
The Cahn-Hilliard equation
with regular nonlinear terms (I)

Alain Miranville

Université de Poitiers, France

NSF-CBMS Conference
The Cahn–Hilliard equation : recent advances and applications



Equations :

∂u
∂t

+ ∆2u−∆f (u) = 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0

Γ = ∂Ω, Ω : bounded and regular domain of Rn

f (s) = s3 − s, F(s) =
∫ s

0 f (ξ) dξ = 1
4 s4 − 1

2 s2

f ′ ≥ −1



Linear operators :

Spaces :

H = L̇2(Ω) = {u ∈ L2(Ω), 〈u〉 = 0}, ((·, ·)), ‖ · ‖
V = Ḣ1(Ω) = H1(Ω) ∩ H, ((·, ·))V = ((∇·,∇·))
V ′ = {u ∈ H−1(Ω), 〈u〉 = 0}

〈u〉 = 1
Vol(Ω)

∫
Ω u dx, u ∈ L1(Ω)

〈u〉 = 1
Vol(Ω)〈u, 1〉, u ∈ H−1(Ω)

‖ · ‖X : norm on the Banach space X

V ⊂ H ≡ H′ ⊂ V ′, with dense, continuous and compact embeddings
H1(Ω) ⊂ L2(Ω), L2(Ω)′ ⊂ H−1(Ω), with dense, continuous and compact
embeddings



We define the linear operator A : V → V ′ by

〈Au, v〉 = ((u, v))V , ∀u, v ∈ V

Isomorphism from V onto V ′

D(A) = A−1(H) = {u ∈ V, Au ∈ H} = {u ∈ Ḣ1(Ω), −∆u ∈ L̇2(Ω)}

D(A) = {u ∈ H2(Ω) ∩ V,
∂u
∂ν

= 0 on Γ}

Au = f , u ∈ D(A) and f ∈ H, is equivalent to

−∆u = f in Ω,
∂u
∂ν

= 0 on Γ



A−1 : H → H : compact, selfadjoint and positive

There exists an orthonormal basis (wj), j ∈ N, of H formed of eigenvectors of
A−1 :

A−1wj = µjwj, µj → 0 as j→ +∞, µj > 0

Awj = λjwj, λj =
1
µj

wj, λj : eigenvectors/eigenvalues of A, 0 < λ1 ≤ λ2 ≤ · · ·, λj → +∞ as
j→ +∞

((wj,wk))V = 〈Awj,wk〉 = λj((wj,wk)) = 0

〈Awj,wj〉 = ((wj,wj))V = λj‖wj‖2 = λj



D(Aα) = {u ∈ H, u =
∑∞

j=1 ujwj,
∑∞

j=1 λ
2α
j |uj|2 < +∞}, α > 0

((u, v))D(Aα) =
∑∞

j=1 λ
2α
j ujvj, u =

∑∞
j=1 ujwj, v =

∑∞
j=1 vjwj

Aαu =
∑∞

j=1 λ
α
j ujwj, u =

∑∞
j=1 ujwj

Graph norm : ‖ · ‖D(Aα) = ‖Aα · ‖

D(A
1
2 ) = V

D(A2) = {u ∈ H4(Ω) ∩ V, ∂u
∂ν = ∂∆u

∂ν = 0 on Γ}
A2u = f , u ∈ D(A2) and f ∈ H, is equivalent to

∆2u = f in Ω,
∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

→We recover the Neumann boundary conditions



α < 0 : D(Aα) = D(A−α)′

If α > α′, α, α′ ∈ R, then D(Aα) ⊂ D(Aα
′
) with continuous, dense and

compact injection

‖A−
1
2 · ‖, is equivalent to the usual H−1(Ω)-norm on D(A−

1
2 ) = V ′

‖ · ‖−1 = ‖A−
1
2 · ‖

u 7→ (‖A−
1
2 (u− 〈u〉)‖2 + 〈u〉2)

1
2 is a norm on H−1(Ω) which is equivalent to

the usual H−1(Ω)-one



The linear Cahn-Hilliard equation :

∂u
∂t

+ ∆2u = f (x, t)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

Functional form :

du
dt

+ A2u = f (t) in D′(0,T; H), T > 0

If f ∈ L2(0,T; H), u ∈ L2(0,T; D(A2)) and du
dt ∈ L2(0,T; H), the equation

makes sense in L2(0,T; H)

Variational formulation :

Find u : [0,T]→ D(A) such that

d
dt

((u, v)) + ((Au,Av)) = ((f (t), v)) in D′(0,T), ∀v ∈ D(A)



Theorem : (Existence and uniqueness of weak solutions) We assume that
f ∈ L2(0,T; D(A−1)) and u0 ∈ H, T > 0 given. Then, the linear initial value
problem

du
dt

+ A2u = f (t) in D′(0,T; D(A−1))

u(0) = u0 in H

possesses a unique solution u such that u ∈ C([0,T]; H) ∩ L2(0,T; D(A)) and
du
dt ∈ L2(0,T; D(A−1)).



Let u1 and u2 be solutions to

du1

dt
+ A2u1 = f1(t) in D′(0,T; D(A−1))

u1(0) = u1,0 in H

du2

dt
+ A2u2 = f2(t) in D′(0,T; D(A−1)),

u2(0) = u2,0 in H

u = u1 − u2, f = f1 − f2 and u0 = u1,0 − u2,0 satisfy

du
dt

+ A2u = f (t) in D′(0,T; D(A−1))

u(0) = u0 in H



Variational formulation :

d
dt

((u, v)) + ((Au,Av)) = 〈f (t), v〉 in D′(0,T), ∀v ∈ D(A)

Take v = u(t) :

1
2

d
dt
‖u‖2 + ‖Au‖2 = 〈f (t), u〉

This yields

d
dt
‖u‖2 + ‖Au‖2 ≤ ‖f (t)‖2

D(A−1)

‖u(t)‖2 ≤ ‖u0‖2 + ‖f‖2
L2(0,T;D(A−1))



Existence : Galerkin scheme

Approximated problems :

Find um =
∑m

i=1 uiwi, ui = ui(t), i = 1, · · ·, m, such that

d
dt

((um, v)) + ((Aum,Av)) = 〈f (t), v〉, ∀v ∈ Wm ≡ Span(w1, · · ·,wm)

um(0) = u0,m

u0,m : projection (in H) of u0 onto Wm

u0,m =

m∑
i=1

((u0,wi))wi



Equivalent formulation :

dui

dt
+ λ2

i ui = 〈f (t),wi〉, i = 1, · · ·, m

ui(t) = e−λ
2
i tui,0 + e−λ

2
i t
∫ t

0
eλ

2
i s〈f (s),wi〉 ds, i = 1, · · ·, m

ui,0 = ((u0,wi))



Take v = wi, multiply by ui and sum over i

1
2

d
dt
‖um‖2 + ‖Aum‖2 = 〈f (t), um〉

This yields

d
dt
‖um‖2 + ‖Aum‖2 ≤ ‖f (t)‖2

D(A−1)

um is bounded, independently of m, in L2(0,T; D(A)) and L∞(0,T; H)

There exists u ∈ L∞(0,T; H) ∩ L2(0,T; D(A)) such that um → u in
L∞(0,T; H) weak star and in L2(0,T; D(A)) weak



Theorem : (Existence of strong solutions) We assume that u0 ∈ D(A) and
f ∈ L2(0,T; H). Then, the solution u satisfies
u ∈ C([0,T]; D(A)) ∩ L2(0,T; D(A2)) and du

dt ∈ L2(0,T; H) and is a strong
solution.

d
dt

((um, v)) + ((Aum,Av)) = ((f (t), v)), ∀v ∈ Wm

Take v = wi, multiply by λ2
i ui and sum over i :

d
dt
‖Aum‖2 + ‖A2um‖2 ≤ 1

c2
0
‖f (t)‖2

(‖A2um‖ ≥ c0‖Aum‖)



Weaker formulation :

A−1 du
dt

+ Au = A−1f (t) in L2(0,T; V ′)

u(0) = u0 in V ′

Variational formulation :

Find u : [0,T]→ V such that

d
dt

((A−1u, v)) + ((u, v))V = 〈A−1f (t), v〉 in D′(0,T), ∀v ∈ V

Theorem : (Existence and uniqueness of very weak solutions) We assume
that u0 ∈ V ′ and f ∈ L2(0,T; D(A−

3
2 )). Then, the problem possesses a unique

solution u such that u ∈ C([0,T]; V ′) ∩ L2(0,T; V) and
du
dt ∈ L2(0,T; D(A−

3
2 )).



The Cahn-Hilliard equation with a cubic nonlinear term

∂u
∂t

+ ∆2u−∆f (u) = 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0

f (s) = s3 − s, F(s) =
∫ s

0 f (ξ) dξ = 1
4 s4 − 1

2 s2

f ′ ≥ −1



Mass conservation :

d〈u〉
dt

= 0

〈u(t)〉 = 〈u0〉, t ≥ 0

We assume that

〈u0〉 = κ, κ ∈ R given

Therefore

〈u(t)〉 = κ, t ≥ 0



Set u = u− u0(= u− κ), f (u) = f (u)− 〈f (u)〉 :

∂u
∂t

+ ∆2u−∆f (u) = 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0(= u0 − κ)

Functional formulation :

du
dt

+ A2u + Af (u) = 0 in D′(0,T; D(A−1))

u(0) = u0 in H



Variational formulation :

Find u : [0,T]→ D(A) such that

d
dt

((u, v)) + ((Au,Av)) + ((f (u),Av)) = 0 in D′(0,T), ∀v ∈ D(A)

u(0) = u0 in H

u = u + κ

Equivalent formulation :

∂u
∂t

= −∆µ

µ = −∆u + f (u)

∂u
∂ν

=
∂µ

∂ν
= 0 on Γ

µ = µ− 〈µ〉, 〈µ〉 = 〈f (u)〉



Functional formulation :

du
dt

= −Aµ in D′(0,T; D(A−1))

µ = Au + f (u) in D′(0,T; H)

Variational formulation :

Find (u, µ) : [0,T]→ D(A)× H such that

d
dt

((u, v)) = −((µ,Av)) in D′(0,T), ∀v ∈ D(A)

((µ, v)) = ((Au, v)) + ((f (u), v)) in D′(0,T), ∀v ∈ H

with u = u + κ, µ = µ+ 〈f (u)〉



Weaker formulation :

A−1 du
dt

+ Au + f (u) = 0 in D′(0,T; V ′)

u(0) = u0 in V ′

Variational formulation :

Find u : [0,T]→ V such that

d
dt

((A−1u, v)) + ((u, v))V + ((f (u), v)) = 0 in D′(0,T), ∀v ∈ V

u(0) = u0 in V ′

u = u + κ



Theorem : We assume that u0 ∈ H1(Ω), i.e., u0 ∈ V . Then, the problem
possesses a unique weak solution u = u + κ such that
u ∈ L∞(R+; V) ∩ C([0,T]; V) ∩ L2(0,T; D(A

3
2 )) and ∂u

∂t ∈ L2(R+; V ′),
∀T > 0.



Uniqueness :

Similar to the linear case, with f ′ ≥ −1

d
dt
‖u‖2
−1 ≤ 2‖u‖2

Interpolation inequality :

‖u‖2 = ((A−
1
2 u,A

1
2 u)) ≤ ‖u‖−1‖u‖V

d
dt
‖u‖2
−1 ≤ ‖u‖2

−1

Existence :

Galerkin scheme



Formal estimates

Equation :

(−∆)−1∂u
∂t
−∆u + f (u)− f (u) = 0

Multiply the equation by u :

d
dt
‖u‖2
−1 + ‖u‖2

V + ‖u‖4
L4(Ω) ≤ Vol(Ω)

Multiply the equation by −∆u (f ′ ≥ −1) :

d
dt
‖u‖2 + c‖u‖2

H2(Ω) ≤ ‖u‖
2, c > 0



Multiply the equation by ∂u
∂t :

d
dt

(‖u‖2
V + 2

∫
Ω

F(u) dx) + 2‖∂u
∂t
‖2
−1 = 0

Multiply the equation by ∆2u :

d
dt
‖u‖2

V + c‖u‖2
H3(Ω) ≤ c′(‖u‖4

V + 1)‖u‖2
H2(Ω) + c′′, c > 0.



Note that

v 7→ (‖A−
1
2 v‖2 + 〈v〉2)

1
2

v 7→ (‖v‖2 + 〈v〉2)
1
2

v 7→ (‖v‖2
V + 〈v〉2)

1
2

v 7→ (‖Av‖2 + 〈v〉2)
1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are
equivalent to the usual ones



Passage to the limit in the nonlinear term :∫ T

0

∫
Ω

((u3
m, v))ϕ(t) dx dt

ϕ ∈ D(0,T), with u3
m → u3 in L

4
3 (0,T; L

4
3 (Ω)) and um → u a.e. (Aubin-Lions

compactness results)

There exists g ∈ L
4
3 (0,T; L

4
3 (Ω)) such that

|u3
m| ≤ g a.e.

Lebesgue’s theorem



Theorem : We assume that u0 ∈ H2(Ω), with ∂u0
∂ν = 0 on Γ, i.e., u0 ∈ D(A).

Then, the solution u = u + κ satisfies u ∈ C([0,T]; D(A)) ∩ L2(0,T; D(A2))
and ∂u

∂t ∈ L2(0,T; H), ∀T > 0. Furthermore, it is a strong solution :

du
dt

+ A2u + Af (u) = 0 in L2(0,T; H).



Multiply the equation

(−∆)−1∂u
∂t
−∆u + f (u)− f (u) = 0

by (−∆)3u (κ = 0, u = u, for simplicity) :

d
dt
‖∆u‖2 + 2‖∆2u‖2 ≤ 2‖∆f (u)‖‖∆2u‖

∆f (u) = f ′(u)∆u + f ′′(u)∇u · ∇u

‖∆f (u)‖ ≤ c(‖u2∆u‖+ ‖∆u‖+ ‖u∇u · ∇u‖)



Interpolation inequality :

‖u‖H2(Ω) ≤ c‖u‖
2
3
H1(Ω)

‖u‖
1
3
H4(Ω)

Agmon’s inequality :

‖u‖L∞(Ω) ≤ c‖u‖
1
2
H1(Ω)

‖u‖
1
2
H2(Ω)

Then :

‖u‖L∞(Ω) ≤ c‖u‖
5
6
H1(Ω)

‖u‖
1
6
H4(Ω)

.

and

‖u2∆u‖ ≤ c‖u‖
7
3
H1(Ω)

‖u‖
2
3
H4(Ω)



We have :

‖u∇u · ∇u‖ ≤ ‖u‖L∞(Ω)‖|∇u|2‖ ≤ c‖u‖
5
6
H1(Ω)

‖u‖
1
6
H4(Ω)

‖|∇u|‖2
L4(Ω)

H
3
4 (Ω) ⊂ L4(Ω) with continuous embedding :

‖∇u‖L4(Ω) ≤ c‖u‖
H

7
4 (Ω)

Interpolation inequality :

‖u‖
H

7
4 (Ω)
≤ c‖u‖

3
4
H1(Ω)

‖u‖
1
4
H4(Ω)

Thus :

‖u∇u · ∇u‖ ≤ c‖u‖
5
6
H1(Ω)

‖u‖
1
6
H4(Ω)

‖u‖
3
2
H1(Ω)

‖u‖
1
2
H4(Ω)

‖u∇u · ∇u‖ ≤ c‖u‖
7
3
H1(Ω)

‖u‖
2
3
H4(Ω)



Young’s inequality,

‖∆f (u)‖ ≤ c(‖u‖
7
3
H1(Ω)

‖u‖
2
3
H4(Ω)

+ ‖u‖
1
3
H1(Ω)

‖u‖
2
3
H4(Ω)

)

≤ c(1 + ‖u‖
7
3
H1(Ω)

)‖u‖
2
3
H4(Ω)

Finally :

|((∆f (u),∆2u))| ≤ c(1 + ‖u‖
7
3
H1(Ω)

)‖u‖
2
3
H4(Ω)

‖∆2u‖

≤ c(1 + ‖u‖
7
3
H1(Ω)

)‖∆2u‖
5
3

and

d
dt
‖∆u‖2 + ‖∆2u‖2 ≤ c(1 + ‖u‖14

V )

Remark : In 2D : f (s) =
∑2p+1

i=1 aisi, a2p+1 > 0, p ∈ N (in 2D : p = 1).



Existence of finite-dimensional global attractors :

E : Banach space endowed with the norm ‖.‖E

{S(t), t ≥ 0} : family of (nonlinear) operators acting on E

S(t) : E → E, t ≥ 0

We assume that this family of operators satisfies the following properties :

S(0) = I (identity operator)

S(t + τ) = S(t) ◦ S(τ), ∀t, τ ≥ 0

We say that it forms a semigroup acting on E

Continuity property :

S(t) : E → E, x 7→ S(t)x,

is continuous, ∀t ≥ 0



A bounded set B0 ⊂ E is a bounded absorbing set for S(t) if, ∀B ⊂ E
bounded, ∃t0 = t0(B) such that t ≥ t0 implies S(t)B ⊂ B0

Mathematical definition of dissipation

Definition : A set A ⊂ E is a global attractor for the semigroup S(t) if the
following properties hold :
(i) A is compact in E.
(ii) A is invariant by S(t), S(t)A = A, ∀t ≥ 0.
(iii) A is an attracting set : ∀B ⊂ E bounded,

distE(S(t)B,X)→ 0 as t→ +∞,

where distE denotes the Hausdorff semidistance between sets, defined as

distE(A,B) = sup
a∈A

inf
b∈B
‖a− b‖E.



Theorem : We assume that S(t) possesses a bounded absorbing set B0 and
that, ∀B ⊂ E bounded, ∃t0 = t0(B) > 0 such that ∪t≥t0S(t)B is relatively
compact in E. Then, S(t) possesses the global attractor A.

Example : S(t) possesses a bounded absorbing set B1 such that B1 is relatively
compact in E

Theorem : We assume that S(t) possesses a compact attracting set K. Then,
S(t) possesses the global attractor A.



Definition : Let X ⊂ E be a (relatively) compact set. For ε > 0, let Nε(X) (if
it is necessary to precise the topology, we will also use the notation Nε(X,E))
be the minimal number of balls of radius ε which are necessary to cover X.
Then, the fractal dimension of X is the quantity (which belongs to [0,+∞])

dimFX = lim sup
ε→0+

log2 Nε(X)

log2
1
ε

(= lim sup
ε→0+

ln Nε(X)

ln 1
ε

).

Furthermore, the quantityHε(X)(= Hε(X,E)) = log2 Nε(X) is called the
Kolmogorov ε-entropy of X.

If X is a smooth m-dimensional manifold, then dimFX = m



If the minimal number of balls of radius ε which are necessary to cover X
satisfies

Nε(X) ≤ c(
1
ε

)d (i.e.,Hε(X) ≤ d log2
1
ε

+ c′, c′ = log2 c)

c and d independent of ε, then

dimFX ≤ d



Theorem : Let X be a compact subset of E. We assume that there exist a
Banach space E1, with norm ‖.‖E1 , such that E1 is compactly embedded into
E and a mapping L : X → X such that L(X) = X and

‖Lx1 − Lx2‖E1 ≤ c‖x1 − x2‖E, ∀x1, x2 ∈ X, c > 0.

Then, the fractal dimension of X is finite and satisfies

dimFX ≤ H 1
4c

(BE1(0, 1),E),

where BE1(0, 1) is the unit ball in E1.



Assume that κ = 0 (〈u0〉 = 0)

Theorem : The semigroup S(t) associated with the problem possesses the
global attractor A0 on V which is bounded in H2(Ω).

We have :

S(t) : V → V, u0 7→ u(t)

x 7→ S(t)x is continuous with respect to the H−1-topology

We have :

d
dt
‖u‖2
−1 + c2

0‖u‖2
−1 ≤ Vol(Ω)

Gonwall’s lemma :

‖u(t)‖2
−1 ≤ e−c2

0t‖u0‖2
−1 + c1

→ Bounded absorbing set in V



Uniform Gronwall’s lemma :

Proposition : Let g, h and y be three locally integrable and nonnegative
functions such that y′ is locally integrable and, for t ≥ t0, t0 ∈ R,

y′ ≤ gy + h.

We further assume that, for r > 0 given,∫ t+r

t
g(s) ds ≤ a1,

∫ t+r

t
h(s) ds ≤ a2,

∫ t+r

t
y(s) ds ≤ a3

(here, a1, a2 and a3 depend on r). Then, there holds, for t ≥ t0,

y(t + r) ≤ (
a3

r
+ a2)ea1 .



Remark :
a) Uniform bound on y for t ≥ t0 + r

b) Explodes as r → 0

We have : ∫ t+1

t
‖u‖2

V ds ≤ c,
∫ t+1

t

∫
Ω

F(u) dx ds ≤ c

Energy dissipation :

d
dt

(‖u‖2
V + 2

∫
Ω

F(u) dx) + 2‖∂u
∂t
‖2
−1 ≤ 0

Uniform Gronwall’s lemma : bounded absorbing set in V



We have :

d
dt
‖u‖2 + c‖u‖2

H2(Ω) ≤ ‖u‖
2, c > 0

→
∫ t+1

t ‖u‖2
H2(Ω)

ds ≤ c

We have :

d
dt
‖Au‖2 + ‖A2u‖2 ≤ c(1 + ‖u‖14

V )

Uniform Gronwall’s lemma : bounded absorbing set in V bounded in H2(Ω)



Theorem : The global attractor A0 has finite fractal dimension for the
topology of V ′.

Let u1 and u2 be solutions to

(−∆)−1∂u1

∂t
−∆u1 + f (u1)− 〈f (u1)〉 = 0

∂u1

∂ν
=
∂∆u1

∂ν
= 0 on Γ

u1|t=0 = u1,0

and

(−∆)−1∂u2

∂t
−∆u2 + f (u2)− 〈f (u2)〉 = 0

∂u2

∂ν
=
∂∆u2

∂ν
= 0 on Γ

u2|t=0 = u2,0



u = u1 − u2 and u0 = u1,0 − u2,0 satisty

(−∆)−1∂u
∂t
−∆u + f (u1)− f (u2)− (〈f (u1)〉 − 〈f (u2)〉) = 0

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ

u|t=0 = u0

Multiply the equation by u :

d
dt
‖u‖2
−1 + ‖u‖2

V ≤ ‖u‖2
−1

Gronwall’s lemma :

‖u(t)‖2
−1 ≤ et‖u0‖2

−1, t ≥ 0,

Thus : ∫ 1

0
‖u‖2

V dt ≤ c‖u0‖2
−1



Multiply the equation by t ∂u
∂t :

1
2

d
dt

(t‖u‖2
V) + t‖∂u

∂t
‖2
−1 + t((f (u1)− f (u2),

∂u
∂t

)) =
1
2
‖u‖2

V

We have :

|((f (u1)− f (u2),
∂u
∂t

))| ≤ ‖∂u
∂t
‖2
−1‖∇[(u2

1 + u1u2 + u2
2 − 1)u]‖

∇[(u2
1 + u1u2 + u2

2 − 1)u] = (u2
1 + u1u2 + u2

2 − 1)∇u

+u(2u1∇u1 + 2u2∇u2 + u1∇u2 + u2∇u1)

A0 ⊂ H2(Ω) and is invariant : ui ∈ L∞(R+; H2(Ω)), i = 1, 2



We have :

‖∇[(u2
1 + u1u2 + u2

2 − 1)u]‖ ≤ ‖(u2
1 + u1u2 + u2

2 − 1)∇u‖

+‖u(2u1∇u1 + 2u2∇u2 + u1∇u2 + u2∇u1)‖

≤ 2(‖u1‖2
L∞(Ω) + ‖u2‖2

L∞(Ω) + 1)‖∇u‖

+2(‖u1‖L∞(Ω) + ‖u2‖L∞(Ω))(‖∇u1‖L4(Ω) + ‖∇u2‖L4(Ω))‖u‖L4(Ω)

Thus :

‖∇[(u2
1 + u1u2 + u2

2 − 1)u]‖ ≤ c((‖u1‖2
H2(Ω) + ‖u2‖2

H2(Ω) + 1)‖u‖V

≤ c‖u‖V

and

d
dt

(t‖u‖2
V) + t‖∂u

∂t
‖2
−1 ≤ c(t + 1)‖u‖2

V



Gonwall’s lemma :

‖u(1)‖V ≤ c‖u0‖−1

→ Apply the theorem for E = V ′, E1 = V and L = S(1)

Remark : We can also prove the finite fractal dimensionality of the global
attractor with respect to the H1(Ω)-topology

Assume that κ 6= 0 : set

Vκ = {u ∈ H1(Ω), 〈u〉 = κ} = V + κ

Sκ : Vκ → Vκ, t ≥ 0

Sκ(t)u = S(t)u + κ

Sκ(t) possesses the finite-dimensional global attractor Aκ on Vκ, Aκ = A+ κ



Remark :
a) Take κ ∈ [−κ1, κ1] : we can construct the global attractor
Ãκ1 = ∪|κ|≤κ1Aκ for the corresponding semigroup on

Vκ1 = {u ∈ H1(Ω), |〈u〉| ≤ κ1}

Finite fractal dimensionality : more involved

b) The set ∪κ∈RAκ is not compact



Remark : The order parameter does not remain in [−1, 1].

Counterexample : Consider the one-dimensional Cahn-Hilliard equation with
κ = α = 1 and the cubic nonlinearity f (s) = s3 − s in Ω = (−1, 1)

Take u0(x) = 1− x4 in the neighborhood of 0 and extend this function by a
smooth function with a prescribed average over Ω and with values in [−1, 1]

Note that u′0(0) = u′′0(0) = 0, so that [f (u0)]′′ = 0 at x = 0

Furthermore, u(4)
0 ≡ −24 : ∂u

∂t (0, 0) = 24 > 0

→ u(0, t) = u(0, 0) + t ∂u
∂t (0, 0) + o(t) = 1 + 24t + o(t) > 1, for t > 0 small


