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Applications of the Cahn-Hilliard equation in image processing :

• Image denoising

• Image inpainting







A Cahn-Hilliard model for binary image inpainting (A. Bertozzi-S.
Esedoglu-A. Gillette, 2007)

Image inpainting : consists in filling in parts of an image/video from the
surrounding area (interpolation)

Applications : restoration of old paintings, removing scratches, altering
scenes, restoration of motion pictures, ...

PDE’s for image inpainting : M. Bertalmio et al. (Navier-Stokes like model)

Other models : second-order models (S. Esedoglu-J. Shen)





g(x, s) = λ0(s− h(x))χΩ\D(x), λ0 > 0, D ⊂⊂ Ω

Equation :

∂u
∂t

+ ε∆2u− 1
ε

∆f (u) + g(x, u) = 0, ε > 0

h(x) : given image (h ∈ L2(Ω))
D : inpainting domain (damaged region)
f (s) = 4s3 − 6s2 + 2s
g(x, u) : added to keep u close to the image h(x) outside the inpainting region
(fidelity term)

Advantages (over, e.g., u = h outside D) : no regularity assumption on D, no
perfect h outside D





Algorithm : dynamic two-steps algorithm involving ε

First step : large value of ε to connect the edges

Second step : small value of ε (depending on the mesh size) ; solution
obtained in the first step as initial datum

Idea : solve the equation to steady state to construct an inpainting version u(x)
of h(x)

Advantage : fast in numerical simulations



Remark : Limit problem when λ0 = +∞ (g of class C2) :

∆(ε∆u− 1
ε

f (u)) = 0 in D

u = h on ∂D

∇u = ∇h on ∂D

→ Continuation of the image gradient into the missing domain

→ λ0 large in numerical simulations



Mathematical analysis (L. Cherfils-H. Fakih-A. Miranville, IPI, SIIMS) :

∂u
∂t + ∆2u−∆f (u) + χΩ\D(x)u = 0
∂u
∂ν = ∂∆u

∂ν = 0 on Γ
u|t=0 = u0

We take f (s) = s3 − s (more generally : f (s) =
∑2p+1

i=1 aisi, a2p+1 > 0), h ≡ 0



First well-posedness result : A. Bertozzi et al.

To go further : global in time/dissipative estimate

First step : obtain an estimate in H−1(Ω)

→We need to estimate 〈u〉 = 1
Vol(Ω)

∫
Ω u dx

Classical Cahn-Hilliard equation : conservation of mass

If |〈u0〉| ≤ M, then |〈u(t)〉| ≤ M, t ≥ 0

Equation for 〈u〉 :

d〈u〉
dt

+
1

Vol(Ω)

∫
Ω\D

u dx = 0



We set

u = 〈u〉+ v

We find

d〈u〉
dt

+ c0〈u〉 = − 1
Vol(Ω)

∫
Ω\D

v dx, c0 =
Vol(Ω\D)

Vol(Ω)

v is solution to

∂
∂t (−∆)−1v−∆v + f (〈u〉+ v)− 〈f (〈u〉+ v)〉
+(−∆)−1(χΩ\D(x)u− 〈χΩ\D(x)u〉) = 0

(−∆)−1 : inverse minus Laplacian acting on functions with null average
(〈v〉 = 0)



Multiply the equation by v

Use the inequality

((f (〈u〉+ v)− 〈f (〈u〉+ v)〉, v))L2

= ((f (〈u〉+ v)− f (〈u〉), v))L2

≥ c0
2

∫
Ω(v4 + v2〈u〉2) dx− ‖v‖2

L2

We obtain

d
dt
‖v‖2

H−1 + ‖∇v‖2
L2 + c0

∫
Ω

(v4 + v2〈u〉2) dx ≤ c

Consequence : ‖v‖2
H−1 ≤ e−ct‖v0‖2

H−1 + c′, c > 0, t ≥ 0



Multiply the equation by −∆v :

‖v(t)‖L2 ≤ Q(‖u0‖L2), t ≥ 0
‖v(t)‖L2 ≤ c, t ≥ t0, t0 > 0

Q : monotone increasing function
c : independent of u0 and t, ‖u0‖L2 ≤ R, t0 = t0(R)

Equation for 〈u〉 :

d〈u〉
dt

+ c0〈u〉 = − 1
Vol(Ω)

∫
Ω\D

v dx

→ |〈u(t)〉| ≤ Q(‖u0‖L2)e−ct + c′, c > 0, t ≥ 0

Well-posedness, further regularity

Existence of finite-dimensional attractors



Open problem : convergence of solutions to steady states

Numerical simulations : one-step algorithm with threshold

Two-step algorithm : ε = 0.1 and then ε = 0.01

Here : ε = 0.05 and then threshold

If u ≥ 1
2 , then we take u = 1

If u < 1
2 , then we take u = 0

When D is not "too large" : results comparable with the two-steps algorithm,
computation time divided by two







Logarithmic nonlinear terms :

∂u
∂t + ∆2u−∆f (u) + χΩ\D(x)u = 0
∂u
∂ν = ∂∆u

∂ν = 0 on Γ
u|t=0 = u0

f (s) = −2θ0s + θ1 ln 1+s
1−s , s ∈ (−1, 1), 0 < θ1 < θ0

For h 6= 0, we need
∫

Ω\D h dx = 0

We have a local (in time) existence result



Theorem : We assume that u0 ∈ H1(Ω), |〈u0〉| < 1 and −1 < u0(x) < 1 a.e.
x ∈ Ω. Then, there exists T0 = T0(u0) and a solution u such that
u ∈ C([0,T0]; H−1(Ω)) ∩ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)) and
∂u
∂t ∈ L2(0,T0; H−1(Ω)). Furthermore,

−1 < u(t, x) < 1 a.e. (t, x) ∈ (0,T0)× Ω.

We approximate the singular nonlinear term by regular ones

The approximated functions need to satisfy a (uniform) coercivity relation



We set FN(s) = F1,N(s)− θ0s2

F1,N(s) =


∑4

k=0
1
k!F

(k)
1 (1− 1

N )(s− 1 + 1
N )k, s ≥ 1− 1

N ,

F1(s), |s| ≤ 1− 1
N ,∑4

k=0
1
k!F

(k)
1 (−1 + 1

N )(s + 1− 1
N )k, s ≤ −1 + 1

N .

F(s) = F1(s)− θ0s2

F1,N(s) =

4∑
k=0

1
k!

F(k)
1 (1− 1

N
)(s− 1 +

1
N

)k, s > 1− 1
N

F1,N(s) = F1(s), |s| ≤ 1− 1
N

F1,N(s) =

4∑
k=0

1
k!

F(k)
1 (−1 +

1
N

)(s + 1− 1
N

)k, s < −1 +
1
N



The approximated functions fN = F′N satisfy

• FN ∈ C4(R)

• fN(0) = 0

• f ′N ≥ −θ0, FN ≥ −c1, c1 ≥ 0

• fN(s)s ≥ c2(FN(s) + |fN(s)|)− c3, c2 > 0, c3 ≥ 0, s ∈ R

• (fN(s + a)− fN(a))s ≥ c4(s4 + a2s2)− c5, c4 > 0, c5 ≥ 0, s, a ∈ R

All the constants are independent of N



Approximated problems :

∂uN
∂t + ∆2uN −∆fN(uN) + χΩ\D(x)(uN − h) = 0
∂uN
∂ν = ∂∆uN

∂ν = 0 on Γ
uN |t=0 = u0

We have the well-posedness and the regularity of the solutions to the
approximated problems



A priori estimates :

Equation for the spatial average :

d〈uN〉
dt

+
1

Vol(Ω)

∫
Ω\D

uN dx = 0

Set uN = 〈uN〉+ uN :

d〈uN〉
dt

+ c〈uN〉 = − 1
Vol(Ω)

∫
Ω\D

uN dx

c = Vol(Ω\D)
Vol(Ω)



uN is solution to

∂uN

∂t
+ ∆2uN −∆(fN(uN)− 〈fN(uN)〉) + χΩ\D(x)uN − 〈χΩ\D(x)uN〉 = 0

∂uN

∂ν
=
∂∆uN

∂ν
= 0 on Γ

uN |t=0 = v0 = u0 − 〈u0〉

Equivalent formulation :

(−∆)−1∂uN

∂t
−∆uN + fN(uN)− 〈fN(uN)〉

+(−∆)−1(χΩ\D(x)uN − 〈χΩ\D(x)uN〉) = 0

∂uN

∂ν
= 0 on Γ



Multiply by uN :

1
2

d
dt
‖uN‖2

−1 + ‖uN‖2
V

+((fN(uN)− 〈fN(uN)〉, uN)) + ((χΩ\D(x)uN , (−∆)−1uN)) = 0

Note that

((fN(uN)− 〈fN(uN)〉, uN)) = ((fN(uN)− fN(〈uN〉), uN))

Thus :

((fN(uN)− 〈fN(uN)〉, uN)) ≥ c4(‖uN‖4
L4(Ω) + 〈uN〉2‖uN‖2)− c

Furthermore :

|((χΩ\D(x)uN , (−∆)−1uN))| ≤ c(‖uN‖2 + |〈uN〉|‖uN‖)

≤ c4

2
(‖uN‖4

L4(Ω) + 〈uN〉2‖uN‖2) + c



Thus :

d
dt
‖uN‖2

−1 + ‖uN‖2
V + c4(‖uN‖4

L4(Ω) + 〈uN〉2‖uN‖2) ≤ c

Next :

d〈uN〉2

dt
+ c6〈uN〉2 ≤ c‖uN‖2

Thus :

d〈uN〉2

dt
+ c6〈uN〉2 ≤

c4

2
(‖uN‖4

L4(Ω) + 〈uN〉2‖uN‖2) + c

Sum :

dE1,N

dt
+ c(‖uN‖2

H1(Ω) + ‖uN‖4
L4(Ω) + 〈uN〉2‖uN‖2) ≤ c′, c > 0

E1,N = 〈uN〉2 + ‖uN‖2
−1

E1,N ≥ c‖uN‖2
H−1(Ω), c > 0



Multiply the original equation by uN :

d
dt
‖uN‖2 + ‖∆uN‖2 ≤ 2c0‖∇uN‖2 + c‖uN‖2

Combine the two estimates :

dE2,N

dt
+ c(‖uN‖2

H2(Ω) + ‖uN‖4
L4(Ω) + 〈uN〉2‖uN‖2) ≤ c′, c > 0

E2,N = δ1‖uN‖2 + E1,N

E2,N ≥ c‖uN‖2, c > 0

Equivalent equations :

∂uN

∂t
+ χΩ\D(x)uN = ∆µN

µN = −∆uN + fN(uN)

∂uN

∂ν
=
∂µN

∂ν
= 0 on Γ



Multiply the first equation by µN and the second by ∂uN
∂t :

1
2

d
dt

(‖∇uN‖2 + 2
∫

Ω
FN(uN) dx) + ‖∇µN‖2 = −((uN , χΩ\D(x)µN))

Multiply the second equation by χΩ\D(x)uN :

((uN , χΩ\D(x)µN)) = −((∆uN , χΩ\D(x)uN)) +

∫
Ω\D

fN(uN)uN dx

Thus :

d
dt

(‖∇uN‖2 + 2
∫

Ω
FN(uN) dx)

+c(‖∇µN‖2 +

∫
Ω\D
|fN(uN)| dx+

∫
Ω\D

FN(uN) dx) ≤ c′‖uN‖2
H2(Ω)+c′′, c > 0



Combining :

dE3,N

dt
+ c(‖uN‖2

H2(Ω) + ‖uN‖4
L4(Ω) + 〈uN〉2‖uN‖2

+

∫
Ω\D
|fN(uN)| dx +

∫
Ω\D

FN(uN) dx + ‖∇µN‖2) ≤ c′, c > 0

E3,N = δ2(‖∇uN‖2 + 2
∫

Ω
FN(uN) dx) + E2,N

E3,N ≥ c‖uN‖2
H1(Ω) − c′, c > 0

Equivalent equations :

(−∆)−1∂uN

∂t
+ (−∆)−1(χΩ\D(x)uN − 〈χΩ\D(x)uN〉) = −(µN − 〈µN〉)

µN − 〈µN〉 = −∆uN + fN(uN)− 〈fN(uN)〉



Thus :

‖∂uN

∂t
‖−1 ≤ c(‖uN‖+ ‖∇µN‖)

and

‖∂uN

∂t
‖H−1(Ω) ≤ c(‖uN‖+ ‖∇µN‖)

Furthermore :

‖fN(uN)− 〈fN(uN)〉‖ ≤ c(‖uN‖H2(Ω) + ‖∇µN‖)



Finally :

dE3,N
dt + c(‖uN‖2

H2(Ω)
+ ‖uN‖4

L4(Ω)
+ 〈uN〉2 + ‖uN‖2

+‖∂uN
∂t ‖

2
−1 + ‖fN(uN)− 〈fN(uN)〉‖2

+
∫

Ω\D |fN(uN)| dx +
∫

Ω\D FN(uN) dx) ≤ c′, c > 0

uN = uN − 〈uN〉

E3,N = ‖uN‖2
−1 + δ1‖uN‖2 + δ2(‖∇uN‖2 + 2

∫
Ω FN(uN) dx)

δ1, δ2 > 0 small

E3,N ≥ c‖uN‖2
H1(Ω) − c′, c > 0



Not sufficient to pass to the limit

We need to estimate |〈fN(uN)〉| (hence an estimate on the L2−norm of fN(uN))

To do so, we need an estimate of the form |〈uN〉| ≤ 1− δ, δ ∈ (0, 1)
independent of N

We can prove this only locally in time

We assume that |〈u0〉| ≤ 1− 2δ, δ > 0 given



We have

d〈uN〉
dt

+ c〈uN〉 = − 1
Vol(Ω)

∫
Ω\D

uN dx

This yields

〈uN(t)〉 = e−ct〈u0〉 − e−ct
∫ t

0
ecs ds

∫
Ω\D

uN dx

and

|〈uN(t)〉| ≤ |〈u0〉|+ ce−ct
∫ t

0 ecs‖uN‖ ds
≤ 1− 2δ + c′(1− e−ct)

→ There exists T0 = T0(u0, δ) > 0 independent of N such that

|〈uN(t)〉| ≤ 1− δ, t ∈ [0,T0]



We can then prove that

|〈fN(uN)〉| ≤ cδ‖uN‖L2‖fN(uN)− 〈fN(uN)〉‖L2 + c′δ

→ Uniform estimate on the L2−norm of fN(uN) on [0,T0]

This allows to pass to the limit on [0,T0]

Existence of a local (in time) solution



Remark : We rewrite the equation in the form

∂u
∂t

+ ∆2u−∆f (u) + u− χD(x)u = 0

We then have

d〈u〉
dt

+ 〈u〉 =
1

Vol(Ω)

∫
D

u dx

and

|〈u(t)〉| ≤ e−t|〈u0〉|+
Vol(D)

Vol(Ω)
e−t

∫ t

0
es ds



This yields

|〈u(t)〉| ≤ max(|〈u0〉|,
Vol(D)

Vol(Ω)
)

whence

|〈u(t)〉| ≤ 1− δ

where δ = δ(u0) ∈ (0, 1) is independent of time

→ The solutions are global in time



Numerical simulations :

One-step algorithm with threshold

The convergence time is faster

The results are better with large inpainting domains





Extensions of the model :

Cahn-Hilliard inpainting for multicolor images (L. Cherfils-H. Fakih-A.
Miranville, JMIV) :

Multiphasic Cahn-Hilliard system

Each phase corresponds to a color

We consider the hyperplane

S = {c ∈ Rn such that
n∑

i=1

ci = 1}

h = (h1, ..., hn) ∈ S : damaged image, known on Ω\D



We look for u = (u1, ..., un) ∈ S such that

∂ui
∂t = ∆µi + λ0χΩ\D(x)(hi − ui), i = 1, ..., n
µi = fi(u)− ε2∆ui, i = 1, ..., n
∂ui
∂ν = ∂µi

∂ν = 0 on Γ, i = 1, ..., n
ui|t=0 = ui,0, i = 1, ..., n

fi(u) = ∂F(u)
∂ui
− 1

n

∑n
j=1

∂F(u)
∂uj

, i = 1, ..., n

F(u) = 1
n

∑n
i=1 u2

i (1− u2
i )

Lagrange multiplier to ensure u ∈ S



Well-posedness and regularity of the solutions

Existence of finite-dimensional attractors

The model is algebraically consistent with the diphasic model

Numerical simulations :

One-step algorithm with threshold

Drawback : not efficient when the number of colors n is large





Grayscale Cahn-Hilliard inpainting : (L. Cherfils-H. Fakih-A. Miranville,
MMS)

Aim : propose a simple model

Known models : heavy to implement numerically

J. Bosch et al. : multiphasic Cahn-Hilliard system; n : number of shades of
gray (not efficient when n is large)

Other models : total variation in H−1, Low Curvature Image Simplifier
(similar drawbacks)

Idea : consider a complex version of the Bertozzi et al. model (H.
Grossauer-O. Sherzer : complex Allen-Cahn equation)



h1 ∈ L2(Ω) : damaged image (h1 : Ω→ [−1, 1])

We introduce h : Ω→ C defined by

h = h1 + ih2, h2(x) =
√

1− h1(x)2

→ h ∈ L2(Ω; C), |h| = 1

Complex version of the Bertozzi et al. model :

∂u
∂t + ε∆2u− 1

ε∆f (u) + λ0χΩ\D(x)(u− h) = 0
∂u
∂ν = ∂∆u

∂ν = 0 on Γ
u|t=0 = u0

f (z) = |z|2z− z, z ∈ C



Well-posedness and regularity of the solutions

Existence of finite-dimensional attractors

Numerical simulations :

Two-steps algorithm

We use the information on the image known outside the inpainting region

Inpainting result : real part of the solution

We only need to compute two functions whatever the number of shades of
gray is












