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Theorem (Selberg): As t varies in [T,2T] the distribution of
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variance ~ 5loglog T.
Step 1: Relate log |C( + it)| to log|¢(og + it)| where
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Step 2: For most values of t € [T,2T] show that

UQ-FIf“H( ao+:t)‘%1'

p<X

Need X larger than TY/W  Choice X = T1/(logloglog T)?
Step 3: Compute moments of the sum over primes:

2T 1 k/2
/ Re m) dt ~ Mk (E IOg |Og T) s
p<

where 1 denote the Gaussian moments.
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Step 3: Moments of the sum over primes
With X = T1/(legloglog T)* __ sma| power of T — want

2T
;_/T (Re gpaolm)kdt
k —
() (S ) (5 ) e

p<X p<X
Mean values of Dirichlet polynomials:

2T _
2 / S a(mm S a(n)n'tde
m<M n<N
Smoothed version: smooth ® approx. indicator function of [1, 2]

% O(t/T) > a(mym™™> " a(n)n"dt

teR m<M n<N

Z Z T log(m/n)).

m<M n<N
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Left with “diagonal” contribution
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Understanding

Z Z Tlog(m/n)).

m<M n<N
® smooth implies <T>(x) decays rapidly as |x| — oo.

jm—n)
Tl T
og(m/n)| > T s

So if min(M, N) < T/log T then the terms m # n are negligible.
Left with “diagonal” contribution

> a(n)b(n)®(0).

m=n

Apply to

(Z pU;l_th = Z az(m)m_it7 ( Z p<701—"f>k_€ = Zakfe(n)n"t.

p<X m<X¢* p<X n
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Note ag(m) = 0 unless m has exactly ¢ prime factors all below X.
If these are all distinct — usual case — then ay(m) = ¢Im~.

Only have diagonal terms if £ = k — £.

If k odd:

1 2" 1 N\k, . ey
T/ (Re Z W) dt is negligible.

p<X

If k even

2T 2T
1 k\1 1

— Re ) dt%( )/ ‘ E —_—
a—l—: k o0+

/ otit 2k\k/2) T J+ p§Xp0 t

Diagonal terms give:

21k<kl;2) 2 ak/z(")%;k(klk) 2 (Pl(k/z)l)”")

n<Xk/2 P1yePh /2 <X Pi/2

k

1kl
ok

2 (k/2)] (Ioglog T)K/?2 = 11k (5 log log T)k/2.



Step 2: Connecting log |((cg + it)| to the prime sum

Want to show: for most t € [T,2T]
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Step 2: Connecting log |((cg + it)| to the prime sum

Want to show: for most t € [T,2T]

oo+ )| TT (1- paol+,.t)‘ ~ 1

p<X

Heuristic calculation
1 1
p<X pln = p>X

Might expect — if diagonal contribution is correct —

1 27 . 1 2 1
T/r ‘g(ao+/t)H(1—W)—1(dm > o

p<X pln = p>X



Heuristic continued:
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Heuristic continued:

2T 1 2 1
/ C(og + it) H(l onJrIt)_l‘ dt%exp(zp%O)—l

p>X
1 X2W/log T
~ Z 2w/ g T & :
p g W(log X)/log T

p>X

Small if X > TA/W with A large — Answer is < e~ 24 /A.

Hard to work directly with Euler products.

E.g. there could be points where the Euler product is exponentially
large in T.

Slogan: Think in Euler products, work with Dirichlet series.



Step 2A: Most of the time can approximate Euler product by a
short Dirichlet series.

W = (logloglog T)*, X = T'/(lcgloglog T y — T1/(loglog T)?

Define a(n) =1 if

n has at most 100 log, T prime factors below Y

and at most 100 logs T prime factors between Y and X.
Put a(n) = 0 otherwise.

M(s) = Z a(n) u(n) — short Dirichlet polynomial of length < T°
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Step 2B: Typically {(oo + it)M(og + it) =~ 1.
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Step 2A: Approximating by a short Dirichlet series

Pl(S): Z /\(n) PQ(S): Z /\(n)

nslogn’ nslogn’
2<n<Y Y<n<X
Lemma: Outside a set of measure o(T), for t € [T,2T]

|P1(oo + it)] <loglog T, |P2(cg+ it)| < logloglog T.

Proof: Mean square is easy to compute:

1 2T P : 2d ~ /\(n)2 ~ 1 < | T
7 ; | 1(00+/t)’ t~ Z W ~ Z p2‘70 >~ Og Og
2<n<Y p<Y

1 /” 2 1 log X
= |Pa(00 + it)|“dt ~ ~ log —— < logs T.
T/ Y<sz<X p200 log Y 3



Observation: If |z| < K then
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Observation: If |z| < K then

z* 99K
> z" _
‘e - k!’ge ‘

0<k<100K

By the Lemma, for most t € [T,2T],

o it)k
exp(—Pi(oo+it) x> (_1)k’°1(0k?rt)7

k<100loglog T

. Py (og + it)*
exp(—Pa(o0 +it)) ~ Y (_1)“(00).
¢<100logz T ’

Thus, for typical t,

1 . i
I (1~ soizi) = oxpl—Paloo +it) — Paloo + )
p<X

~ M(og + it).



Why did we need to split Euler product into p < Y and
Y <p<X?



Why did we need to split Euler product into p < Y and

Y <p<X?

Recall: need W = o(y/loglog T), and X > TA/W > T10/Vloglog T
Also

2T
A(n) 2 1
1 / iog | dt~ > Sy loglog T.
p<X
To approximate

K
H(l Cfo+lt> Z kl (Z ,mJ/:iS,:z,gn)k’

p<X k=0 ’ 2<n<X

will need K > +/loglog T.

But then XX > T10 — not a short Dirichlet polynomial.
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Motivation — the pure Brun sieve

Toy problem: Count n < x with (n, P(z)) = 1 where

P(z) =1l,<.p-
Sieve of Eratosthenes:

[T -5eln) = 3 u(d)i(dln).

p<z d|P(z)

Pure Brun sieve: Majorize/minorize (parity of k) RHS by

> u(d)(d]n).
d|P(z)
Q(d)<k

If z¥ is small compared to x, can evaluate this short sum on
average over n.
Do we get close to the right answer?
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Expected Answer:

Brun's sieve picks out the first k terms of the exponential series.
If k>103",.,1/p this is close to the right answer.

Two constraints: z*X < /x, but k > 10log log z.

Force z < x1/(20loglogx) _ |oss of log log x factor.

Split into different ranges and iterate: E.g. with

71 = x1/(40loglogx) Z = x1/(40logs x) ki1 = 10log log x, and

ko = 10 logs x:

o uealn) (3 a(d)oldln).

pldi = p<z pld> = z1<p<2
Q) <k Q(db)<ks



Step 2B: Typically ((o¢ + it)M(op + it) =~ 1
Want to show

1 2T
T/ |C(00 + it)M(og + it) — 1)?dt = o(1).
-

2T
;/T <|C(Uo+it)l\/l(00+"t)!2f2Re C(Uo+it)l\/l(cro+it)+1> dt = o(1).

Recall M(s) =", a(n)u(n)/n® is a short Dirichlet polynomial.



Step 2B: Typically ((o¢ + it)M(op + it) =~ 1

Want to show

1 2T
T/ |C(00 + it)M(og + it) — 1)?dt = o(1).
-

1T . 12 . .
= /T (I¢(oo+it)M(oo-+it) 2~2Re ((oo-+it)M(oo-+it)+1) dt = of1).

Recall M(s) =5
Cross term:

a(n)u(n)/n® is a short Dirichlet polynomial.

n

1 Tl 1
= - — T~ —.
<(s) n® 1-—s + O ) ns
n<T n<T

1T . ) a(mu(m) 1 1 [2T )
7/, C(Uo+lt)/\/l(ao+:t):z(n)10“0(),m7_/T (mn)~tdt
ngT

~
~ .



Reduced to showing:
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Reduced to showing:

1 2T ' .
-,-/ |C(00 + it)|?|M(og + it)[dt ~ 1.
T

Lemma: h, k positive integers, 1 > o > 1/2
2T :
h\ it
/ (7) IC(o + it)[2dt
T k

- () () e () )
+ O(T*7 min(h, k)).

Letting 0 — 1/2:

e ion G = G [ (e s )




Lemma allows computation of f72.T |C(00 + it)M(og + it)[?dt.
Conforms to heuristic regarding why

271¢(00 + it)M(oo + it) — 1[2dt is small.
Details in a related situation later.



Lemma allows computation of f72.T |C(00 + it)M(og + it)[?dt.
Conforms to heuristic regarding why
T1¢(oo + it)M(oo + it) — 1|2dt is small.
Details in a related situation later.
Approximations to ((s):

Already good enough to give second moment:

2T
/ (3 + it)] NTZ—NH%T
;

n<T

Approximate functional equation: (permits fourth moment)

((s) ~ Z nls+7rs_1/2r((|{(;/52))/2) Z nll_s'




Related work on mean values

Evaluate -
/ IC(E + i) P|AG + it)Pdt.
0



Related work on mean values

A(s) = Z a(n)n°, a(n) < n°.

n<N

Evaluate

T
/0 1C(3 + it)P|A(3 + it)[Pdt.

Balasubramanian, Conrey & Heath-Brown: If N < T1/2—¢

o 3 A [T (o 2 )

m,n<N

Conjecture: holds for all N < T'=¢. Implies Lindelof Hypothesis.
Bettin, Chandee & Radziwill: holds for N < T1/2+1/66—¢,

Conrey: For a(n) related to p(n), holds for N < T*/7=<. Key
ingredient in 40% of zeros lie on the critical line.

Hughes & Young: Similar mean square involving fourth moment of
zeta (smaller N).



Variant of the approximate functional equation

£(s) = G(s)(s) = £(L =) G(s) = */%s(s — 1) (s/2)

I(s) = I(3) = 1 &z +s)é(z + §)ez2£

_% (c) V4



Variant of the approximate functional equation

£(s) = G(s)(s) = £(L =) G(s) = */%s(s — 1) (s/2)

16) = 165) = o= | &z 9)E(z+9)e” L

% (c) V4

Move line of integration to the left and use the functional equation
£(z + 5)é(z +§) =&(-z+(1-9))(-z+(1-5))
d
I(s) = / f(—z+(1—s)e(—z+(1—73)e”%Z
277/

z



Variant of the approximate functional equation

£(s) = G(s)(s) = £(L =) G(s) = */%s(s — 1) (s/2)

I(s) = I(3) = 1 &z +s)é(z + g)ezzf

_% (c) V4

Move line of integration to the left and use the functional equation

§(z+5)8(z+35) =&(-2+ (1 -9))E(-z+(1-5))

_ 1 _\\ 20z
I(5) = E(9)E(5) + 5 /( e sez ka5
Conclude:
)P = (I(s) + I(1— 5))

it

1G(s)I?
"*ab;% (all))ff (%)tJr(%) > (ab)ll—" (3)

ab<t/2m



Sketch of lemma

/:T IC(o + it)]2<g)itdt

1 n (l
(ab)° 27
2T ;



Sketch of lemma

/f7f<07+-nﬂ2(:)“dt

Q

> (et (30 o)

ab<T/2r
2T ;
ah 1t
X (—) dt
/T bk
Since min(a, b) < v/T, if h, k are not too big (e.g. < T¥?7¢) only

diagonal terms ah = bk matter.
Parametrize diagonal terms:

k h T(h, k)2
g < N == — .
" P o= 21 hk

a—

Gives main terms:

7 e @) ) = (e () en).
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Analogues for L-functions in families

Conjecture (Keating-Snaith)

The logarithm of central values of L-functions in families have a
normal distribution with suitable mean and variance.

Examples:
1. Dirichlet L-functions (mod q) — Unitary family. Here
log |L(%, )| is supposed to be normal, with

Mean =0 Variance ~ % log log g.

Note: L(%,X) is complex valued.

Conjecture implies that almost all L(3, x) are non-zero.

Chowla’s conjecture: L(%., X) # 0 for all Dirichlet characters .
Khan & Ngo (2016): With g prime, at least (3/8 + o(1))¢(q) of
the characters (mod q) have L(%,X) # 0.

Pratt (2018): Averaging also over g, one can get > 50.073%
non-vanishing.



2. Quadratic Dirichlet L-functions — Symplectic family. For
|d| < X, fundamental discriminant, log L(%,Xd) is normal with

Mean = % log log X Variance ~ log log X.

Note: L(3,xq4) should be a non-negative real number.

S. L(%,x4) # 0 for proportion 7/8 of the fundamental
discriminants d.

Conrey & S. L(0, xq4) # 0 for all o € [0, 1] for a proportion > 1/5
of fundamental discriminants d.



2. Quadratic Dirichlet L-functions — Symplectic family. For
|d| < X, fundamental discriminant, log L(%,Xd) is normal with

Mean = % log log X Variance ~ log log X.

Note: L(3,xq4) should be a non-negative real number.

S. L(%,x4) # 0 for proportion 7/8 of the fundamental
discriminants d.

Conrey & S. L(0, xq4) # 0 for all o € [0, 1] for a proportion > 1/5
of fundamental discriminants d.

3. Quadratic twists of an elliptic curve E with sign of the
functional equation +1 — Orthogonal family. Here

log L(3, E x x4) is normal with

Mean = —% log log X Variance ~ log log X.

Note: L(%, E X xq) > 0 by Waldspurger.

Lots of progress in special cases via algebraic methods.

For example, when E has full rational two torsion, or if E has a
three torsion point.



Heuristics

Why normal with predicted mean & variance?
Example 1: Dirichlet L-functions (mod q).

0g |L(3, )| ~ Re Xﬂé’
— Re Z x(p Z X o(1).
p=x p<f

If x = q°1) can compute many moments of the sum over primes —
get Gaussian with mean 0 and variance ~ % log log x ~ % log log g.
The prime square contribution is typically O(1) — variance is
bounded.

Just like log [¢(5 + it)].

In the other families, the key difference is the contribution of prime
squares!



Example 2: Quadratic Dirichlet L—functions.

Xd Xd

log L( L

p<x p<f

Note xd(p?) = 1 and so the contribution of these terms is
Iog logx ~ 5 Iog log |d| — this accounts for the mean.



Example 2: Quadratic Dirichlet L—functions.

Xd Xd

log L( L
p<x p<f

Note xd(p?) = 1 and so the contribution of these terms is

Ioglogx ~ 5 Ioglog |d| — this accounts for the mean.
Sum over prlmes is real — normal with mean 0 and variance
~ loglog|d|.

S (M) - Y s )

l[d|<X  p<x P15 Pk <X k|d\§X

Terms py - - - px # U cancel out.
Diagonal terms only when k even, and the primes pair up.

Variance: )
Z — ~ loglog X.
p<x P



Example 3: Quadratic twists of an elliptic curve.

E an elliptic curve over Q of conductor N.

E4 — quadratic twist by fund. disc. d with (d,2N) = 1.
& — set of fund. disc. for which E4 has root number 1.
If eg is the root number for E then eg(d) = egxq(—N).

wo- L -I0-5) 03"

n=1

Normalization: |ap| = |Bp| =1, ap + Bp = a(p), apfp = 1.
Functional equation: s —+ 1 —s.

s E) =S a(”),’fj(”).
n=1

Waldspurger's theorem implies

L(3,Eq) > 0.



IogL Z flogn Xd(n).

0 otherwise.

Ae(n) = {(a,’; +,3f,§)|ogp if n=pk

Only primes and squares of primes matter.



IogL Zflogn d(n).

Ae(n) = {(az +,3f,§)|ogp if n= pk

0 otherwise.

Only primes and squares of primes matter.

(3 A) ‘ a(p1) - alpe) N~ d
—=xd(p)) = S AR
ldzszx(;; e ) ph.;pxx P1- Pk |c%x(”1"'pk)

de& de&

If xk small compared to X, only terms with p; - - - px = [0 matter.
Main term only if k even, and the primes pair up:

k! a(p)?\ k/2
N#{d}zk/2(k/2)!<pz<; z ) .




Sum over primes is Gaussian with mean 0 and variance

2
Z M ~ loglog x ~ loglog X
p<x

Rankin—=Selberg theory.



Sum over primes is Gaussian with mean 0 and variance

2
Z M ~ loglog x ~ loglog X
p<x

Rankin—Selberg theory. Contribution of squares of primes:

Z Ne(p?®) 1 Z ap + B
| 2y 2
pgﬁpog(/&) o
1 (ap+ Bp)? —2 1
== P TEP) % Zoglog X.
> 2 ) , loglog
p<v/x



Sum over primes is Gaussian with mean 0 and variance
2
Z M ~ loglog x ~ loglog X
p<x
Rankin—Selberg theory. Contribution of squares of primes:
Z Ae(p?) _ 1 Z ag + 6
) 2 p

povs Plo8lP PV

- 1
= Z ap—i_ﬁp N—EloglogX.
p<f

Conclude:

2 22

a(p) 1 o5+ B

log L(3, E )%E a(p) )Jr, E —p TP
pex VP ng\/; P

is Gaussian with mean —% loglog X and variance loglog X.



Progress towards the conjectured Central Limit Theorems

Idea: Zeros of L-functions near % should make the central value
small. So one might hope for upper bounds on the frequency with
which

log L(3) — Mean

> V.
v/Variance o
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Progress towards the conjectured Central Limit Theorems

Idea: Zeros of L-functions near % should make the central value
small. So one might hope for upper bounds on the frequency with
which
log L(%) — Mean
v/Variance

Assuming GRH, a version of this idea with attention to uniformity
in V leads to sharp upper bounds for moments in families. (S.,
plus sharp refinement by Adam Harper — to be explained)
Hough: version of such an upper bound (for V of constant size),
assuming suitable zero density theorems. E.g.

#{ld| < X : log |L(3, x4)| — 3 loglog X > V/\/loglog X}

is at most

> V.

#{|d| < X}(\/127r /VOO e U2y + o(l)).



Upper bound principle

Whenever one can compute some moment (plus epsilon) in a
family of L—functions, then one can obtain a one-sided CLT as
above. (Radziwill & S., 2014)
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Upper bound principle

Whenever one can compute some moment (plus epsilon) in a
family of L—functions, then one can obtain a one-sided CLT as
above. (Radziwill & S., 2014)

Example: Quadratic twists of an elliptic curve E over QQ of
conductor N.

E4 — quadratic twist by fund. disc. d with (d,2N) = 1.
& — set of fund. disc. for which E4 has root number 1.
In this family asymptotics are known only for the first moment:

> L(3.Eq) ~ C(1LE)X.
|d|<X
de&

On GRH one can prove the second moment: (S. & Young)

> L(3,Eq)* ~ C(2,E)X log X.
|d| <X
de&



Theorem: (Radziwill & S) Let V be a fixed real number. For large
X we have

Hdeg, 20 < |d| < X :

log L(3, E4) + & log log |d| - VH
\/loglog |d| N

is at most

{d e & |d| < ><}|(\/127T /Voo e Tdx+o(1)).

Corollary The values L(3, E4) tend to be small. For all but o(X)
fundamental discriminants |d| < X, d € &,

L(3, Eq) < (log X)~2*<.



Implication for Tate-Shafarevich groups

Define )
|Ed(@)tors|

S(Eq) = L(%,Ed)m~

Here:

@ |E4(Q)tors|? is bounded.

e Q(Ey) is the real period < 1/+/|d|;

e Tam(Ey) =[], Tp(d) — Tamagawa numbers; for a generic prime
p Tp(d) =1. If p|d then T,(d) = c(p) where

c(p)=14+{x: f(x)=0 (modp)}=1,2, or 4,

where E is given in Weierstrass form y? = f(x).
Birch & Swinnerton-Dyer: If L(3, E4) # 0 then S(Eg) is the size of
the Tate—Shafarevich group III(Ey).



Conjecture: Radziwill & S; Delaunay. log(|III(E4)|/+/]d]) has a
normal distribution with mean u(E)loglog X and variance
a(E)?loglog X.

K = splitting field of f over Q, G = Gal(K/Q).

View G as a subgroup of S3 and let c(g) = 14+ number of fixed
points of g.

w(E)=—= log c(g); of 214+ — log c(g
€)= 3 161 2 o 2t

geG geG



Conjecture: Radziwill & S; Delaunay. log(|III(E4)|/+/]d]) has a
normal distribution with mean u(E)loglog X and variance
a(E)?loglog X.

K = splitting field of f over Q, G = Gal(K/Q).

View G as a subgroup of S3 and let c(g) = 14+ number of fixed
points of g.

w(E)=—= logc(g); o(E)’=14 — log c(g
E-5 w 6 2

geG geG

One can give u(E) and o(E)? explicitly:

K =Q, u(E) = —1 —2log2, o(E)* =1+ 4(log2)>.
[K:Q]=2, wE)=-3-3log2, o(E)*=1+3(log2)>
[K:Q=3, u(E)=-1-2log2, o(E)*>=1+ %(log2)>.
[K:Q]=6, wE)=-3-2log2, o(E)>=1+ L(log2)>.



Theorem: Radziwill & S. For fixed V € R and as X — oo,

log(S(Eq)//d]) — n(E) loglog |d| _ v}
Vo(E)?loglog|d| -

Hdes,20<yd|gx:

is at most

{d e & |d| < X}\(\/lz? /VOO e dx+ o(1)).



Theorem: Radziwill & S. For fixed V € R and as X — oo,

Hd £ 20<d<X: log(S(Eq)//1d]) — n(E) loglog |d| VH
Vo (E)?loglog |d]|

is at most

{d e & |d| < X}\(\/lz? /VOO e dx+ o(1)).

Idea:
log Tam(d )+ Z log c(p

Additive function, and an Erdés-Kac type theorem applies.

Need a little care to make sure that this normal distribution does
not interfere with the normal distribution of log L(3, E4), but
relatively standard.

Note: the sum of two independent normal distributions is normal.



What about lower bounds?

Need lower bounds for the frequency of non-vanishing of L-values.
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Need lower bounds for the frequency of non-vanishing of L-values.

1. Algebraic. (Shimura), Rohrlich, Chinta ... .
If the L-values in the family are Galois conjugate, then showing one

of them is non-zero is enough to show all are.
E.g. Chinta: L(%, E x x), as x ranges over all characters (mod p)

with suitably large order.
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Need lower bounds for the frequency of non-vanishing of L-values.
1. Algebraic. (Shimura), Rohrlich, Chinta ... .

If the L-values in the family are Galois conjugate, then showing one
of them is non-zero is enough to show all are.

E.g. Chinta: L(%, E X x), as x ranges over all characters (mod p)
with suitably large order.

2. On GRH, compute 1-level density of low-lying zeros.
Ozluk—Snyder, Brumer, Heath-Brown, Katz-Sarnak,
Iwaniec-Luo-Sarnak, . ...

E.g. Heath-Brown: For > 1/4-ths of d € £ the central value



What about lower bounds?

Need lower bounds for the frequency of non-vanishing of L-values.
1. Algebraic. (Shimura), Rohrlich, Chinta ... .

If the L-values in the family are Galois conjugate, then showing one
of them is non-zero is enough to show all are.

E.g. Chinta: L(%, E X x), as x ranges over all characters (mod p)
with suitably large order.

2. On GRH, compute 1-level density of low-lying zeros.
Ozluk—Snyder, Brumer, Heath-Brown, Katz-Sarnak,
Iwaniec-Luo-Sarnak, . ...

E.g. Heath-Brown: For > 1/4-ths of d € £ the central value

3. Mollifier method. Need to compute two moments with a little
bit to spare. Selberg, Levinson, Conrey,
Kowalski-Michel-Vanderkam, Iwaniec-Sarnak, Khan—Ngo, Pratt, ...



Can refine methods 2 and 3 to obtain L-values of typical size.



Can refine methods 2 and 3 to obtain L-values of typical size.
Theorem: Radziwitt & S., in progress Assume GRH.

log L(3, E4) + % loglog X
d|<X:deé&, 2 2 € (a,
#{| =< log log X (o 5)}
is at least
11

flldl <X d e sp(A [T dut o).

i ).

S./Hough: GRH + Katz-Sarnak conjectures for 1-level density of
zeros in families imply Keating-Snaith CLT conjectures.



If one can access the mollifier method, can get lower bounds
unconditionally.
Theorem: Radziwitt & S., in progress

log |L(3, xd)| — 3 log log X
dl < X: €
#{‘ < log log X (O"ﬁ)}
is at least
7 1 (B
#{ldl < X} (5 e 2du+ o(1)).
821 27r a



Ideas behind one sided CLT
Want to upper bound

1
#{|d| < X,d € E,log L(3,Eq) + 5 loglog X > V\/loglog X}.



Ideas behind one sided CLT
Want to upper bound

1
#{|d| < X,d € €, log L(3, Eq) + 5 loglog X > V\/loglog X}.

a(p) 1/(log log X)?
P(d) =)  —=xd(p), z=X /188
2

Three possibilities:

1. P(d) > (V - ¢)y/Iog log X.
2. [P(d)| > loglog X.

3. |P(d)| < loglog X, but

L(3, Ed)(logX)% exp(—P(d)) > exp(e/log log X).

Goal: Cases 2 and 3 are rare. Case 1 happens with Gaussian
probability.



Handling Cases 1 & 2

7 — X1/(loglog X)* grall — can compute any fixed moment of P(d)
) (Z ) v ) alpg) ( d )
ld|<X p<z i<z PL- - P = p1-- - Pr

dee dee



Handling Cases 1 & 2

7 — X1/(loglog X)* ¢l — can compute any fixed moment of P(d)
Z (Z ) -y a(p1) -~ alpi) T (L)
ld|<X p<z i<z PL - P = p1-- - Pr
de& A

Nuisance: d must be square-free; split into progressions mod N
to keep track of root number.

Only diagonal terms p; - - - px = O matter. Give (roughly)

Pk)
#{d} > —%
P1y-- s PkSZ Pk
p1-+-px=U

Generic situation: g1 < g2 < ... < gy distinct primes each
appearing twice

#{d} <12<> <k ; 2> (g) 3 a(ql(): :(::/2)2

q1<...<qx/2<z




Conclude: P(d) has Gaussian moments. Odd moments are small.
For k even

b 2\ k/2
Z P(d) #{d}Qk/2(k/2) (Za(p) )

dI<X p<z P
de&

~ #{d }zk/z (log log z)*/

(k/2)

k!
~ #{d} ok/2

w(log log X)k/2



Conclude: P(d) has Gaussian moments. Odd moments are small.
For k even

b 2\ k/2
Z P(d) #{d}Qk/2(k/2) (Za(p) )

dI<X p<z P
dee
~ #{d }2k/2(k/2) (log log z)/?
~ #{d}m(loglogX)k/2

Case 1: P(d) > (V — €)y/loglog X happens with probability

7X2/2dXN / 7X2/2d
\/277/\/ €

Case 2: |P(d)| > loglog X happens (take k = 2) for
< X/ loglog X fundamental discriminants d.



Handling Case 3

There are o(X) fundamental discriminants |d| < X, d € £ with
|P(d)| < loglog X but

L(3, E4)(log X)? exp(—P(d)) > exp(e/log log X).



Handling Case 3

There are o(X) fundamental discriminants |d| < X, d € £ with
|P(d)| < loglog X but

L(3, Ed)(logX)% exp(—P(d)) > exp(ey/log log X).

Idea: Use truncated Taylor series to replace “Euler product”
exp(—P(d)) by short Dirichlet polynomial.
Lemma: Ey(x) = Zf:o x//j!. Suppose £ is even, and x < £/e.

Then »
e < (1 v 61—6>Eg(x).



Handling Case 3

There are o(X) fundamental discriminants |d| < X, d € £ with
|P(d)| < loglog X but

L(3, E4)(log X)? exp(—P(d)) > exp(e/log log X).

Idea: Use truncated Taylor series to replace “Euler product”
exp(—P(d)) by short Dirichlet polynomial.
Lemma: Ey(x) = Zf:o x//j!. Suppose £ is even, and x < £/e.

Then
—¢

e < (1 v 61—6>Eg(x).

Proof: Exercise: If x < 0 then ¥ < E/(x).
If 0 < x < //€?, then



Proposition: Take ¢ = 2[10loglog X |. Then

Zb L(L, Eg)(log X)? Ex(~P(d)) < X loglog X.

ld|<X
deg



Proposition: Take ¢ = 2[10loglog X |. Then

b
Z L(%, Ed)(|°gX)%Ez(—7)(d)) < Xloglog X.
|d|<X
de&

Note L(3, E4) > 0 always; and E,(—P(d)) > 0 always.
Further, if |P(d)| < loglog X then E;(—P(d)) > exp(—P(d))/2.
Conclude:

#{d in Case 3} < (X loglog X)/ exp(e+/loglog X) = o(X).



Proposition: Take ¢ = 2[10loglog X |. Then

Zb L(L, Eg)(log X)? Ex(~P(d)) < X loglog X.

ld|<X
deg

Note L(3, E4) > 0 always; and E,(—P(d)) > 0 always.
Further, if |P(d)| < loglog X then E;(—P(d)) > exp(—P(d))/2.
Conclude:

#{d in Case 3} < (X loglog X)/ exp(e+/loglog X) = o(X).

Advantage of

— short Dirichlet polynomial of length < z¢ < X?20/leglog X



Sketch of Proposition
Key step: Write u = 1 u% with w1 square-free.

b
> xa(u)L(3 Eq) = cx ) + O(X7/8%<,3/8),
|d|<X Vi

de&



Sketch of Proposition
Key step: Write u = 1 u% with w1 square-free.

ZbXd(u)L(%,E) cx 2 )+0(x7/8+6 u¥/8).

dI<X Vi
de&
Approximate functional equation:
(n)
£~y
2,
n<X \f
Need )
n
23 S (o
n<X \d\<X
de&

Contribution from terms when nu = L.
For nu # [0, Poisson summation (e.g. Polya—Vinogradov)

Z Xd(nu) <— \/)fTu Z (%)

|d|<X |k|<nu/X
deg



Poisson flip is useful if nu < X?2.

Can comfortably compute first moment, with room to put in short
Dirichlet polynomial.

Barely not enough to do the second moment of L(3, Ey).



Poisson flip is useful if nu < X?2.

Can comfortably compute first moment, with room to put in short
Dirichlet polynomial.

Barely not enough to do the second moment of L(3, Ey).

From nu = [ terms (so n = uym?):

Zb Xd(U)L(3, Eq) = 2#{d} > a(';)

ld|<X n<X vn
de€& nu=0
a(u1m2) a(uy)
= 2#{d ~ CX .
#dr > o =
m<y/X/uy

C = C(E) related to L(1,sym2E)

L(s,sym*E) =[] (1—(;‘2’)_1 (1—;>_1 (1—p§) o (29 i a(:j).




Proposition: Take ¢ = 2|10loglog X|. Then

Zb L(L, Es)(log X)2 Es(~P(d)) < X log log X.

ld|<X
de&



Proposition: Take ¢ = 2[10loglog X |. Then

Zb L(L, Es)(log X)2 Es(~P(d)) < X log log X.

ld|<X
de&
Expand
P(dy a(n)
. > Xd(n)
J! ol = p<cz /nw(n)
Q(n)=j

where a completely multiplicative with a(p) = a(p
w(n) multiplicative with w(p®) = al.

~—

ECP) = Y (cnre_ 2 )
plt;)(zu);p;z



Appeal to Lemma: u = ulug

X(logX): Y (w2 alu)

Vaw(u) /i

plu = p<z
Q(u)<e



Appeal to Lemma: u = ulug

or X o) au)  a(ur)
CX(logX)z > (-1) N oW

plu = p<z
Q(u)<e

Ignoring condition that Q(u) < ¢:

1 a a a 2 1 1
CX(log X)? [ [ (1f \%) \(/%)+ (2’;) +) < X(log X)?(log z) 2

which gives < X loglog X, as needed.



Appeal to Lemma: u = ulug

or X2 o au)  a(u)
CX(logX)z > (-1) Taw(a) o

plu = p<z
Q(u)<e

Ignoring condition that Q(u) < ¢:

1 a a a 2 1 1
CX(log X)? [ [ (1f \(F[;) \(/%)+ (2’;) +) < X(log X)?(log z) 2

which gives < X loglog X, as needed.
Rankin's trick: omitted terms give (e®(*)=¢ > 1 on these terms)

1

X(log X)2

<<7(gg)
e

I1 (1 )L )iy ) < X(log X)~1.

p<z P 2p



Key ingredients in proof. Need:

Compute moments of short sum over primes.

To evaluate first moment of L(3, E4) times a short Dirichlet
polynomial.

Positivity of L(3, Eg).



Key ingredients in proof. Need:

Compute moments of short sum over primes.

To evaluate first moment of L(3, E4) times a short Dirichlet
polynomial.

Positivity of L(3, Eg).

Analogue for L(%, Xd)-

Don't know positivity of L(%,Xd).

But can work with the second moment of L(%,Xd) multiplied by a
short Dirichlet polynomial.



