
The Cahn-Hilliard equation
with regular nonlinear terms (II)

Alain Miranville

Université de Poitiers, France

NSF-CBMS Conference
The Cahn–Hilliard equation : recent advances and applications



Improved regularity result :

Equations :

∂u
∂t

+ ∆2u−∆f (u) = 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0

Assumptions on f :

f is of class C2, f (0) = 0

f ′(s) ≥ −c0, c0 ≥ 0, s ∈ R

f (s)s ≥ c1F(s)− c2, F(s) ≥ −c3, c1 > 0, c2, c3 ≥ 0, s ∈ R

|f (s)| ≤ εF(s) + cε, ∀ε > 0, s ∈ R



Last assumption : handle the case 〈u0〉 = κ 6= 0

Theorem : We assume that u0 ∈ H2(Ω), with ∂u0
∂ν = 0 on Γ. Then, the

problem possesses a unique solution u such that u(t) ∈ H2(Ω), ∀t ≥ 0.

Weak formulation (〈u0〉 = 0) :

(−∆)−1∂u
∂t
−∆u + f (u)− 〈f (u)〉 = 0

Multiply by ∂u
∂t :

dE1

dt
+ 2‖∂u

∂t
‖2
−1 = 0

E1 = ‖u‖2
V + 2

∫
Ω

F(u) dx



Multiply by u :

d
dt
‖u‖2
−1 + ‖u‖2

V + c
∫

Ω
F(u) dx ≤ c′, c > 0

Sum the two differential inequalities :

dE2

dt
+ c(E2 + ‖∂u

∂t
‖2
−1) ≤ c′, c > 0

E2 = E1 + ‖u‖2
−1

This yields :

E2(t) ≤ ce−c′t(‖u0‖2
H1(Ω) +

∫
Ω

F(u0) dx) + c′′, c′ > 0, t ≥ 0∫ t+1

t
‖∂u
∂t
‖2
−1 ds ≤ ce−c′t(‖u0‖2

H1(Ω) +

∫
Ω

F(u0) dx)

+c′′, c′ > 0, t ≥ 0



Multiply by −∆∂u
∂t :

‖∆f (u)‖ ≤ Q(‖u‖L∞(Ω))

d
dt
‖∆u‖2 + ‖∂u

∂t
‖2 ≤ Q(‖u‖H2(Ω))

Set y = ‖∆u‖2 :

y′ ≤ Q(y)

Consider the solution z to the ODE :

z′ = Q(z), z(0) = y(0)

Comparison principle : ∃T0 = T0(‖u0‖H2(Ω)) ∈ (0, 1
2) s.t.

y(t) ≤ z(t), ∀t ∈ [0,T0]



Thus :

‖u(t)‖H2(Ω) ≤ Q(‖u0‖H2(Ω)), t ≤ T0

Differentiate the equation w.r.t. time :

(−∆)−1 ∂

∂t
∂u
∂t
−∆

∂u
∂t

+ f ′(u)
∂u
∂t
− 〈f ′(u)

∂u
∂t
〉 = 0

Multiply by t ∂u
∂t :

d
dt

(t‖∂u
∂t
‖2
−1) + t‖∂u

∂t
‖2

V ≤ ct‖∂u
∂t
‖2
−1 + ‖∂u

∂t
‖2
−1

Gronwall’s lemma :

‖∂u
∂t

(t)‖2
−1 ≤

1
t

Q(‖u0‖H2(Ω)), t ∈ (0,T0]



Multiply by ∂u
∂t :

d
dt
‖∂u
∂t
‖2
−1 + ‖∂u

∂t
‖2

V ≤ c‖∂u
∂t
‖2
−1

Gronwall’s lemma :

‖∂u
∂t

(t)‖2
−1 ≤ cect‖∂u

∂t
(T0)‖2

−1, t ≥ T0

‖∂u
∂t

(t)‖2
−1 ≤ ectQ(‖u0‖H2(Ω)), t ≥ T0

Rewrite the problem in elliptic form :

−∆u + f (u) = hu(t),
∂

∂ν

∂u
∂t

= 0 on Γ, t ≥ T0

hu(t) = −(−∆)−1∂u
∂t
, ‖hu(t)‖ ≤ ectQ(‖u0‖H2(Ω)), t ≥ T0



Multiply by u :

‖u‖2
V ≤ c‖hu(t)‖2 + c′

Multiply by −∆u :

‖∆u‖2 ≤ c‖hu(t)‖2 + c′

Thus :

‖u(t)‖H2(Ω) ≤ ectQ(‖u0‖H2(Ω)), t ≥ T0

Finally :

‖u(t)‖H2(Ω) ≤ ectQ(‖u0‖H2(Ω)), t ≥ 0



Dissipative H2-estimate :

Multiply the Cahn-Hilliard equation by u :

d
dt
‖u‖2 + ‖∆u‖2 ≤ c‖u‖2

V

Thus : ∫ 1

0
‖u‖2

H2(Ω) dt ≤ c(‖u0‖2
H1(Ω) +

∫
Ω

F(u0) dx) + c′

→ ∃T ∈ (0, 1) s.t.

‖u(T)‖2
H2(Ω) ≤ c(‖u0‖2

H1(Ω) +

∫
Ω

F(u0) dx) + c′



Repeat the estimates, starting from t = T instead of t = 0 :

‖u(1)‖2
H2(Ω) ≤ Q(‖u0‖2

H1(Ω) +

∫
Ω

F(u0) dx) + c′

(smoothing property)

Next :

‖u(t)‖2
H2(Ω) ≤ Q(‖u(t − 1)‖2

H1(Ω) +

∫
Ω

F(u(t − 1)) dx) + c′, t ≥ 1

Thus :

‖u(t)‖2
H2(Ω) ≤ e−c′tQ(‖u0‖2

H1(Ω) +

∫
Ω

F(u0) dx) + c′′, c′ > 0, t ≥ 1

Finally :

‖u(t)‖H2(Ω) ≤ e−ctQ(‖u0‖H2(Ω)) + c′, c > 0, t ≥ 0



Remark : When κ 6= 0 :

f (s)(s− κ) ≥ c1F(s)− κf (s)− c2 ≥
c1

2
F(s)− c, c = c(κ)

Remark : Existence of the finite-dimensional attractor A on D(A), for the
topology of V



Defaults of the global attractor :

May attract the trajectories at a slow rate

Very difficult to express the convergence rate in terms of the physical
parameters of the problem

May be sensitive to perturbations

Upper semicontinuity :

dist(Aε,A0)→ 0 as ε→ 0+

Lower semicontinuity :

dist(A0,Aε)→ 0 as ε→ 0+

More difficult to prove



→We need to construct and study larger objects which contain the global
attractor, are more robust under perturbations, attract the trajectories at a fast
rate and are still finite-dimensional

Possible objects : inertial manifolds and exponential attractors

Definition : A Lipschitz finite-dimensional manifoldM⊂ E is an inertial
manifold for the semigroup S(t) acting on the Banach space E if

(i) It is positively invariant, i.e., S(t)M⊂M, ∀t ≥ 0
(ii) It satisfies the following asymptotic completeness property :

∀u0 ∈ E, ∃v0 ∈M such that

‖S(t)u0 − S(t)v0‖E ≤ Q(‖u0‖E)e−αt, t ≥ 0,

where the positive constant α and the function Q are independent of u0



An inertial manifold, if it exists, contains the global attractor and attracts the
trajectories exponentially fast (and uniformly with respect to bounded sets of
initial data)

The existence of such a set would confirm, in a perfect way, the heuristic
conjecture on a finite-dimensional reduction principle of infinite-dimensional
dissipative dynamical systems

The dynamics, restricted to an inertial manifold, can be described by a system
of ODEs which is Lipschitz continuous : inertial form of the system

The asymptotic completeness property gives, in a particularly strong form, the
equivalence of the initial dynamical system (E, S(t)) with its inertial form
(M, S(t))



Robust under small perturbations : normal hyperbolicity

Constructions of inertial manifolds : by the Lyapunov–Perron method, by
constructing converging sequences of approximate inertial manifolds, by the
so-called graph-transform method, ...

Drawback : all the known constructions of inertial manifolds make use of a
restrictive condition (spectral gap condition)

→ Can only be verified in one space dimension in general

Cahn-Hilliard equation : periodic boundary conditions (also in 3D)



Definition : A compact setM⊂ E is an exponential attractor for the
semigroup S(t) acting on the Banach space E if

(i) It has finite fractal dimension, dimFM < +∞
(ii) It is positively invariant, S(t)M⊂M, ∀t ≥ 0
(iii) It attracts exponentially fast the bounded subsets of E in the following
sense :

∀B ⊂ E bounded, distE(S(t)B,M) ≤ Q(‖B‖E)e−αt, t ≥ 0,

where the positive constant α and the function Q are independent of B



An exponential attractor, if it exists, contains the global attractor

The existence of an exponential attractorM yields the existence of the global
attractor A ⊂M : it is a compact attracting set

Finite-dimensional reduction principle given by the modified Hölder–Mañé
theorem

Proving the existence of an exponential attractor is also one way of proving
that the global attractor has finite fractal dimension

Compared with an inertial manifold : not smooth in general ; one still has a
uniform exponential control on the rate of attraction of the trajectories



Main drawback : relaxation to positive invariance makes these objects
nonunique

Family of exponential attractors

Question of the best choice ; find a simple algorithm



Theorem : Let X be a bounded subset of E. We assume that the mapping
S : X → X enjoys the following smoothing property :

‖Sx1 − Sx2‖E1
≤ c‖x1 − x2‖E, ∀x1, x2 ∈ E,

where E1 is a second Banach space such that the embedding E1 ⊂ E is
compact. Then the discrete dynamical system generated by the iterations of S
possesses an exponential attractorM⊂ X i.e.,
(i) It is compact in E and has finite fractal dimension.
(ii) It is positively invariant, i.e., SM⊂M.
(iii) There holds

distE(SNX,M) ≤ ce−αN , N ∈ N,

where c and α > 0 only depend on X. Furthermore, all constants can be
computed explicitly.



Continuous semigroup S(t) acting on X :

Prove that S(t?) satisfies the smoothing property for some t? > 0 (typically,
t? = 1)

→ Exponential attractorM? for the discrete dynamical system generated by
the mapping S? := S(t?)

Set

M := ∪t∈[0,t?]S(t)M?

If (t, x) 7→ S(t)x is Lipschitz (or even Hölder) continuous on [0, t?]× X,M is
an exponential attractor for S(t) on X

Exponential attractors are robust under small perturbations : construction of
robust families of exponential attractors



Cahn-Hilliard equation : prescribed average

Convergence of single trajectories to steady states (coarsening) : S. Zheng
(1D), P. Rybka-K.H. Hoffmann (2-3D)

Continuum of steady states

Lojasiewicz-Simon’s inequality



Numerical analysis : Cahn-Hilliard system (two second-order in space
parabolic equations)

∂u
∂t

= ∆µ

µ = −∆u + f (u)

∂u
∂ν

=
∂µ

∂ν
= 0 on Γ

Multiply the first equation by µ and the second one by ∂u
∂t :

d
dt

(
1
2
‖∇u‖2 +

∫
Ω

F(u) dx) + ‖∇µ‖2 = 0

(Energy identity/decay)



Variational formulation :

Find (u, µ) : [0,T]→ H1(Ω)2, T > 0 given, such that

((
∂u
∂t
, v)) + ((∇u,∇v)) = 0, ∀v ∈ H1(Ω)

((∇u,∇v)) + ((f (u)− µ, v)) = 0, ∀v ∈ H1(Ω)

Consider a quasi-uniform family T h of polygonal decomposition of Ω,
h ∈ (0, 1) (n = 2)

Finite element space Vh ⊂ H1(Ω) :

Vh = {v ∈ C(Ω), v|τ ∈ Pm, τ ∈ T h}

Pm : set of polynomials with degree less than or equal to m



Splitting method :

Find (uh, µh) : [0,T]→ Vh × Vh such that

((
∂uh

∂t
, v)) + ((∇µh,∇v)) = 0, ∀v ∈ Vh

((∇uh,∇v)) + ((f ((uh)− µh, v)) = 0, ∀v ∈ Vh

uh
0 ∈ Vh : proper approximation of u0

wi, i = 1, ..., Nh : basis of Vh

M : matrix with entries Mij = ((wi,wj)) (mass matrix)

K : matrix with entries are Kij = ((∇wi,∇wj)) (stiffness matrix)



Set

uh(t) =

Nh∑
i=1

ci(t)wi and µh(t) =

Nh∑
i=1

di(t)wi

C =



c1
c2
·
·
·

cNh



D =



d1
d2
·
·
·

dNh





Then :

M
dC
dt

= −KD

MD = KC + F(C)

F(C) =



((f (uh),w1))
((f (uh),w2))

·
·
·

((f (uh),wNh))


Thus (M is invertible) :

M
dC
dt

+ KM−1KC + KM−1F(C) = 0



Set A = M−1K (−A : finite element approximation of the Laplacian) :

dC
dt

+ A2C + A(M−1F(C)) = 0

(resembles the Cahn–Hilliard equation)

Furthermore :

dC
dt

= −AD

D = AC + M−1F(C)

(resembles the Cahn–Hilliard system)



Taking v = 1 :

d
dt

∫
Ω

uh dx = 0

(Discrete mass conservation)

Discrete energy identity :

d
dt

(
1
2
‖∇uh‖2 +

∫
Ω

F(uh) dx) + ‖∇µh‖2 = 0

Stability, consistency and convergence : C.M. Elliott-D.A. French



Higher-order Cahn–Hilliard models :

∂u
∂t
−∆

M∑
i=1

(−1)i
∑
|k|=i

akD2ku−∆f (u) = 0, M ∈ N, ak > 0, |k| = M

For k = (k1, k2, k3) ∈ (N ∪ {0})3 (n=3)

|k| = k1 + k2 + k3

Dk =
∂|k|

∂xk1
1 ∂xk2

2 ∂xk3
3

Boundary conditions : Dirichlet boundary conditions

Dku = 0 on Γ, |k| ≤ M



Functional setting and linear operators :

Introduce, for N ∈ N, the elliptic operator AN defined as

〈ANv,w〉H−N(Ω),HN
0 (Ω) =

∑
|k|=N

ak((Dkv,Dkw))

H−N(Ω) : topological dual of HN
0 (Ω), (−∆)−1 : inverse minus Laplace

operator associated with Dirichlet boundary conditions
Note that

(v,w) ∈ HN
0 (Ω)2 7→

∑
|k|=N

ak((Dkv,Dkw))

is bilinear, symmetric, continuous and coercive. Thus :

AN : HN
0 (Ω)→ H−N(Ω)

is well defined



Elliptic regularity results for linear elliptic operators of order 2N : AN is a
strictly positive, selfadjoint and unbounded linear operator with compact
inverse, with domain

D(AN) = H2N(Ω) ∩ HN
0 (Ω),

For v ∈ D(AN) :

ANv = (−1)N
∑
|k|=N

akD2kv

Furthermore : D(A
1
2
N) = HN

0 (Ω) and, for (v,w) ∈ D(A
1
2
N)2 :

((A
1
2
Nv,A

1
2
Nw)) =

∑
|k|=N

ak((Dkv,Dkw))

Finally : ‖AN · ‖ (resp., ‖A
1
2
N · ‖) is equivalent to the usual H2N-norm (resp.,

HN-norm) on D(AN) (resp., D(A
1
2
N))



Define the linear operator AN = −∆AN :

AN : HN+1
0 (Ω)→ H−N−1(Ω)

Strictly positive, selfadjoint and unbounded linear operator with compact
inverse, with domain

D(AN) = H2N+2(Ω) ∩ HN+1
0 (Ω)

For v ∈ D(AN) :

ANv = (−1)N+1∆
∑
|k|=N

akD2kv

Furthermore : D(A
1
2
N) = HN+1

0 (Ω) and, for (v,w) ∈ D(A
1
2
N)2 :

((A
1
2
Nv,A

1
2
Nw)) =

∑
|k|=N

ak((∇Dkv,∇Dkw))



‖AN · ‖ (resp., ‖A
1
2
N · ‖) is equivalent to the usual H2N+2-norm (resp.,

HN+1-norm) on D(AN) (resp., D(A
1
2
N))

Define the operator ÃN = (−∆)−1AN :

ÃN : HN−1
0 (Ω)→ H−N+1(Ω)

−∆ and AN commute : the same holds for (−∆)−1 and AN , so that
ÃN = AN(−∆)−1



Lemma : The operator ÃN is a strictly positive, selfadjoint and unbounded
linear operator with compact inverse, with domain

D(ÃN) = H2N−2(Ω) ∩ HN−1
0 (Ω),

where, for v ∈ D(ÃN),

ÃNv = (−1)N
∑
|k|=N

akD2k(−∆)−1v.

Furthermore, D(Ã
1
2
N) = HN−1

0 (Ω) and, for (v,w) ∈ D(Ã
1
2
N)2,

((Ã
1
2
Nv, Ã

1
2
Nw)) =

∑
|k|=N

ak((Dk(−∆)−
1
2 v,Dk(−∆)−

1
2 w)).

Besides, ‖ÃN · ‖ (resp., ‖Ã
1
2
N · ‖) is equivalent to the usual H2N−2-norm (resp.,

HN−1-norm) on D(ÃN) (resp., D(Ã
1
2
N)).



Functional form of the equation :

du
dt
− AMu−∆BMu−∆f (u) = 0

BMv =

M−1∑
i=1

(−1)i
∑
|k|=i

akD2kv

Weak form :

(−∆)−1 du
dt

+ AMu + BMu + f (u) = 0

Assumptions on f :

f ∈ C1(R), f (0) = 0

f ′ ≥ −c0, c0 ≥ 0

f (s)s ≥ c1F(s)− c2 ≥ −c3, c1 > 0, c2, c3 ≥ 0, s ∈ R

F(s) ≥ c4s4 − c5, c4 > 0, c5 ≥ 0, s ∈ R



Scalar product by du
dt and u :

dE1

dt
+ c(E1 + ‖∂u

∂t
‖2
−1) ≤ c′, c > 0,

E1 = ‖A
1
2
Mu‖2 + B

1
2
M[u] + 2

∫
Ω

F(u) dx + ‖u‖2
−1

E1 ≥ c(‖u‖2
HM(Ω) +

∫
Ω

F(u) dx)− c′, c > 0

B
1
2
M[u] =

M−1∑
i=1

∑
|k|=i

ak‖Dku‖2

Note that :

|B
1
2
M[u]| ≤ 1

2
‖A

1
2
Mu‖2 + c‖u‖2



Thus :

‖u(t)‖2
HM(Ω) ≤ ce−c′t(‖u0‖2

HM(Ω) +

∫
Ω

F(u0) dx) + c′′, c′ > 0, t ≥ 0

Scalar product by AMu :

d
dt
‖Ã

1
2
Mu‖2 + c‖u‖2

H2M(Ω) ≤ c(‖u‖2 + ‖f (u)‖2)

Note that

‖u‖2 + ‖f (u)‖2 ≤ Q(‖u‖HM(Ω))

Thus :

d
dt
‖Ã

1
2
Mu‖2 + c‖u‖2

H2M(Ω) ≤ e−c′tQ(‖u0‖HM(Ω)) + c′′, c, c′ > 0, t ≥ 0



Scalar product by −∆ du
dt :

d
dt

(‖A
1
2
Mu‖2 + B

1
2
M[u]) + ‖∂u

∂t
‖2 ≤ e−c′tQ(‖u0‖HM(Ω)) + c′′, c, c′ > 0

B
1
2
M[u] =

M−1∑
i=1

∑
|k|=i

ak‖∇Dku‖2

Combine the estimates :

dE2

dt
+c(E2+‖u‖2

H2M(Ω)+‖∂u
∂t
‖2) ≤ e−c′tQ(‖u0‖HM(Ω))+c′′, c, c′ > 0, t ≥ 0

E2 = E1 + ‖Ã
1
2
Mu‖2 + ‖A

1
2
Mu‖2 + B

1
2
M[u]

E2 ≥ c(‖u‖2
HM+1(Ω) +

∫
Ω

F(u) dx)− c′, c > 0



Thus :

‖u(t)‖HM+1(Ω) ≤ e−ctQ(‖u0‖HM+1(Ω)) + c′, c > 0, t ≥ 0

We can also obtain a dissipative H2M-estimate

We can also consider periodic boundary conditions (conservation of mass)



Viscous Cahn-Hilliard equation :

−β∆
∂u
∂t

+
∂u
∂t

+ ∆2u−∆f (u) = 0, β > 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0

Conservation of mass :

〈u(t)〉 = 〈u0〉, t ≥ 0

Equivalent formulation :

β
∂u
∂t

+ (−∆)−1∂u
∂t
−∆u + f (u) = 0

∂u
∂ν

= 0 on Γ



Multiply by ∂u
∂t :

d
dt

(‖∇u‖2 + 2
∫

Ω
F(u) dx) + 2β‖∂u

∂t
‖2 + 2‖∂u

∂t
‖2
−1 = 0

Multiply by −∆u (f ′ ≥ −1) :

d
dt

(β‖∇u‖2 + ‖u‖2) + 2‖∆u‖2 ≤ 2‖∇u‖2

Differentiate with respect to time :

β
∂

∂t
∂u
∂t

+ (−∆)−1 ∂

∂t
∂u
∂t
−∆

∂u
∂t

+ f ′(u)
∂u
∂t

= 0

∂

∂ν

∂u
∂t

= 0 on Γ



Multiply by ∂u
∂t :

d
dt

(β‖∂u
∂t
‖2 + ‖∂u

∂t
‖2
−1) + 2‖∂u

∂t
‖2

V ≤ 2‖∂u
∂t
‖2

→ u ∈ L∞(0,T; H1(Ω)) ∩ L2(0,T; H2(Ω)), ∂u
∂t ∈ L2(Ω× (0,T)), T > 0

u0 ∈ H2(Ω) (plus compatibility condition) : ∂u
∂t (0) ∈ L2(Ω)

→ ∂u
∂t ∈ L∞(0,T; L2(Ω)) ∩ L2(0,T; V)

Equivalent elliptic problem :

−∆u + f (u) = hu,
∂u
∂ν

= 0 on Γ

hu = −β∂u
∂t
− (−∆)−1∂u

∂t
∈ L∞(0,T; L2(Ω))



Multiply by −∆u :

‖∆u‖2 ≤ 2‖hu‖2 + 2‖∇u‖2

→ u ∈ L∞(0,T; H2(Ω))

Well-posedness, existence of finite-dimensional global attractors

Existence of exponential attractors (prescribed spatial average)

Uniform estimates as β → 0+

Construction of robust families of exponential attractors



Equivalent second-order in space parabolic equation :

β
∂u
∂t
−∆u + f (u) = h̃u

h̃u = 〈f (u)〉 − (−∆)−1∂u
∂t
∈ L∞(0,T; H2(Ω))

Continuous embedding H2(Ω) ⊂ C(Ω) : h̃u ∈ L∞(Ω× (0,T))

Consider the ODE’s

y′± + f (y±) = ±‖h̃u‖L∞(Ω×(0,T)), y±(0) = ±‖u0‖L∞(Ω)

Comparison principle :

y−(t) ≤ u(x, t) ≤ y+(t), (x, t) ∈ Ω× (0,T)



Set z+ = u− y+ :

β
∂z+

∂t
−∆z+ + f (u)− f (y+) ≤ 0

∂z+

∂ν
= 0 on Γ

z+(0) ≤ 0

Multiply by z+
+ = max(z+, 0) :

β

2
d
dt
‖z+

+‖2 + ‖∇z+
+‖2 ≤ ‖z+

+‖2

Gronwall’s lemma :

‖z+
+(t)‖2 ≤ e

2
β

t‖z+
+(0)‖2 = 0, t ∈ [0,T]

→ z+
+(t) = 0 and u(x, t) ≤ y+(t)

Second inequality : z− = y− − u



Viscous Cahn-Hilliard equation : behaves as a second-order in space parabolic
equation

Does not allow to prove that u ∈ [0, 1]

Allen-Cahn equation (ordering of atoms) :

∂u
∂t
−∆u + f (u) = 0

u = 0 on Γ

u|t=0 = u0

Comparison principle

Separable ODE :

y′ − y3 − y = 0, y(0) ∈ [−1, 1],

→ u ∈ [−1, 1]


