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Viscous Cahn-Hilliard equation : A. Miranville-S. Zelik

Cahn-Hilliard equation :

(−∆)−1 ∂u
∂t −∆u + f (u)− 〈f (u)〉 = 0

∂u
∂ν = 0 on Γ
u|t=0 = u0

(−∆)−1 : inverse minus Laplace operator with Neumann BCs on functions
with vanishing average
〈.〉 = 1

Vol(Ω)

∫
Ω .dx

Conservation of mass : 〈u(t)〉 = 〈u0〉, t ≥ 0



Assumption : 〈u0〉 = m0, |m0| ≤ 1− κ, κ ∈ (0, 1)

Set, for m0 ∈ [−1 + κ, 1− κ]

Dm0 = {q ∈ H2(Ω), ∂q
∂ν = 0 on Γ,

‖q‖L∞(Ω) ≤ 1, 〈q〉 = m0, f (q) ∈ L2(Ω),

∆2q−∆f (q) ∈ H−1(Ω)}

‖q‖2
Dm0

= ‖q‖2
H2(Ω)

+ ‖f (q)‖2
L2(Ω)

+

‖∆2q−∆f (q)‖2
H−1(Ω)

A function u is solution if u ∈ L∞(0,T; Dm0) ∩ C([0,T]; H−1(Ω)), ∀T > 0,
and the equation is satisfied in the sense of distributions



Viscous Cahn-Hilliard equation :

β ∂u
∂t + (−∆)−1 ∂u

∂t −∆u + f (u)− 〈f (u)〉 = 0, β > 0
∂u
∂ν = 0 on Γ
u|t=0 = u0

Set

Dβ
m0 = {q ∈ H2(Ω), ∂q

∂ν = 0 on Γ,
‖q‖L∞(Ω) ≤ 1, 〈q〉 = m0, f (q) ∈ L2(Ω),√
βφ ∈ L2(Ω), φ ∈ H−1(Ω),

φ = (β + (−∆)−1)−1(∆q− f (q) + 〈f (q)〉)}

‖q‖2
Dβm0

= ‖q‖2
H2(Ω)

+ ‖f (q)‖2
L2(Ω)

+

β‖φ‖2
L2(Ω)

+ ‖φ‖2
H−1(Ω)



Difficulty : prove that u is a priori separated from ±1

• Dissipative estimate :

‖u(t)‖2
Dβm0

+
∫ t+1

t ‖∂u
∂t ‖

2
H1(Ω)

ds ≤

cκ(‖u0‖Dβm0
)χ(1− t) + c′κ, t ≥ 0, β ≥ 0

χ : Heaviside function
cκ, c′κ : independent of u and β

• Consequence : ∀µ > 0∫ t+1

t
‖f (u)‖2

L∞(Ω)ds ≤ cκ,µ, t ≥ µ

cκ,µ : independent of β ≥ 0, t, u

→ |u(t, x)| < 1, a.e. (t, x)



Do we have

‖u(t)‖L∞(Ω) ≤ 1− δ, δ ∈ (0, 1)?

Can be proved in general only for β > 0 :

Theorem : We assume that β > 0. Then, ∀µ > 0,

‖u(t)‖L∞(Ω) ≤ 1− δβ,κ,µ, t ≥ µ,

where δβ,κ,µ ∈ (0, 1) is independent of u. Furthermore, if
‖u0‖L∞(Ω) ≤ 1− δ0, δ0 ∈ (0, 1), then

‖u(t)‖L∞(Ω) ≤ 1− δ′β,κ, t ≥ 0,

where δ′β,κ ∈ (0, 1) is independent of u.



Remarks :

(i) We can rewrite the equation in the form

β
∂u
∂t
−∆u + f (u) = −(−∆)−1∂u

∂t
+ 〈f (u)〉

(ii) If ‖u0‖L∞(Ω) ≤ 1, the solution u(t) of the viscous Cahn-Hilliard equation
is strictly separated from ±1 for t > 0

(iii) Both δ and δ′ tend to 0 as β → 0

→We cannot say anything for the Cahn-Hilliard equation

(iv) This is true for the Cahn-Hilliard equation under the additional
assumption

|f ′(s)| ≤ c(|f (s)|2 + 1), s ∈ (−1, 1)

Not satisfied by logarithmic potentials



(v) True in 1D, due to the continuous embedding H1 ⊂ C

(iv) In 2D, using the embedding of H1 into an Orlicz space : true if

|f ′(s)| ≤ ec1|f (s)|+c2 , s ∈ (−1, 1)

Satisfied by logarithmic potentials

Idea of the proof :

We consider the equation

β
∂u
∂t
−∆u + f (u) = h, h ∈ L∞(0,T; H1(Ω)), f ′ ≥ 0

It suffices to obtain an estimate of the form

‖f ′(u)‖Lp(Ω×(0,T)) ≤ c(p,T), p ≥ 1, T > 0

(p = 4 is sufficient)



Lemma : We have∫
Ω×(0,T)

eL|f (u)| dx dt ≤ c(T), L > 0, T > 0.

Multiply the equation by f (u)eL|f (u)|

Use the young’s inequality

ab ≤ φ(a) + ψ(b), a, b ≥ 0

φ(s) = es − s− 1, ψ(s) = (1 + s) ln(1 + s)− s, s ≥ 0

→We obtain ∫
Ω×(0,T) |f (u)|2eL|f (u)| dx dt ≤ c

∫
Ω×(0,T) ec′|h| dx dt



We conclude by using the Orlicz embedding∫
Ω

ec|v| dx ≤ e
c′(‖v‖2

H1(Ω)
+1)

, v ∈ H1(Ω)

We use the inequality

|f ′| ≤ ec1|f |+c2

→ f ′(u) ∈ Lp(Ω× (0,T)), T > 0, p ≥ 1



Remark : Degenerate mobility of the form κ(s) = 1− s2 and logarithmic
nonlinear term :

One regularizes the mobility and the nonlinear term

→ Existence of a weak solution

Simplification : κ(s)f ′(s) is not singular

Separation (not strict one) from the pure states

Degenerate mobility and regular nonlinear term : existence of a generalized
solution, separation from the pure states



Allen-Cahn equation :

∂u
∂t
−∆u + f (u) = 0

Comparison principle : strict separation property

More generally :

∂u
∂t
−∆u + f (u) = g(x, t)

g ∈ L∞(Ω× (0,T)), ∀T > 0

Caginalp phase-field system :

β
∂u
∂t
−∆u + f (u) = θ, β > 0

δ
∂θ

∂t
−∆θ = −∂u

∂t
, δ > 0



u : order parameter
θ : relative temperature

Models phase transition phenomena (e.g., ice)

β = δ = 0 :

−∆u + f (u) = θ

∆θ =
∂u
∂t

Laplacian of the first equation :

−∆2u + ∆f (u) = ∆θ

→ Cahn–Hilliard equation



β > 0, δ = 0 :

β
∂u
∂t
−∆u + f (u) = θ

∆θ =
∂u
∂t

→ Viscous Cahn-Hilliard equation

→ "Contains" both equations

We can derive an L∞(Ω× (0,T)) estimate on θ

→ Strict separation property



Generalization :

∂u
∂t −∆u + f (u) = ∂α

∂t
∂2α
∂t2 + ∂α

∂t −∆α = −u− ∂u
∂t

α =
∫ t

0 θ ds + α0 : thermal displacement variable

Based on the Maxwell-Cattaneo law

By approximating f as above : existence of a solution such that

|u(x, t)| < 1 a.e. (x, t) ∈ Ω× (0,T)



Strict separation property : more involved

One possibility : prove an L∞(Ω)-estimate on ∂α
∂t

The best we can have in general :

‖∂α
∂t
‖L∞(0,T;H1

0(Ω)) ≤ c(T), T > 0

Here : u0 ∈ H1
0(Ω)× H3(Ω), α0 ∈ H1

0(Ω)× H3(Ω), α1 ∈ H1
0(Ω)× H2(Ω)



In one space dimension : we can conclude with the continuous embedding
H1(Ω) ⊂ C(Ω)

We can also prove the strict separation in two space dimensions

We need ans estimate of the form

‖f ′(u)‖Lp(Ω×(0,T)) ≤ c(p,T), p ≥ 1, T > 0

(p = 4 is sufficient)

Lemma : We have∫
Ω×(0,T)

eL|f (u)| dx dt ≤ c(T), L > 0, T > 0.



Multiply the equation by f (u)eL|f (u)|

Use the young’s inequality

ab ≤ φ(a) + ψ(b), a, b ≥ 0

φ(s) = es − s− 1, ψ(s) = (1 + s) ln(1 + s)− s, s ≥ 0

→We obtain ∫
Ω×(0,T) |f (u)|2eL|f (u)| dx dt ≤ c

+2
∫

Ω×(0,T) ec′| ∂α
∂t | dx dt

We conclude by using the Orlicz embedding∫
Ω

ec|v| dx ≤ e
c′(‖v‖2

H1(Ω)
+1)

, v ∈ H1(Ω)



We assume that

|f ′| ≤ ec|f |+c′

(True for the logarithmic nonlinear terms)

→ f ′(u) ∈ Lp(Ω× (0,T)), T > 0, p ≥ 1

Differentiating the equation for u with respect to t :

∂u
∂t
∈ L∞(0,T; H1

0(Ω))

Inject in the equation for α :

→ ∂α
∂t ∈ L∞(0,T; H2(Ω))



In three space dimensions : we need

f ′(u) ∈ L6(Ω× (0,T)), T > 0

We can conclude when |f ′| ≤ c|f |
6
5 + c′

→ Not satisfied by the logarithmic nonlinear terms

Satisfied when f has a growth of the form

c
(1− s2)r , r ≥ 5, c > 0

close to ±1



Higher-order Cahn-Hilliard equations :

We are not able to prove the existence of classical solutions

Example : Phase-field crystal equation

∂u
∂t
−∆3u− 2∆2u−∆f (u) = 0

Atomistic models of crystal growth (K. Elder et al.)

Simulation methodology for problems in materials science where atomic- and
microscales are tightly coupled

Operates on atomic length and diffusive time scales

Constitutes a computationally efficient alternative to molecular simulation
methods



Associated free energy :

Ψ =

∫
Ω

(
1
2
|∆u|2 − |∇u|2 + F(u)) dx, F′ = f

Ω : domain occupied by the system

Evolution equation :

∂u
∂t

= ∆
δΨ

δu
δ
δu : variational derivative



Regular nonlinear terms :

Typically : f (s) = s3

3 −
s2

2 + as

Mathematical analysis : M. Grasselli, H. Wu

Well-posedness, regularity of solutions

Existence of finite-dimensional attractors

Convergence of trajectories to steady states

Numerical analysis, simulations : S. Wise et al., M. Grasselli, M. Pierre



Logarithmic nonlinear terms :

Approximated problems :

∂uN

∂t
−∆3uN − 2∆2uN −∆fN(uN) = 0

uN |t=0 = u0

Well-posedness, regularity : standard



A priori estimates :

dEN

dt
+ c(EN + ‖uN‖2

H3(Ω) + ‖fN(uN)‖L1(Ω) + ‖∂uN

∂t
‖2

H−1(Ω))

≤ c′‖uN‖2
H−1(Ω) + c′′, c > 0

EN =< uN >
2 +‖vN‖2

−1 + ‖uN‖2 + ζ(‖∆vN‖2− 2‖∇vN‖2 + 2
∫

Ω
FN(uN) dx)

ζ > 0 small, vN = uN − 〈u0〉

c(‖uN‖2
H2(Ω) +

∫
Ω

FN(uN) dx) ≤ EN ≤ c′(‖uN‖2
H2(Ω) +

∫
Ω

FN(uN) dx), c > 0



No estimate on fN(uN) in L2

→We cannot pass to the limit in the nonlinear term

→We cannot prove the existence of a classical solution

We can prove the existence of weaker solutions, based on a variational
inequality



Relevant logarithmic nonlinear term : f (s) = ln(1 + s), s > −1

(More generally : f (s) = ln(1 + s) + (a− 1)s)

Follows from the potential F(s) = (1 + s) ln(1 + s)− s, f = F′

→ Not a double-well potential, contrary to the classical Cahn-Hilliard theory





Properties of f :

• f is monotone increasing

→ Essential to introduce the variational inequality

• There exists a nonnegative convex function ϕ such that

(i) |f (s)| ≤ ϕ(s), s > −1

(ii) ϕ(w) ∈ L1((0,T)× Ω), whenever w ∈ L1((0,T)× Ω) and
f (w) ∈ L1((0,T)× Ω), T > 0

→ Essential for the uniqueness of variational solutions





Approximated problems :

We introduce the C1− functions fN , N ∈ N, defined by

fN(s) =

{
f (s), s ≥ −1 + 1

N

f (−1 + 1
N ) + f ′(−1 + 1

N )(s + 1− 1
N ), s < −1 + 1

N

Properties of fN :

• fN is monotone increasing

• fN(s)s ≥ FN(s) ≥ 0, s ∈ R, FN(s) =
∫ s

0 fN(ξ) dξ



• For every m > −1, there exist two constants κ1 = κ1(m) > 0 and
κ2 = κ2(m) ≥ 0 such that, at least for N ≥ N0 = N0(m) large enough,

fN(s)(s− m) ≥ κ1|fN(s)| − κ2, s ∈ R

• For every m > −1, there exist two constants κ3 = κ3(m) > 0 and
κ4 = κ4(m) ≥ 0 such that, at least for N ≥ N0 = N0(m) large enough,

fN(s)(s− m) ≥ κ3FN(s)− κ4, s ∈ R

Remark : If −1 + m1 ≤ m ≤ m2, m1, m2 > 0, then κ1, ..., κ4 can be chosen
so that they only depend on m1 and m2



Approximated problems :

∂uN

∂t
−∆3uN − 2∆2uN −∆fN(uN) = 0

uN |t=0 = u0

Well-posedness, regularity : standard



Uniform a priori estimates :

We assume that

• u0(x) > −1 a.e. x ∈ Ω

• −1 + m1 ≤ 〈u0〉 ≤ m2, m1, m2 > 0 fixed (independently of u0)

We have

〈uN(t)〉 = 〈u0〉, t ≥ 0



Furthermore

dEN

dt
+ c(EN + ‖uN‖2

H3
(
Ω)

+ ‖fN(uN)‖L1(Ω) + ‖∂uN

∂t
‖2

H−1(Ω))

≤ c′‖uN‖2
H−1(Ω) + c′′, c > 0

EN =< uN >
2 +‖vN‖2

−1 + ‖uN‖2 + ζ(‖∆vN‖2− 2‖∇vN‖2 + 2
∫

Ω
FN(uN) dx)

ζ > 0 small, vN = uN − 〈u0〉

c(‖uN‖2
H2(Ω) +

∫
Ω

FN(uN) dx) ≤ EN ≤ c′(‖uN‖2
H2(Ω) +

∫
Ω

FN(uN) dx), c > 0



Remark : Dissipative estimate : we are not able to absorb the right-hand side

Usual Cahn-Hilliard logarithmic nonlinear term : we can construct fN such
that

FN(s) ≥ cs4 − c′, c > 0

c, c′ independent of N

→We can derive a dissipative estimate



Variational solutions :

We rewrite the equation in the form

(−∆)−1∂u
∂t

+ ∆2u + 2∆u + f (u)− 〈f (u)〉 = 0

We multiply by u− w, w = w(x) smooth, 〈w〉 = 〈u0〉 :

(((−∆)−1∂u
∂t
, u− w)) + ((∆u,∆(u− w)))− 2((∇u,∇(u− w)))

+((f (u), u− w)) = 0



f is monotone increasing :

(((−∆)−1∂u
∂t
, u− w)) + ((∆u,∆(u− w)))− 2((∇u,∇(u− w)))

+((f (w), u− w)) ≤ 0

(variational inequality (VI))



Definition : We assume that u0 ∈ H2(Ω), with u0(x) > −1 a.e. x ∈ Ω. Then,
u = u(t, x) is a variational solution if
(i) u(t, x) > −1 a.e. (t, x)

(ii) u ∈ C([0,T]; H−1(Ω)) ∩ L∞(0,T; H2(Ω)) ∩ L2(0,T; H3(Ω)), ∀T > 0

(iii) ∂u
∂t ∈ L2(0,T; H−1(Ω)), ∀T > 0

(iv) f (u) ∈ L1((0,T)× Ω), ∀T > 0

(v) u(0) = u0

(vi) 〈u(t)〉 = 〈u0〉, t ≥ 0

(vii) the variational inequality (VI) is satisfied for every t > 0 and every test
function w = w(x) such that w ∈ H2(Ω), f (w) ∈ L1(Ω) and 〈w〉 = 〈u0〉



Uniqueness of variational solutions : we need to define time-dependent test
functions

We call admissible any function w = w(t, x) such that
w ∈ C([0,T]; H−1(Ω)) ∩ L∞(0,T; H2(Ω)), f (w) ∈ L1((0,T)× Ω),
∂w
∂t ∈ L2(0,T; H−1(Ω)), ∀T > 0, and 〈w(t)〉 = 〈u0〉, t ≥ 0

We take w = w(t, .), for almost every t > 0 : (vii) can be replaced by

∫ t

s
[(((−∆)−1∂u

∂t
, u− w)) + ((∆u,∆(u− w)))− 2((∇u,∇(u− w)))

+((f (w), u− w))] dξ ≤ 0

for all 0 < s < t and for every admissible test function w = w(t, x) (all terms
are L1 with respect to time)



We need a second variational inequality : we set

wη = (1− η)u + ηz, η ∈ (0, 1]

We have

|f (wη)| ≤ ϕ(u) + ϕ(z)

→ wη is an admissible test function

Take w = wη and divide by η :

∫ t

s
[(((−∆)−1∂u

∂t
, u− z)) + ((∆u,∆(u− z)))− 2((∇u,∇(u− z)))

+((f (wη), u− z))] dξ ≤ 0



Pass to the limit η → 0 (Lebesgue’s dominated convergence theorem) :

∫ t

s
[(((−∆)−1∂u

∂t
, u− z)) + ((∆u,∆(u− z)))− 2((∇u,∇(u− z)))

+((f (u), u− z))] dξ ≤ 0

for all 0 < s < t and for every admissible test function z = z(t, x)

Combine the two variational inequalities (all terms are absolutely
continuous) : if u1 and u2 are two solutions such that 〈u1(0〉 = 〈u2(0)〉

1
2
‖u1(t)− u2(t)‖2

−1 −
1
2
‖u1(s)− u2(s)‖2

−1

+

∫ t

s
(‖∆(u1 − u2)‖2 − 2‖∇(u1 − u2)‖2) dξ ≤ 0



This yields

‖u1(t)− u2(t)‖H−1(Ω) ≤ cec′(t−s)‖u1(s)− u2(s)‖H−1(Ω)

Pass to the limit s→ 0 :

‖u1(t)− u2(t)‖H−1(Ω) ≤ cec′t‖u1(0)− u2(0)‖H−1(Ω), t ≥ 0



Theorem : We assume that u0 ∈ H2(Ω), u0(x) > −1 a.e. x ∈ Ω, and
−1 + m1 ≤ 〈u0〉 ≤ m2, with m1, m2 > 0 fixed. Then, there exists a unique
variational solution u

Note that uN satisfies

∫ t

s
[(((−∆)−1∂uN

∂t
, uN −w)) + ((∆uN ,∆(uN −w)))− 2((∇uN ,∇(uN −w)))

+((fN(w), uN − w))] dξ ≤ 0

for all 0 < s < t and for every admissible test function w = w(t, x)



uN converges to a limit function u in the following sense :

uN → u in L∞(0,T; H2(Ω)) weak− ? and L2(0,T; H3(Ω)) weak

∂uN

∂t
→ ∂u

∂t
in L2(0,T; H−1(Ω)) weak

uN → u in C([0,T]; H2(Ω)), L2(0,T; H2(Ω)) and a.e. in (0,T)× Ω

Only difficulty : passage to the limit in
∫ t

s ((fN(w), uN − w)) dξ

By construction :

|fN(w)| ≤ |f (w)|

Lebesgue’s dominated convergence theorem (f (w) ∈ L1((0,T)× Ω))



Separation property :

fN(uN) is uniformly bounded in L1((0,T)× Ω) and explicit expression of fN :

meas{(t, x) ∈ (0,T)× Ω, uM(t, x) < −1 +
1
N
} ≤ ϕ(

1
N

), M ≥ N

ϕ(s) =
1

|f (s− 1)|
c independent of N and M

Pass to the limit M → +∞ (Fatou’s Lemma) and then N → +∞ (ϕ(s)→ 0
as s→ 0) :

meas{(t, x) ∈ (0,T)× Ω, u(t, x) ≤ −1} = 0



f (u) ∈ L1((0,T)× Ω) :

Almost everywhere convergence of uN to u and explicit expression of fN :

fN(uN)→ f (u) a.e. in (0,T)× Ω

Fatou’s lemma :

‖f (u)‖L1((0,T)×Ω) ≤ lim inf ‖fN(uN)‖L1((0,T)×Ω) < +∞



Remark : We can prove the existence (and uniqueness) of variational
solutions in

Φm1,m2 = {v ∈ L∞(Ω), w(x) ≥ −1 a.e. x ∈ Ω,

< w >= m, −1 + m1 ≤ m ≤ m2}

m1, m2 > 0

These solutions regularize instantaneously



Remark : We have similar results for the usual Cahn-Hilliard nonlinear term

F(s) = −θ0s2 + θ1((1 + s) ln(1 + s)
+(1− s) ln(1− s))
f (s) = F′(s) = −2θ0s + θ1 ln 1+s

1−s
s ∈ (−1, 1), 0 < θ1 < θ0

In that case, we also have a dissipative estimate

→We can prove the existence of finite-dimensional attractors


