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Equations :
Ou )
E—i—A u—Af(u) =0
Ou  O0Au
W o Oonl
uli=o = uo

I'=00,Q: bounded and regular domain of R"
f(s)—s — 5, F(s) = [y f(€ ¢ =15t — 17
f/



Linear operators :

Spaces :

H=[1*(Q) = {ue L} ) () = 0%, (C5)). [l -

V H'(Q) = H‘(Q) H, ((-)v = ((V, V"))
{MGH 1), (u) = 0}

(u) = Vol(m Jqudx, uc L'(Q)

(uy = Voll(Q) (u, 1), ue H1(Q)

|| - |lx : norm on the Banach space X

V C H = H' C V', with dense, continuous and compact embeddings
H'(Q) c L2(Q), L*(2) ¢ H~'(), with dense, continuous and compact
embeddings



We define the linear operator A : V — V' by
(Au,vy = ((u,v))y, Yu, veV
Isomorphism from V onto V'
DA =AY H)={ucV,AucHY ={uc H(Q), —Auc L*(Q)}

D(A) ={uc H*(Q)NV, g” =0onT}
14

Au=f,u € D(A) and f € H, is equivalent to

—Au =fin Q, @:Oonf
ov



A~': H — H : compact, selfadjoint and positive
There exists an orthonormal basis (w;), j € N, of H formed of eigenvectors of
A~

A71Wj = pjwj, pj — 0asj— +oo, pj >0

Aw; = Awj, A\j = —
P AN
wj, A : eigenvectors/eigenvalues of A, 0 < A\ < Ay < -+, \j = 400 as
J— +0o0

(Wi, wi))v = (Awj, we) = Ai((wj, wi)) = 0

(Awj, wi) = (Wi w))v = Nilwill> =



DAY) ={u € H, u=> 72 wwj, >.° )\jzo‘|uj|2 < +oo}, a>0
(V) pracy = D720 AP upvjs w = Y22 wiwj, v =32, vjw;
A% = ZJ | A uwy, u = Zj’il Uw;

Graph norm : || - |p(ae) = [[A% - |

D(Az3) =V

D(A%) ={uc HYQ) NV, % = ‘M“ =0onTl}
A’u=f,u € D(A?) andf € H, is equlvalent to

Ou  0Au
Y
— We recover the Neumann boundary conditions

A’u=finQ =0onl



a < 0:D(A%) = D(A—®)

Ifa>d,a,a €R,then D(A%) C D(A®") with continuous, dense and
compact injection

||A_% - ||, is equivalent to the usual H~!(£2)-norm on D(A_%) =V
1
[l = fla=> -]

U (HA_%(M — W)|* + <u>2)% is a norm on H~'(Q) which is equivalent to

the usual H~!(2)-one



The linear Cahn-Hilliard equation :

Ou

ou a2 _
8I+Au fx, 1)
Oou 0Au

5— 8y —OOHF

Functional form :

d

;”t‘ 4+ A2u=f(t)inD'(0,T;H), T >0

Iff € L*(0,T; H), u € L*(0,T; D(A?)) and % € L%(0, T; H), the equation
makes sense in L>(0, T; H)

Variational formulation :

Find u : [0,7] — D(A) such that

%((u,v)) + ((Au, Av)) = ((f(1),v)) in D'(0,T), Vv € D(A)



Theorem : (Existence and uniqueness of weak solutions) We assume that
f €L*0,T;D(A")) and uyp € H, T > 0 given. Then, the linear initial value
problem

d

dlt‘ + A% = f(1) in D'(0, T; D(A™1))
u(0) = upin H

possesses a unique solution u such that u € C([0, T]; H) N L*(0, T; D(A)) and

du ¢ [2(0,T;D(A7Y)).



Let u; and u, be solutions to

d
“L A% = (1) in D'(0,T: D(A™))
ui (O) =Uuro in H

d
% + A2 = (1) in D'(0, T: D(A™Y)),

uz(O) =upo in H
u=u —uy,f=f—frand uy = upo — U0 satisfy

du

o T A% =[(1)in D'(0,T;:D(A™))

u(0) =upin H



Variational formulation :

%((u,v)) + ((Au,Av)) = {f(t),v) in D'(0,T), Vv € D(A)
Take v = u(z) :
2 el + Al = (700,
This yields

d
Sl llAul® < Ol pa-

()11 < Mol + IF11Z2(0,7.0a- 1))



Existence : Galerkin scheme

Approximated problems :

Find u,, = > 7" | wiwj, w; = u;(t), i = 1, - - -, m, such that

d
dt
U (0) = uo m
U, - projection (in H) of ug onto W,

m

om = Y _((uo, wi))w;

i=1

—((um,v)) + ((Aup, Av)) = (f(1),v), Vv € W,, = Span(wy, - - -



Equivalent formulation :



Take v = w;, multiply by u; and sum over i

1d

2 2
S 7. 11Um Auy||” = s Um
a4 WAt = (£0) )

This yields

d 2 2 2
™+ AunlI” < @) pa-1)
U, is bounded, independently of m, in L2(0, T; D(A)) and L>=(0, T; H)

There exists u € L>(0, T; H) N L*(0, T; D(A)) such that u,, — u in
L>(0, T; H) weak star and in L?(0, T; D(A)) weak



Theorem : (Existence of strong solutions) We assume that ug € D(A) and
f € L*(0,T; H). Then, the solution u satisfies

u € C([0,T]; D(A)) N L*(0,T; D(A%)) and % € L*(0, T; H) and is a strong
solution.

d

() + (A, AV)) = ((F(0),¥)), ¥ € Wiy

Take v = w;, multiply by )\l-zﬁi and sum over i :

d 2 2 2o 1 2
2 Aum[|” + (1A% | S%Hf(t)H

(1A%um]| > collAun]l)



Weaker formulation :

d
Al jb; + Au=A"F (1) in L2(0, T; V')
u(0) = ug in V'
Variational formulation :

Find u : [0,7] — V such that

(A0 + () = (A7), in DO, 7), e v

Theorem : (Existence and uniqueness of very weak solutions) We assume
that ug € V' and f € L*(0,T; D(A~ )) Then, the problem possesses a unique
solution u such that u € C([0, T]; V') N L?(0,T; V) and

du ¢ 12(0,T; D(A™7)).



The Cahn-Hilliard equation with a cubic nonlinear term

ou
+ A%u— A
& f(u) =
Oou  O0Au
5 = o =Q0onT
M‘t:O = Up
fs) =5 —s,F(s) = [y (&) dE = 5% — 1s?



Mass conservation :

We assume that

Therefore



Setti = u—up(=u— k), f(u) =f(u) — (f(u)) :
ou

- 27_ —
8t+A Af(u) =0
ou O0Au

v~ oy oont

ﬁ|t:0 = ﬁo(: Uy — Ii)

Functional formulation :

% + A%+ Af(u) = 0in D'(0, T; D(A™1))

N

(0) =upin H



Variational formulation :

Find % : [0,7] — D(A) such that

%((n, W) + (AT, Av)) + ((F(@), Av)) = 0in D'(0, T), ¥v € D(A)
u(0) =upin H
U=u-+~k
Equivalent formulation :
ou
o H
= —Au+f(u)
gz = 25 =0onTI



Functional formulation :
dii
?th = —Azin D/(0,T; D(A™"))
Ti = At + f (u) in D' (0, T; H)
Variational formulation :
Find (@, ) : [0, 7] — D(A) x H such that
d
dt
((7,v)) = ((Am,v)) + ((f(u),v)) in D'(0,T), Vv € H
withu =u+r, p =1+ (f(u))

((@,v)) = —((,Av)) in D'(0, T), Vv € D(A)



Weaker formulation :

i di —

A 7 + A+ f(u) =0in D'(0,T; V')

#(0) =t in V'
Variational formulation :

Find @ : [0,7] — V such that

%((A*lﬁ, V) + (@, )y + ((f(u),v)) =0in D'(0,T), Vv € V

u(0) =upin V'



Theorem : We assume that ug € H'(Q), i.e., iy € V. Then, the problem
possesses a unique weak solution u = u + « such that

€ L2(RT;V)NC([0,T); V) NLA(0,T; D(A2)) and 2 € I2(R*; V'),
vT > 0.



Uniqueness :

Similar to the linear case, with /' > —1

d
Sl < 2wl

Interpolation inequality :
11
lul? = (A™2u,A2u)) < a1t [y
d
Sl < w2,y

Existence :

Galerkin scheme



Formal estimates
Equation :

0

(=4) ot

— Azi+f(u) = f(u) =0
Multiply the equation by # :

d _ _
Sl + al + g < Vol(@)

Multiply the equation by —Au (f' > —1):

d, _ _
P + el g < lul?, ¢ >0



Multiply the equation by ‘9“ :

d, _
Sl +2 [ P+ 215 =0
Q
Multiply the equation by A%y

d, _ _ _ _
EH“H%/ +clfalza ) < < (lally + DllalZz ) + <", ¢ > 0.



Note that
v (A7) + ()27
v (917 + ()32
vis (I3 + (n?)z

v (JAV)2 + ()22

are norms on H~'(Q), L2(Q), H'(Q) and H?(2), respectively, which are
equivalent to the usual ones



Passage to the limit in the nonlinear term :

/ [ (o) asar

¢ € D(0,T), with u3, — 1 in L3 (0, T; L3 (€)) and u,, — u a.e. (Aubin-Lions
compactness results)

There exists g € L (0,T; L3 (€2)) such that

uy| < g ae.

Lebesgue’s theorem



Theorem : We assume that ug € H>(Q), with % =0onTl,ie., @y € D(A).
Then, the solution u = @ + & satisfies # € C([0, T]; D(A)) N L*(0, T; D(A?))
and % € L*(0,T;H), VT > 0. Furthermore, it is a strong solution :

du

0 + A%T 4 Af(u) = 0in L*(0, T; H).



Multiply the equation

_10u
ot
by (—A)3u (k = 0, @ = u, for simplicity) :

(—2)"" 2~ A+ f(u) —Fw) = 0

d
1A + 20| A% < 2] Af @) [|[|A%]
Af(u) = f'(u)Au +f" (u)Vu - Vu

IAf@)| < el Aull + || Aul| + [1w¥u - Vul))



Interpolation inequality :

2 1

Agmon’s inequality :

1 1
lellzoeey < ellll 1l ey

Then :

5 1

and

7 2
o] < el s



We have :
s 1
¥ D] < [ e s [ < el | 1 i
Hi (€2) C L*(Q2) with continuous embedding :

[uliecey < ellall g g,

Interpolation inequality :

3 1
4 4
il 7 gy < Mgy Il

Thus :

5 1 3 1
[uVu - Vul| < CH”H[G-[l(Q)||qu6[4(Q)||u”;[1(Q)Hu||[2-[4(Q)

7 2
|uVu - Vul| < CH”H;—H(Q)H”H;H(Q)



Young’s inequality,
7 2 1 2
1P < el g Il + Nl )

7 2
< (14 [l )l

Finally :

- 7 2
[((Af(u), A%u))| < c(1 + IIMHi,l(Q))IIMHiﬂ(Q)||A2u||
1 5
< o1+ [l 1A%
and
d 2 2112 14
S Aul” + [A%]" < e(T + [lully’)

Remark : In 2D : f(s) = leffl ais', azpy1 > 0,p €N (in2D:p = 1).



Existence of finite-dimensional global attractors :
E : Banach space endowed with the norm ||.||g
{S(2), t > 0} : family of (nonlinear) operators acting on E
St):E—E, t>0
We assume that this family of operators satisfies the following properties :
S(0) = I (identity operator)

S(t+7)=S8{)oS(1), ¥Vt, >0
We say that it forms a semigroup acting on E
Continuity property :

S(t) : E— E, x+ S(t)x,

is continuous, V¢ > 0



A bounded set By C E is a bounded absorbing set for S(z) if, VB C E
bounded, 3ty = 7y(B) such that t > 1y implies S(z)B C By

Mathematical definition of dissipation

Definition : A set A C E is a global attractor for the semigroup S(¢) if the
following properties hold :

(i) A is compact in E.

(ii) A is invariant by S(z), S(¢).A = A, Vt > 0.

(iii) A is an attracting set : VB C E bounded,
distg(S(7)B,X) — 0 as t — +o0,

where distg denotes the Hausdorff semidistance between sets, defined as

distg(A, B) = sup inf ||la — b||E.
£(A, B) iﬁfé@g”“ B3



Theorem : We assume that S(7) possesses a bounded absorbing set By and
that, VB C E bounded, 37y = to(B) > 0 such that U;>,S(7)B is relatively
compact in E. Then, S(¢) possesses the global attractor A.

Example : S(¢) possesses a bounded absorbing set B such that B is relatively
compact in E

Theorem : We assume that S(7) possesses a compact attracting set K. Then,
S(t) possesses the global attractor .A.



Definition : Let X C E be a (relatively) compact set. For € > 0, let N.(X) (if
it is necessary to precise the topology, we will also use the notation N, (X, E))
be the minimal number of balls of radius e which are necessary to cover X.
Then, the fractal dimension of X is the quantity (which belongs to [0, 4+00])
10g2 N, € (X )

In N (X
dimgX = lim sup — (= limsup ni()
e—0t log, p e—0t In g

).

Furthermore, the quantity H(X)(= H.(X,E)) = log, N.(X) is called the
Kolmogorov e-entropy of X.

If X is a smooth m-dimensional manifold, then dimgX = m



If the minimal number of balls of radius € which are necessary to cover X
satisfies

1 1
No(X) < c(=)4 (ie., He(X) < dlog, - +c, ' =log, )
€
¢ and d independent of ¢, then



Theorem : Let X be a compact subset of E. We assume that there exist a
Banach space Ej, with norm ||.||g,, such that E; is compactly embedded into
E and a mapping L : X — X such that L(X) = X and

HLX] —LX2HE1 < CHX] —XQHE, V)C], Xy € X, c>0.
Then, the fractal dimension of X is finite and satisfies
dimFX S /HL(BEI (0, 1),E),
4c

where Bg, (0, 1) is the unit ball in E].



|
Assume that £ = 0 ({(up) = 0)

Theorem : The semigroup S(¢) associated with the problem possesses the
global attractor Ay on V which is bounded in H?(S2).

We have :

S(t): V=V, up+— u(r)
x +— S(1)x is continuous with respect to the H~'-topology

We have :

d 2 20012

EH”H—] + cgllullZ ) < Vol(Q2)
Gonwall’s lemma :

2
(D)2 < eV [lugl|%; + ¢

— Bounded absorbing set in V



Uniform Gronwall’s lemma :

Proposition : Let g, 4 and y be three locally integrable and nonnegative
functions such that y’ is locally integrable and, for > 19, fp € R,

y < gy+h

We further assume that, for r > 0 given,
t+r t+r t+r
/ g(s)ds < ay, / h(s)ds < ay, / y(s)ds < a3
t t t
(here, ay, a» and a3 depend on r). Then, there holds, for t > 1,

a
y(it+r) < (73 +ap)e.



Remark :
a) Uniform bound on y fort > 9+ r

b) Explodes as r — 0

1+1 t+1
[ i se [T [ Fuasas<c
t t Q

Energy dissipation :

We have :

d Ou
Gl +2 [ Fan + 215 <0

Uniform Gronwall’s lemma : bounded absorbing set in V



We have :
d 2 2 2
EH“H + cllullpgy < lull®, ¢>0
t+1 2
-, HMHHZ(Q)dSSC
We have :

d
SlAull® + 11A%ul? < e(1 + [Jully")

Uniform Gronwall’s lemma : bounded absorbing set in V bounded in H?({2)



Theorem : The global attractor .4 has finite fractal dimension for the
topology of V'.

Let u; and u; be solutions to

0
(~8)71 5 Auy +f() = {f () = 0
8u1 . 8AM1 -
o oy donl
Utli=o = U0
and
0
(~8)71 52— Auy +f(2) = {f () = 0
Buz o 8Au2 -
o oy ool

Uz|i=0 = U0



u=uy —up and ug = uy1 o — U o satisty

1 0u

(=A)7 5, = Butflu) = fluz) = ((F(wr)) = {f(u2))) =0
Oou OAu
W o OonT
uli=—o0 = up

Multiply the equation by u :

d
EﬂﬂiﬁﬂMﬁéHwﬂ
Gronwall’s lemma :
lu()|?) < €'[luoll>;, >0,

Thus :

1
/0 il dr < clluoll?,



. . Au .
Multiply the equation by ¢%; :

1d 0 0 1
5 )+ A 1P 4+ (Fn) = Fla), 520) = 5 lully

We have :
[((f(ur) — () ))!_H Hzl\IV[(u%Jrulueru%—I)MHI

VI(? + uyus + 13 — Vu] = (u? + uyuy + u3 — 1)Vu
+u(2u1Vu1 + 2urVus + u1Vuy + LtzVu])
Ao C H*(Q) and is invariant : u; € L®°(RT; H*(Q)),i= 1,2



We have :

IV + wruz +uz — Dull| < || (uf + wruz +u3 = 1)V
+|u(2u1 Vuy + 2upVuy + w1 Vuy + upVuy)||
< 2([lur oo () + lle2l7oe (@) + DI Vu]
+2(llur [l zoe (@) + w2l zoo @) VUL ll sy + VU2l s o)) |40
Thus :

19108 + ez + 13 = Dadl] < (e + N2l + Dllally

< cflully

and

d Ou
@(IHMH%/) + IHE\\Q <c(t+1)ully



Gonwall’s lemma :

lu(D]lv < ¢lluoll -

— Apply the theorem for E = V', E; = Vand L = §(1)

Remark : We can also prove the finite fractal dimensionality of the global
attractor with respect to the H' (Q2)-topology

Assume that x #= 0 : set
Ve={ucH(Q), W)=k} =V+r
Sk Ve —= Ve, >0

Sk(Hhu=St)u+k

S« (1) possesses the finite-dimensional global attractor A, on Vi, A, = A+ Kk



Remark :
a) Take K € [—K1, k1] : we can construct the global attractor
Ay = Ujx|<n, Ax for the corresponding semigroup on

Vi = {u € H(Q), ()] < 1}
Finite fractal dimensionality : more involved

b) The set U,cr.Ax is not compact



Remark : The order parameter does not remain in [—1, 1].

Counterexample : Consider the one-dimensional Cahn-Hilliard equation with
x = a = 1 and the cubic nonlinearity f(s) = s> —sin Q = (—1,1)

Take uo(x) = 1 — x* in the neighborhood of 0 and extend this function by a
smooth function with a prescribed average over {2 and with values in [—1, 1]

Note that u(,(0) = u((0) = 0, so that [f(ug)]” =0atx =0
Furthermore, u(()4) =-24: %(O, 0)=24>0

— u(0,1) = u(0,0) +124(0,0) + o(t) = 1 + 24t + o(t) > 1, for £ > 0 small



