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Recap
Theorem (Selberg): As t varies in [T , 2T ] the distribution of
log |ζ( 1

2 + it)| is approximately Gaussian with mean zero and
variance ∼ 1

2 log logT .

Step 1: Relate log |ζ( 1
2 + it)| to log |ζ(σ0 + it)| where

σ0 =
1

2
+

W

logT
; W = (log log logT )4.

Step 2: For most values of t ∈ [T , 2T ] show that

|ζ(σ0 + it)|
∣∣∣ ∏
p≤X

(
1− 1

pσ0+it

)∣∣∣ ≈ 1.

Need X larger than T 1/W . Choice X = T 1/(log log log T )2
.

Step 3: Compute moments of the sum over primes:

1

T

∫ 2T

T

(
Re

∑
p≤X

1

pσ0+it

)k
dt ∼ µk

(
1
2 log logT

)k/2
,

where µk denote the Gaussian moments.
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Step 3: Moments of the sum over primes
With X = T 1/(log log log T )2

— small power of T — want

1

T

∫ 2T

T

(
Re

∑
p≤X

1

pσ0+it

)k
dt

=
1

2k

k∑
`=0

(
k

`

)
1

T

∫ 2T

T

(∑
p≤X

1

pσ0+it

)`(∑
p≤X

1

pσ0−it

)k−`
dt.

Mean values of Dirichlet polynomials:

1

T

∫ 2T

T

∑
m≤M

a(m)m−it
∑
n≤N

a(n)nitdt

Smoothed version: smooth Φ approx. indicator function of [1, 2]

1

T

∫
t∈R

Φ(t/T )
∑
m≤M

a(m)m−it
∑
n≤N

a(n)nitdt

=
∑
m≤M

∑
n≤N

a(m)b(n)Φ̂(T log(m/n)).
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Understanding ∑
m≤M

∑
n≤N

a(m)b(n)Φ̂(T log(m/n)).

Φ smooth implies Φ̂(x) decays rapidly as |x | → ∞.

T | log(m/n)| � T
|m − n|

min(m, n)

So if min(M,N) ≤ T/ logT then the terms m 6= n are negligible.
Left with “diagonal” contribution∑

m=n

a(n)b(n)Φ̂(0).

Apply to(∑
p≤X

1

pσ0+it

)`
=
∑

m≤X `

a`(m)m−it ,
(∑

p≤X

1

pσ0−it

)k−`
=
∑
n

ak−`(n)nit .
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Note a`(m) = 0 unless m has exactly ` prime factors all below X .
If these are all distinct – usual case – then a`(m) = `!m−σ0 .

Only have diagonal terms if ` = k − `.
If k odd:

1

T

∫ 2T

T

(
Re
∑
p≤X

1

pσ0+it

)k
dt is negligible.

If k even

1

T

∫ 2T

T

(
Re
∑
p≤X

1

pσ0+it

)k
dt ≈ 1

2k

(
k

k/2

)
1

T

∫ 2T

T

∣∣∣ ∑
p≤X

1

pσ0+it

∣∣∣kdt.
Diagonal terms give:

1

2k

(
k

k/2

) ∑
n≤X k/2

ak/2(n)2 ≈ 1

2k

(
k

k/2

) ∑
p1,...,pk/2≤X

(k/2)!

(p1 · · · pk/2)2σ0

≈ 1

2k
k!

(k/2)!
(log logT )k/2 = µk( 1

2 log logT )k/2.
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Step 2: Connecting log |ζ(σ0 + it)| to the prime sum

Want to show: for most t ∈ [T , 2T ]

|ζ(σ0 + it)|
∣∣∣ ∏
p≤X

(
1− 1

pσ0+it

)∣∣∣ ≈ 1.

Heuristic calculation

ζ(s)
∏
p≤X

(
1− 1

ps

)
− 1 =

∑
p|n =⇒ p>X

1

ns
.

Might expect – if diagonal contribution is correct –

1

T

∫ 2T

T

∣∣∣ζ(σ0 + it)
∏
p≤X

(
1− 1

pσ0+it

)
− 1
∣∣∣2dt ≈ ∑

p|n =⇒ p>X

1

n2σ0
.
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Heuristic continued:

1

T

∫ 2T

T

∣∣∣ζ(σ0 + it)
∏
p≤X

(
1− 1

pσ0+it

)
− 1
∣∣∣2dt ≈ exp

(∑
p>X

1

p2σ0

)
− 1

≈
∑
p>X

1

p1+2W / log T
� X 2W / log T

W (logX )/ logT
.

Small if X > TA/W with A large — Answer is � e−2A/A.

Hard to work directly with Euler products.
E.g. there could be points where the Euler product is exponentially
large in T .
Slogan: Think in Euler products, work with Dirichlet series.
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Step 2A: Most of the time can approximate Euler product by a
short Dirichlet series.

W = (log log logT )4, X = T 1/(log log log T )2
, Y = T 1/(log log T )2

Define a(n) = 1 if
n has at most 100 log2 T prime factors below Y
and at most 100 log3 T prime factors between Y and X .
Put a(n) = 0 otherwise.

M(s) =
∑
n

a(n)
µ(n)

ns
− short Dirichlet polynomial of length ≤ T ε

Lemma: For typical t ∈ [T , 2T ]∏
p≤X

(
1− 1

pσ0+it

)
≈ M(σ0 + it).

Step 2B: Typically ζ(σ0 + it)M(σ0 + it) ≈ 1.
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Step 2A: Approximating by a short Dirichlet series

P1(s) =
∑

2≤n≤Y

Λ(n)

ns log n
, P2(s) =

∑
Y<n≤X

Λ(n)

ns log n
.

Lemma: Outside a set of measure o(T ), for t ∈ [T , 2T ]

|P1(σ0 + it)| ≤ log logT , |P2(σ0 + it)| ≤ log log logT .

Proof: Mean square is easy to compute:

1

T

∫ 2T

T
|P1(σ0+it)|2dt ≈

∑
2≤n≤Y

Λ(n)2

n2σ0(log n)2
≈
∑
p≤Y

1

p2σ0
≤ log logT

1

T

∫ 2T

T
|P2(σ0 + it)|2dt ≈

∑
Y<p≤X

1

p2σ0
≈ log

logX

logY
� log3 T .
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Observation: If |z | ≤ K then∣∣∣ez − ∑
0≤k≤100K

zk

k!

∣∣∣ ≤ e−99K .

By the Lemma, for most t ∈ [T , 2T ],

exp(−P1(σ0 + it)) ≈
∑

k≤100 log log T

(−1)k
P1(σ0 + it)k

k!
,

exp(−P2(σ0 + it)) ≈
∑

`≤100 log3 T

(−1)`
P2(σ0 + it)`

`!
.

Thus, for typical t,∏
p≤X

(
1− 1

pσ0+it

)
≈ exp(−P1(σ0 + it)− P2(σ0 + it))

≈ M(σ0 + it).
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Why did we need to split Euler product into p ≤ Y and
Y < p ≤ X?

Recall: need W = o(
√

log logT ), and X ≥ TA/W ≥ T 10/
√

log log T .
Also

1

T

∫ 2T

T

∣∣∣ ∑
2≤n≤X

Λ(n)

nσ0+it log n

∣∣∣2dt ≈∑
p≤X

1

p2σ0
≈ log logT .

To approximate

∏
p≤X

(
1− 1

pσ0+it

)
≈

K∑
k=0

(−1)k

k!

( ∑
2≤n≤X

Λ(n)

nσ0+it log n

)k
,

will need K ≥
√

log logT .
But then XK ≥ T 10 — not a short Dirichlet polynomial.
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Motivation – the pure Brun sieve

Toy problem: Count n ≤ x with (n,P(z)) = 1 where
P(z) =

∏
p≤z p.

Sieve of Eratosthenes:∏
p≤z

(1− δ(p|n)) =
∑

d |P(z)

µ(d)δ(d |n).

Pure Brun sieve: Majorize/minorize (parity of k) RHS by∑
d |P(z)

Ω(d)≤k

µ(d)δ(d |n).

If zk is small compared to x , can evaluate this short sum on
average over n.
Do we get close to the right answer?
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Expected Answer:

x
∏
p≤z

(
1− 1

p

)
≈ x exp

(
−
∑
p≤z

1

p

)
= x

∞∑
`=0

(−1)`

`!

(∑
p≤z

1

p

)`
.

Brun’s sieve picks out the first k terms of the exponential series.
If k ≥ 10

∑
p≤z 1/p this is close to the right answer.

Two constraints: zk ≤
√
x , but k ≥ 10 log log z .

Force z ≤ x1/(20 log log x) — loss of log log x factor.
Split into different ranges and iterate: E.g. with
z1 = x1/(40 log log x), z2 = x1/(40 log3 x), k1 = 10 log log x , and
k2 = 10 log3 x :( ∑

p|d1 =⇒ p<z1

Ω(d1)≤k1

µ(d1)δ(d1|n)
)( ∑

p|d2 =⇒ z1≤p<z2

Ω(d2)≤k2

µ(d2)δ(d2|n)
)
.
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Step 2B: Typically ζ(σ0 + it)M(σ0 + it) ≈ 1
Want to show

1

T

∫ 2T

T
|ζ(σ0 + it)M(σ0 + it)− 1|2dt = o(1).

1

T

∫ 2T

T

(
|ζ(σ0+it)M(σ0+it)|2−2Re ζ(σ0+it)M(σ0+it)+1

)
dt = o(1).

Recall M(s) =
∑

n a(n)µ(n)/ns is a short Dirichlet polynomial.

Cross term:

ζ(s) =
∑
n≤T

1

ns
− T 1−s

1− s
+ O(T−σ) ≈

∑
n≤T

1

ns
.

1

T

∫ 2T

T
ζ(σ0 + it)M(σ0 + it) =

∑
m

n≤T

a(m)µ(m)

mσ0

1

nσ0

1

T

∫ 2T

T
(mn)−itdt

≈ 1.



Step 2B: Typically ζ(σ0 + it)M(σ0 + it) ≈ 1
Want to show

1

T

∫ 2T

T
|ζ(σ0 + it)M(σ0 + it)− 1|2dt = o(1).

1

T

∫ 2T

T

(
|ζ(σ0+it)M(σ0+it)|2−2Re ζ(σ0+it)M(σ0+it)+1

)
dt = o(1).

Recall M(s) =
∑

n a(n)µ(n)/ns is a short Dirichlet polynomial.
Cross term:

ζ(s) =
∑
n≤T

1

ns
− T 1−s

1− s
+ O(T−σ) ≈

∑
n≤T

1

ns
.

1

T

∫ 2T

T
ζ(σ0 + it)M(σ0 + it) =

∑
m

n≤T

a(m)µ(m)

mσ0

1

nσ0

1

T

∫ 2T

T
(mn)−itdt

≈ 1.



Reduced to showing:

1

T

∫ 2T

T
|ζ(σ0 + it)|2|M(σ0 + it)|2dt ≈ 1.

Lemma: h, k positive integers, 1 ≥ σ > 1/2∫ 2T

T

(h
k

)it
|ζ(σ + it)|2dt

=

∫ 2T

T

(
ζ(2σ)

((h, k)2

hk

)σ
+
( t

2π

)1−2σ
ζ(2− 2σ)

((h, k)2

hk

)1−σ)
dt

+ O(T 1−σ min(h, k)).

Letting σ → 1/2:∫ 2T

T
|ζ( 1

2 + it)|2
(h
k

)it
≈ (h, k)√

hk

∫ 2T

T

(
log

t(h, k)2

2πhk
+ 2γ

)
dt.
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Lemma allows computation of
∫ 2T
T |ζ(σ0 + it)M(σ0 + it)|2dt.

Conforms to heuristic regarding why∫ 2T
T |ζ(σ0 + it)M(σ0 + it)− 1|2dt is small.

Details in a related situation later.

Approximations to ζ(s):

ζ(s) =
∑
n≤T

1

ns
− T 1−s

1− s
+ O(T−σ) ≈

∑
n≤T

1

ns
.

Already good enough to give second moment:∫ 2T

T
|ζ( 1

2 + it)|2 ∼ T
∑
n≤T

1

n
∼ T logT .

Approximate functional equation: (permits fourth moment)

ζ(s) ≈
∑

n≤
√

t/2π

1

ns
+ πs−1/2 Γ((1− s)/2)

Γ(s/2)

∑
n≤
√

t/2π

1

n1−s .
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Related work on mean values

A(s) =
∑
n≤N

a(n)n−s , a(n)� nε.

Evaluate ∫ T

0
|ζ( 1

2 + it)|2|A( 1
2 + it)|2dt.

Balasubramanian, Conrey & Heath-Brown: If N ≤ T 1/2−ε

≈
∑

m,n≤N

a(m)a(n)

[m, n]

∫ T

0

(
log

t(m, n)2

2πmn
+ 2γ

)
dt.

Conjecture: holds for all N ≤ T 1−ε. Implies Lindelöf Hypothesis.
Bettin, Chandee & Radziwill: holds for N ≤ T 1/2+1/66−ε.
Conrey: For a(n) related to µ(n), holds for N ≤ T 4/7−ε. Key
ingredient in 40% of zeros lie on the critical line.
Hughes & Young: Similar mean square involving fourth moment of
zeta (smaller N).
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Variant of the approximate functional equation

ξ(s) = G (s)ζ(s) = ξ(1− s); G (s) = π−s/2s(s − 1)Γ(s/2)

I (s) = I (s) =
1

2πi

∫
(c)
ξ(z + s)ξ(z + s)ez

2 dz

z

Move line of integration to the left and use the functional equation

ξ(z + s)ξ(z + s) = ξ(−z + (1− s))ξ(−z + (1− s))

I (s) = ξ(s)ξ(s) +
1

2πi

∫
(−c)

ξ(−z + (1− s))ξ(−z + (1− s))ez
2 dz

z

Conclude:

|ζ(s)|2 =
1

|G (s)|2
(I (s) + I (1− s))

≈
∑

ab≤t/2π

1

(ab)σ

(a
b

)it
+
( t

2π

)1−2σ ∑
ab≤t/2π

1

(ab)1−σ

(a
b

)it
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Sketch of lemma

∫ 2T

T
|ζ(σ + it)|2

(h
k

)it
dt ≈

∑
ab≤T/2π

( 1

(ab)σ
+
( T

2π

)1−2σ 1

(ab)1−σ

)
×
∫ 2T

T

( ah
bk

)it
dt

Since min(a, b) ≤
√
T , if h, k are not too big (e.g. ≤ T 1/2−ε) only

diagonal terms ah = bk matter.
Parametrize diagonal terms:

a =
k

(h, k)
n, b =

h

(h, k)
n, n ≤ N =

√
T (h, k)2

2πhk
.

Gives main terms:

T
∑
n≤N

( 1

n2σ
+
( T

2π

)1−2σ 1

n2−2σ

)
≈ T

(
ζ(2σ)+

( T

2π

)1−2σ
ζ(2−2σ)

)
.
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Analogues for L-functions in families

Conjecture (Keating-Snaith)

The logarithm of central values of L-functions in families have a
normal distribution with suitable mean and variance.

Examples:
1. Dirichlet L-functions (mod q) — Unitary family. Here
log |L( 1

2 , χ)| is supposed to be normal, with

Mean = 0 Variance ∼ 1
2 log log q.

Note: L( 1
2 , χ) is complex valued.

Conjecture implies that almost all L( 1
2 , χ) are non-zero.

Chowla’s conjecture: L( 1
2 , χ) 6= 0 for all Dirichlet characters χ.

Khan & Ngo (2016): With q prime, at least (3/8 + o(1))φ(q) of
the characters (mod q) have L( 1

2 , χ) 6= 0.
Pratt (2018): Averaging also over q, one can get ≥ 50.073%
non-vanishing.
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2. Quadratic Dirichlet L-functions — Symplectic family. For
|d | ≤ X , fundamental discriminant, log L( 1

2 , χd) is normal with

Mean = 1
2 log logX Variance ∼ log logX .

Note: L( 1
2 , χd) should be a non-negative real number.

S. L( 1
2 , χd) 6= 0 for proportion 7/8 of the fundamental

discriminants d .
Conrey & S. L(σ, χd) 6= 0 for all σ ∈ [0, 1] for a proportion ≥ 1/5
of fundamental discriminants d .

3. Quadratic twists of an elliptic curve E with sign of the
functional equation +1 — Orthogonal family. Here
log L( 1

2 ,E × χd) is normal with

Mean = −1
2 log logX Variance ∼ log logX .

Note: L( 1
2 ,E × χd) ≥ 0 by Waldspurger.

Lots of progress in special cases via algebraic methods.
For example, when E has full rational two torsion, or if E has a
three torsion point.
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Heuristics

Why normal with predicted mean & variance?
Example 1: Dirichlet L-functions (mod q).

log |L( 1
2 , χ)| ≈ Re

∑
n≤x

χ(n)Λ(n)√
n log n

= Re
∑
p≤x

χ(p)
√
p

+ Re
1

2

∑
p≤
√
x

χ(p)2

p
+ O(1).

If x = qo(1) can compute many moments of the sum over primes –
get Gaussian with mean 0 and variance ∼ 1

2 log log x ≈ 1
2 log log q.

The prime square contribution is typically O(1) – variance is
bounded.
Just like log |ζ( 1

2 + it)|.
In the other families, the key difference is the contribution of prime
squares!



Example 2: Quadratic Dirichlet L–functions.

log L( 1
2 , χd) ≈

∑
p≤x

χd(p)
√
p

+
1

2

∑
p≤
√
x

χd(p2)

p
.

Note: χd(p2) = 1 and so the contribution of these terms is
∼ 1

2 log log x ∼ 1
2 log log |d | — this accounts for the mean.

Sum over primes is real — normal with mean 0 and variance
∼ log log |d |.

∑[

|d |≤X

(∑
p≤x

χd(p)
√
p

)k
=

∑
p1,...,pk≤x

1
√
p1 · · · pk

∑[

|d |≤X

( d

p1 · · · pk

)
Terms p1 · · · pk 6= � cancel out.
Diagonal terms only when k even, and the primes pair up.
Variance: ∑

p≤x

1

p
∼ log logX .
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Example 3: Quadratic twists of an elliptic curve.
E an elliptic curve over Q of conductor N.
Ed — quadratic twist by fund. disc. d with (d , 2N) = 1.
E — set of fund. disc. for which Ed has root number 1.
If εE is the root number for E then εE (d) = εEχd(−N).

L(s,E ) =
∞∑
n=1

a(n)

ns
=
∏
p

(
1− αp

ps

)−1(
1− βp

ps

)−1

Normalization: |αp| = |βp| = 1, αp + βp = a(p), αpβp = 1.
Functional equation: s → 1− s.

L(s,Ed) =
∞∑
n=1

a(n)χd(n)

ns
.

Waldspurger’s theorem implies

L( 1
2 ,Ed) ≥ 0.



log L( 1
2 ,Ed) ≈

∑
n≤x

ΛE (n)√
n log n

χd(n).

ΛE (n) =

{
(αk

p + βkp ) log p if n = pk

0 otherwise.

Only primes and squares of primes matter.

∑[

|d |≤X
d∈E

(∑
p≤x

a(p)
√
p
χd(p)

)k
=

∑
p1,...,pk≤x

a(p1) · · · a(pk)
√
p1 · · · pk

∑[

|d |≤X
d∈E

( d

p1 · · · pk

)

If xk small compared to X , only terms with p1 · · · pk = � matter.
Main term only if k even, and the primes pair up:

∼ #{d} k!

2k/2(k/2)!

(∑
p≤x

a(p)2

p

)k/2
.
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Sum over primes is Gaussian with mean 0 and variance∑
p≤x

a(p)2

p
∼ log log x ∼ log logX

Rankin–Selberg theory.

Contribution of squares of primes:

∑
p≤
√
x

ΛE (p2)

p log(p2)
=

1

2

∑
p≤
√
x

α2
p + β2

p

p

=
1

2

∑
p≤
√
x

(αp + βp)2 − 2

p
∼ −1

2
log logX .

Conclude:

log L( 1
2 ,Ed) ≈

∑
p≤x

a(p)
√
p

+
1

2

∑
p≤
√
x

α2
p + β2

p

p

is Gaussian with mean −1
2 log logX and variance log logX .
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Progress towards the conjectured Central Limit Theorems

Idea: Zeros of L-functions near 1
2 should make the central value

small. So one might hope for upper bounds on the frequency with
which

log L( 1
2 )−Mean

√
Variance

≥ V .

Assuming GRH, a version of this idea with attention to uniformity
in V leads to sharp upper bounds for moments in families. (S.,
plus sharp refinement by Adam Harper — to be explained)
Hough: version of such an upper bound (for V of constant size),
assuming suitable zero density theorems. E.g.

#{|d | ≤ X : log |L( 1
2 , χd)| − 1

2 log logX ≥ V
√

log logX}|

is at most

#{|d | ≤ X}
( 1√

2π

∫ ∞
V

e−u
2/2du + o(1)

)
.
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Upper bound principle
Whenever one can compute some moment (plus epsilon) in a
family of L–functions, then one can obtain a one-sided CLT as
above. (Radziwill & S., 2014)

Example: Quadratic twists of an elliptic curve E over Q of
conductor N.
Ed — quadratic twist by fund. disc. d with (d , 2N) = 1.
E — set of fund. disc. for which Ed has root number 1.
In this family asymptotics are known only for the first moment:∑

|d |≤X
d∈E

L( 1
2 ,Ed) ∼ C (1,E )X .

On GRH one can prove the second moment: (S. & Young)∑
|d |≤X
d∈E

L( 1
2 ,Ed)2 ∼ C (2,E )X logX .
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Theorem: (Radziwill & S) Let V be a fixed real number. For large
X we have∣∣∣{d ∈ E , 20 < |d | ≤ X :

log L( 1
2 ,Ed) + 1

2 log log |d |√
log log |d |

≥ V
}∣∣∣

is at most

|{d ∈ E , |d | ≤ X}|
( 1√

2π

∫ ∞
V

e−
x2

2 dx + o(1)
)
.

Corollary The values L( 1
2 ,Ed) tend to be small. For all but o(X )

fundamental discriminants |d | ≤ X , d ∈ E ,

L( 1
2 ,Ed) ≤ (logX )−

1
2

+ε.



Implication for Tate-Shafarevich groups

Define

S(Ed) = L( 1
2 ,Ed)

|Ed(Q)tors|2

Ω(Ed)Tam(Ed)
.

Here:
• |Ed(Q)tors|2 is bounded.
• Ω(Ed) is the real period � 1/

√
|d |;

• Tam(Ed) =
∏

p Tp(d) – Tamagawa numbers; for a generic prime
p Tp(d) = 1. If p|d then Tp(d) = c(p) where

c(p) = 1 + |{x : f (x) ≡ 0 (mod p)} = 1, 2, or 4,

where E is given in Weierstrass form y2 = f (x).
Birch & Swinnerton-Dyer: If L( 1

2 ,Ed) 6= 0 then S(Ed) is the size of
the Tate–Shafarevich group X(Ed).



Conjecture: Radziwill & S; Delaunay. log(|X(Ed)|/
√
|d |) has a

normal distribution with mean µ(E ) log logX and variance
σ(E )2 log logX .
K = splitting field of f over Q, G = Gal(K/Q).
View G as a subgroup of S3 and let c(g) = 1+ number of fixed
points of g .

µ(E ) = −1

2
− 1

|G |
∑
g∈G

log c(g); σ(E )2 = 1 +
1

|G |
∑
g∈G

(log c(g))2.

One can give µ(E ) and σ(E )2 explicitly:

K = Q, µ(E ) = −1
2 − 2 log 2, σ(E )2 = 1 + 4(log 2)2.

[K : Q] = 2, µ(E ) = −1
2 −

3
2 log 2, σ(E )2 = 1 + 5

2 (log 2)2.

[K : Q = 3, µ(E ) = −1
2 −

2
3 log 2, σ(E )2 = 1 + 4

3 (log 2)2.

[K : Q] = 6, µ(E ) = −1
2 −

5
6 log 2, σ(E )2 = 1 + 7

6 (log 2)2.
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Theorem: Radziwill & S. For fixed V ∈ R and as X →∞,∣∣∣{d ∈ E , 20 < |d | ≤ X :
log(S(Ed)/

√
|d |)− µ(E ) log log |d |√

σ(E )2 log log |d |
≥ V

}∣∣∣
is at most

|{d ∈ E , |d | ≤ X}|
( 1√

2π

∫ ∞
V

e−
x2

2 dx + o(1)
)
.

Idea:
log Tam(d) = O(1) +

∑
p|d

log c(p).

Additive function, and an Erdős-Kac type theorem applies.
Need a little care to make sure that this normal distribution does
not interfere with the normal distribution of log L( 1

2 ,Ed), but
relatively standard.
Note: the sum of two independent normal distributions is normal.
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What about lower bounds?

Need lower bounds for the frequency of non-vanishing of L-values.

1. Algebraic. (Shimura), Rohrlich, Chinta ... .
If the L-values in the family are Galois conjugate, then showing one
of them is non-zero is enough to show all are.
E.g. Chinta: L( 1

2 ,E × χ), as χ ranges over all characters (mod p)
with suitably large order.
2. On GRH, compute 1-level density of low-lying zeros.
Özluk-Snyder, Brumer, Heath-Brown, Katz-Sarnak,
Iwaniec-Luo-Sarnak, . . . .
E.g. Heath-Brown: For ≥ 1/4-ths of d ∈ E the central value
L( 1

2 ,Ed) 6= 0.
3. Mollifier method. Need to compute two moments with a little
bit to spare. Selberg, Levinson, Conrey,
Kowalski-Michel-Vanderkam, Iwaniec-Sarnak, Khan–Ngo, Pratt, ...
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Can refine methods 2 and 3 to obtain L-values of typical size.

Theorem: Radziwi l l & S., in progress Assume GRH.

#
{
|d | ≤ X : d ∈ E ,

log L( 1
2 ,Ed) + 1

2 log logX
√

log logX
∈ (α, β)

}
is at least

#{|d | ≤ X : d ∈ E}
(1

4

1√
2π

∫ β

α
e−u

2/2du + o(1)
)
.

S./Hough: GRH + Katz-Sarnak conjectures for 1-level density of
zeros in families imply Keating-Snaith CLT conjectures.
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If one can access the mollifier method, can get lower bounds
unconditionally.
Theorem: Radziwi l l & S., in progress

#
{
|d | ≤ X :

log |L( 1
2 , χd)| − 1

2 log logX
√

log logX
∈ (α, β)

}
is at least

#{|d | ≤ X}
(7

8

1√
2π

∫ β

α
e−u

2/2du + o(1)
)
.



Ideas behind one sided CLT

Want to upper bound

#{|d | ≤ X , d ∈ E , log L( 1
2 ,Ed) +

1

2
log logX ≥ V

√
log logX}.

P(d) =
∑
p≤z

a(p)
√
p
χd(p), z = X 1/(log log X )2

Three possibilities:
1. P(d) ≥ (V − ε)

√
log logX .

2. |P(d)| ≥ log logX .
3. |P(d)| ≤ log logX , but

L( 1
2 ,Ed)(logX )

1
2 exp(−P(d)) ≥ exp(ε

√
log logX ).

Goal: Cases 2 and 3 are rare. Case 1 happens with Gaussian
probability.
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Handling Cases 1 & 2
z = X 1/(log log X )2

small — can compute any fixed moment of P(d)

∑[

|d |≤X
d∈E

(∑
p≤z

a(p)
√
p
χd(p)

)k
=

∑
p1,...,pk≤z

a(p1) · · · a(pk)
√
p1 · · · pk

∑
|d |≤X
d∈E

( d

p1 · · · pk

)

Nuisance: d must be square-free; split into progressions mod N
to keep track of root number.
Only diagonal terms p1 · · · pk = � matter. Give (roughly)

#{d}
∑

p1,...,pk≤z
p1···pk=�

a(p1) · · · a(pk)
√
p1 · · · pk

.

Generic situation: q1 < q2 < . . . < qk/2 distinct primes each
appearing twice

#{d}
(
k

2

)(
k − 2

2

)
· · ·
(

2

2

) ∑
q1<...<qk/2≤z

a(q1)2 · · · a(qk/2)2

q1 · · · qk/2
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Conclude: P(d) has Gaussian moments. Odd moments are small.
For k even∑[

|d |≤X
d∈E

P(d)k ∼ #{d} k!

2k/2(k/2)!

(∑
p≤z

a(p)2

p

)k/2

∼ #{d} k!

2k/2(k/2)!
(log log z)k/2

∼ #{d} k!

2k/2(k/2)!
(log logX )k/2

Case 1: P(d) ≥ (V − ε)
√

log logX happens with probability

1√
2π

∫ ∞
V−ε

e−x
2/2dx ≈ 1√

2π

∫ ∞
V

e−x
2/2dx .

Case 2: |P(d)| ≥ log logX happens (take k = 2) for
� X/ log logX fundamental discriminants d .



Conclude: P(d) has Gaussian moments. Odd moments are small.
For k even∑[

|d |≤X
d∈E

P(d)k ∼ #{d} k!

2k/2(k/2)!

(∑
p≤z

a(p)2

p

)k/2

∼ #{d} k!

2k/2(k/2)!
(log log z)k/2

∼ #{d} k!

2k/2(k/2)!
(log logX )k/2

Case 1: P(d) ≥ (V − ε)
√

log logX happens with probability

1√
2π

∫ ∞
V−ε

e−x
2/2dx ≈ 1√

2π

∫ ∞
V

e−x
2/2dx .

Case 2: |P(d)| ≥ log logX happens (take k = 2) for
� X/ log logX fundamental discriminants d .



Handling Case 3
There are o(X ) fundamental discriminants |d | ≤ X , d ∈ E with
|P(d)| ≤ log logX but

L( 1
2 ,Ed)(logX )

1
2 exp(−P(d)) ≥ exp(ε

√
log logX ).

Idea: Use truncated Taylor series to replace “Euler product”
exp(−P(d)) by short Dirichlet polynomial.
Lemma: E`(x) =

∑`
j=0 x

j/j!. Suppose ` is even, and x ≤ `/e2.
Then

ex ≤
(

1 +
e−`

16

)
E`(x).

Proof: Exercise: If x < 0 then ex ≤ E`(x).
If 0 ≤ x ≤ `/e2, then

ex − E`(x) =
∞∑

j=`+1

x j

j!
≤ x`

`!

∞∑
j=`+1

(x
`

)`−j
≤ 1

6

x`

`!
≤ e−`

16
.
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Proposition: Take ` = 2b10 log logX c. Then∑[

|d |≤X
d∈E

L( 1
2 ,Ed)(logX )

1
2E`(−P(d))� X log logX .

Note L( 1
2 ,Ed) ≥ 0 always; and E`(−P(d)) ≥ 0 always.

Further, if |P(d)| ≤ log logX then E`(−P(d)) ≥ exp(−P(d))/2.
Conclude:

#{d in Case 3} � (X log logX )/ exp(ε
√

log logX ) = o(X ).

Advantage of

E`(−P(d)) =
∑̀
j=0

(−1)j

j!
P(d)j

— short Dirichlet polynomial of length ≤ z` ≤ X 20/ log log X .
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Sketch of Proposition
Key step: Write u = u1u

2
2 with u1 square-free.∑[

|d |≤X
d∈E

χd(u)L( 1
2 ,Ed) = CX

a(u1)
√
u1

+ O(X 7/8+εu3/8).

Approximate functional equation:

L( 1
2 ,Ed) ≈ 2

∑
n≤X

a(n)√
n
χd(n).

Need

2
∑
n≤X

a(n)√
n

∑[

|d |≤X
d∈E

χd(nu).

Contribution from terms when nu = �.
For nu 6= �, Poisson summation (e.g. Polya–Vinogradov)∑

|d |≤X
d∈E

χd(nu)←→ X√
nu

∑
|k|≤nu/X

( k

nu

)
.



Sketch of Proposition
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Poisson flip is useful if nu ≤ X 2.
Can comfortably compute first moment, with room to put in short
Dirichlet polynomial.
Barely not enough to do the second moment of L( 1

2 ,Ed).

From nu = � terms (so n = u1m
2):∑[

|d |≤X
d∈E

χd(u)L( 1
2 ,Ed) = 2#{d}

∑
n≤X
nu=�

a(n)√
n

= 2#{d}
∑

m≤
√

X/u1

a(u1m
2)

√
u1m

∼ CX
a(u1)
√
u1
.

C = C (E ) related to L(1, sym2E )

L(s, sym2E ) =
∏
p

(
1−

α2
p

ps

)−1(
1− 1

ps

)−1(
1−

β2
p

ps

)−1
= ζ(2s)

∞∑
n=1

a(n2)

ns
.
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Proposition: Take ` = 2b10 log logX c. Then∑[

|d |≤X
d∈E

L( 1
2 ,Ed)(logX )

1
2E`(−P(d))� X log logX .

Expand
P(d)j

j!
=

∑
p|n =⇒ p≤z

Ω(n)=j

ã(n)√
nw(n)

χd(n)

where ã completely multiplicative with ã(p) = a(p);
w(n) multiplicative with w(pα) = α!.

E`(−P(d)) =
∑

p|u =⇒ p≤z
Ω(u)≤`

(−1)Ω(u) ã(u)√
uw(u)

χd(u).
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Appeal to Lemma: u = u1u
2
2

CX (logX )
1
2

∑
p|u =⇒ p≤z

Ω(u)≤`

(−1)Ω(u) ã(u)√
uw(u)

a(u1)
√
u1
.

Ignoring condition that Ω(u) ≤ `:

CX (logX )
1
2

∏
p≤z

(
1−a(p)
√
p

a(p)
√
p

+
a(p)2

2p
+...

)
� X (logX )

1
2 (log z)−

1
2

which gives � X log logX , as needed.
Rankin’s trick: omitted terms give (eΩ(u)−` ≥ 1 on these terms)

� X (logX )
1
2

e`

∏
p≤z

(
1 + e

a(p)2

p
+ e2 a(p)2

2p
+ . . .

)
� X (logX )−10.
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Key ingredients in proof. Need:
Compute moments of short sum over primes.
To evaluate first moment of L( 1

2 ,Ed) times a short Dirichlet
polynomial.
Positivity of L( 1

2 ,Ed).

Analogue for L( 1
2 , χd).

Don’t know positivity of L( 1
2 , χd).

But can work with the second moment of L( 1
2 , χd) multiplied by a

short Dirichlet polynomial.
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