u
∂ν

]ext a.e. (t, x) ∈ R+ × Γ



Remark : Scalar ODE

y′′ − f (y) = 0, x ∈ (−1, 1)
y′(±1) = K > 0

There exists a critical value K0 s.t., if K > K0, there is no classical solution

However, there exists a variational solution which is solution to

y′′ − f (y) = 0, x ∈ (−1, 1)
y(±1) = ±1

y′|x=±1 6= K



Existence of classical solutions :

Related to the H2-regularity and the separation from the singularities of f0

Theorem : Let (u, ψ) be a variational solution and set, for δ > 0 and T > 0,

Ωδ(T) = {x ∈ Ω, |u(T, x)| < 1− δ}.

Then, u(T) ∈ H2(Ωδ(T)) and

‖u(T)‖H2(Ωδ(T)) ≤ Qδ,T ,

where Qδ,T is independent of u.



Consequence : if

|u(t, x)| < 1 a.e. (t, x) ∈ R+ × Γ

then

[
∂u
∂ν

]int = [
∂u
∂ν

]ext a.e. (t, x) ∈ R+ × Γ

and u is a classical solution

→ The existence of classical solutions is related to the separation property on
the boundary

True if f0 has sufficiently strong singularities



Theorem : We assume that

lim
s→±1

F0(s) = +∞, F′0 = f0.

Then, the separation property on the boundary holds and a variational solution
is a classical one.

True if f0 behaves like s
(1−s2)p , p > 1

Not true for logarithmic potentials

In that case, we can have |u(t, x)| = 1 on a set with nonzero measure on the
boundary (possibly, on the whole boundary)

Theorem : We assume that

±g(±1) > 0.

Then, a variational solution is a classical one.


