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Moments of ζ(s)
Classical problem: Asymptotics for

Mk(T ) =

∫ T

0
|ζ(12 + it)|2kdt.

Hardy-Littlewood: ∫ T

0
|ζ(12 + it)|2dt ∼ T logT .

Ingham: ∫ T

0
|ζ(12 + it)|4dt ∼ 1

2π2
T (logT )4.

No other moments are known.
RH implies Lindelöf Hypothesis – |ζ(12 + it)| � (1 + |t|)ε – which
is equivalent to

Mk(T ) ≤ C (k , ε)T 1+ε.



Conrey-Ghosh(-Gonek) conjecture:

Mk(T ) ∼ akgkT (logT )k
2
,

with

ak =
1

(k2)!

∏
p

(
1− 1

p

)k2( ∞∑
a=0

1

pa

(
k + a− 1

a

)2)
,

and

g1 = 1, g2 = 2, g3 = 42, g4 = 24024, gk =???

Keating–Snaith Conjectures:

gk = (k2)!
k−1∏
j=0

j!

(k + j)!
.



Questions

Where do these conjectures come from?
Why is the rate of growth (logT )k

2
?

Which values of ζ(12 + it) are picked up by the 2k-th moment?

Related questions for families of L–functions:∑
χ (mod q)

|L(12 , χ)|2k ∼ Ckq(log q)k
2

∑
|d |≤X

L(12 , χd)k ∼ CkX (logX )k(k+1)/2

∑
|d |≤X

L(12 ,E × χd)k ∼ CkX (logX )k(k−1)/2

Analogous problems over function fields.
Progress toward these conjectures? Asymptotics known in some
cases. Lower bounds of the right order? Upper bounds of the right
order?
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Heuristic 1 – Diagonal contributions of Dirichlet series

ζ(s)k =
∞∑
n=1

dk(n)

ns

Ignoring convergence & focussing just on diagonal terms:∫ 2T

T
|ζ(σ+it)|2kdt =

∑
m,n

dk(m)dk(n)

(mn)σ

∫ 2T

T

(m
n

)it
dt = T

∑
n

dk(n)2

n2σ
.

True if σ ≥ 1.
Answer converges if σ > 1/2, and correct if Lindelöf Hypothesis
holds.
Suggests answer for σ = 1/2 plausibly related to

T
∑
n≤T

dk(n)2

n
.
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∞∑
n=1

dk(n)2

ns
= ζ(s)k

2
Ak(s)

Ak(s) =
∏
p

(
1− 1

ps

)k2(
1 +

dk(p)2

ps
+ . . .

)

∑
n≤T

dk(n)2

n
∼ Ress=0

(
ζ(s + 1)k

2
Ak(s + 1)

T s

s

)
∼ ak(logT )k

2
.

Similar calculations in other families:

∑[

|d |≤X

L(12 , χd)k ←→ #{|d | ≤ X}
∑
n≤X

dk(n2)

n
∼ CkX (logX )k(k+1)/2.

Note dk(p2) = k(k + 1)/2, which determines the power of logX .
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Quadratic twists of an elliptic curve E

L(s,Ed)k =
∞∑
n=1

ak(n)

ns
χd(n)

ak(n) multiplicative function:(
1− αp

ps

)−k(
1− βp

ps

)−k
=
∞∑
`=0

ak(p`)

p`s

Expect ∑[

|d |≤X
d∈E

L(12 ,Ed)k ←→ #{d}
∑
n≤X

ak(n2)

n

Power of logX determined by average value of ak(p2).

ak(p2) = (kαp)(kβp) +
k(k + 1)

2
(α2

p + β2p)

=
k(k − 1)

2
+

k(k + 1)

2
(1 + α2

p + β2p).
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Heuristic 2: Extrapolations of Selberg’s theorem

An analogy with the divisor function
Erdős–Kac: For n ≤ N, ω(n) is approximately normal with mean
log logN and variance log logN.

Better version: ω(n) is approximately Poisson with parameter
log logN:

#{n ≤ N : ω(n) = k} ∼ N
(log logN)k−1

(k − 1)!
e− log logN .

True as stated for fixed k ; uniformity in k – work of Sathe–Selberg.

X is a Poisson random variable with parameter λ. Then

E(tX ) = e−λ
∞∑
`=0

t`λ`

`!
= eλ(t−1).

Dominated by terms ` ≈ tλ.
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Since dk(n) looks like kω(n) this suggests

1

x

∑
n≤x

dk(n) � exp((k − 1) log log x) = (log x)k−1.

Dominated by terms with ω(n) ≈ k log log x .

Note that the constant in the asymptotic is not predicted:

1

x

∑
n≤x

dk(n) ∼ (log x)k−1

(k − 1)!
,

1

x

∑
n≤x

kω(n) ∼ Ck
(log x)k−1

(k − 1)!
.

Behavior of ω(n) in the large deviations range ω(n) ≈ k log log n
differs from Poisson by constants.
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X is a random variable with mean µ and variance σ2.

E(etX ) =
1√
2πσ

∫ ∞
−∞

exp
(
tu − (u − µ)2

2σ2

)
du

= etµ+t2σ2/2 1√
2πσ

∫ ∞
−∞

exp
(
− (u − µ− tσ2)2

2σ2

)
du

= etµ+t2σ2/2.

Dominant contribution: u = µ+ tσ2 + O(σ).

Selberg: log |ζ(12 + it)| is normal with mean 0 and variance
∼ 1

2 log logT .
Extrapolating Selberg suggests:

Mk(T ) =

∫ T

0
exp(2k log |ζ(12 + it)|)dt

� T exp
(

(2k)2
1

4
log logT

)
= T (logT )k

2
.
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Explains what the 2k–th moment measures:
The 2k–th moment of zeta is dominated by

{t ∈ [0,T ] : |ζ(12 + it)| � (logT )k},

and this set has measure T/(logT )k
2
.

k-th moment of L(12 , χd) dominated

L(12 , χd) � (log |d |)k+1/2,

and the number of such |d | ≤ X is about X/(logX )k
2/2.

k-th moment of L(12 ,Ed) dominated by values of size

(logX )k−1/2, # such values � X/(logX )k
2/2.
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Heuristic 3: Random matrix theory
Assume RH.

N(T ) = #{0 < γ ≤ T : ζ(12 + iγ) = 0} =
T

2π
log

T

2πe
+O(logT ).

Let 0 < γ1 ≤ γ2 ≤ . . . denote the ordinates of zeros of ζ(s). Then

γn ∼
2πn

log n
.

Write

γ̃n = γn
log γn

2π
,

and, on average, γ̃n+1 − γ̃n is of size 1.

Question: What is the distribution of the spacings γ̃n+1 − γ̃n?
Given an interval (α, β) in (0,∞) what can we say about

lim
N→∞

1

N
#{n ≤ N : γ̃n+1 − γ̃n ∈ (α, β)}?
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Eigenvalues of random matrices

Conjectured answer: The normalized spacings between consecutive
zeros of ζ(s) behave like the normalized spacings between
consecutive eigenvalues of a large random matrix.
Originates in work of Hugh Montgomery (1973) on the Pair
Correlation of zeros of ζ(s). The connection with RMT was made
during a chance encounter between Montgomery and Freeman
Dyson.

Precise version: Consider the unitary group U(N), and pick a
random matrix g from U(N) (random with respect to Haar
measure on U(N)). Let e iθ1 , . . ., e iθN denote the eigenvalues of g ,
arranged so that 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θN < 2π. Consider the
distribution of the normalized angles:

θ̃n =
N

2π
θn.

These have mean spacing 1. Average their distribution over U(N),
and let N →∞.
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Random numbers vs Random eigenvalues: Figure due to
Eric Rains



Odlyzko’s marvelous data



Odlyzko’s less marvelous data!



Keating and Snaith’s insight

Model properties of ζ(s) around height T by random matrices of a
particular size N.

How to choose N? Average spacing between consecutive zeros of
ζ(s) at height T is about 2π/ logT . Average spacing between two
“eigen-angles” of a random matrix of size N is about 2π/N. This
suggests taking

2π

logT
≈ 2π

N
, or N ≈ logT .

Analog of ζ(s)?
Answer: Characteristic polynomial of the random matrix.

For example: one can model ζ(s) near the 1020-th zero, by
characteristic polynomials of random matrices of size 42.
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Keating and Snaith’s marvelous graph



Back to moments
Compute the analogue in random matrix theory:∫

U(N)
|det(I − g)|2kdg =

∫
[0,1]N

∣∣∣ N∏
n=1

(1− e(θn))
∣∣∣2k

× 1

N!

∏
1≤j<m≤N

|e(θj)− e(θm)|2dθ1 · · · dθN

The Selberg integral:∫
[0,1]n

n∏
i=1

tα−1i (1− ti )
β−1

∏
1≤i<j≤n

|ti − tj |2γdt1...dtn

=
n−1∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)

Γ(α + β + (n + j − 1)γ)Γ(1 + γ)

Moment integral evaluates to

N∏
j=1

Γ(j)Γ(2k + j)

Γ(k + j)2
∼ gk

Nk2

(k2)!
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Analogous conjectures in other families
Katz–Sarnak philosophy: Model low lying zeros in families of
L-functions by eigen-angles nearest to 0 in random matrices chosen
from appropriate classical groups.

L(1/2, χ) for χ (mod q) modeled again by U(N) – like for ζ(s).
L(12 , χd) modeled by random matrices from USp(2N).
Near the real axis, the density of zeros of L(s, χd) is (log |d |)/(2π)
per unit length.
Eigenvalues of a matrix from USp(2N): e±iθ1 , . . ., e±iθN arranged
in ascending order 0 ≤ θ1 ≤ . . . < π.
Haar measure on USp(2N):

Normalizing constant×
∏

1≤i<j≤N

(
cos θi − cos θj

)2 N∏
k=1

(sin θk)2dθk .

Conjecture: Behavior of γ1
log |d |
2π is exactly the same as the

behavior of θ1
2N
2π .

Note: in symplectic family – zeros near 1/2 are “repelled.”
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Keating–Snaith Scaling: d of size X corresponds to N of size
log
√
X .

Conjecture:

1

#{d}
∑[

|d |≤X

L(12 , χd)k ∼ fkak(log
√
X )k(k+1)/2

k-th moment of characteristic polynomial averaged over USp(2N)
with respect to the Haar measure.
Selberg integral again!

22Nk
N∏
j=1

Γ(1 + N + j)Γ(1/2 + k + j)

Γ(1/2 + j)Γ(1 + k + N + j)
∼ fk

Nk(k+1)/2

(k(k + 1)/2)!

fk =
(k(k + 1)/2)!∏k
j=1(2j − 1)!!

.
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|d |≤X

L(12 , χd)k ∼ fkak(log
√
X )k(k+1)/2

k-th moment of characteristic polynomial averaged over USp(2N)
with respect to the Haar measure.
Selberg integral again!

22Nk
N∏
j=1

Γ(1 + N + j)Γ(1/2 + k + j)

Γ(1/2 + j)Γ(1 + k + N + j)
∼ fk

Nk(k+1)/2

(k(k + 1)/2)!

fk =
(k(k + 1)/2)!∏k
j=1(2j − 1)!!
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Heuristic 4: Symmetrization of diagonal terms

Even primitive Dirichlet characters χ (mod q).
Introduce “shifts” α1, . . ., αk , β1, . . ., βk : want to understand

∑∗

χ (mod q)
χ(−1)=1

k∏
j=1

Λ(12 + αj , χ)Λ(12 − βj , χ)

Λ(12+s, χ) = (q/π)
s
2 Γ(1/4+s/2)L(12+s, χ) = εχΛ(12−s, χ), εχεχ = 1

2k–th moment corresponds to setting all αj = βj = 0.

Observe: Conjecture symmetric in (α1, . . . , αk , β1, . . . , βk).
Proof: Obviously symmetric in (α1, . . . , αk) and (β1, . . . , βk).

Λ(12 + αi , χ)Λ(12 − βj , χ) = εχΛ(12 − αi , χ)εχΛ(12 + βj , χ)

= Λ(12 + βj , χ)Λ(12 − αi , χ)
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δ(α, β) =
1

2

k∑
j=1

(αj − βj), G (α, β) =
k∏

j=1

Γ(12 +
αj

2 )Γ(12 −
βj
2 )

σ(n;α) =
∑

n=n1···nk

n−α1
1 · · · n−αk

k

k∏
j=1

L(s + αj , χ) =
∞∑
n=1

σ(n;α)

ns
χ(n)

k∏
j=1

L(s − βj , χ) =
∞∑

m=1

σ(m;−β)

ms
χ(m).

Diagonal Contribution = (q/π)δ(α,β)G (α, β) times∑
(n,q)=1

σ(n;α)σ(n;−β)

n2s

=
∏
p-q

(
1 +

1

p2s
(p−α1 + . . .+ p−αk )(pβ1 + . . .+ pβk ) + . . .

)
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∏
p-q

(
1 +

1

p2s
(p−α1 + . . .+ p−αk )(pβ1 + . . .+ pβk ) + . . .

)
= A(s;α, β)Z(s;α, β),

where

Z(s;α, β) =
k∏

j ,`=1

ζ(2s + αj − β`).

Diagonal contribution:(q
π

)δ(α,β)
G (α, β)A(12 ;α, β)Z(12 ;α, β).

Symmetry? Can permute (α1, . . . , αk) and (β1, . . . , βk) but not
allowed to switch α’s and β’s.
Conjecture: symmetrize this answer∑
π∈S2k/(Sk×Sk )

(q
π

)δ(π(α,β))
G (π(α, β))A(12 ;πα, πβ)Z(12 ;πα, πβ).
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For example, k = 3 is a sum of 20 terms:
• One “no swap” term (α1, α2, α3;β1, β2, β3).
• Nine “one swap” terms e.g. (β1, α2, α3;α1, β2, β3).
• Nine “two swap” terms e.g. (β1, β2, α3;α1, α2, β3).
• One “all swap” term: (β1, β2, β3;α1, α2, α3).
Each individual term has singularities. E.g. “no swap” term has
singularities when αi = βj .
The sum is regular!
Now let all the shifts → 0.

Similar “recipe” for moments in families of L-functions: Conrey,
Farmer, Keating, Rubinstein, & Snaith.
Works only for integral moments: k ∈ N.
Identifies all lower order terms in conjecture for moments.∫ T

0
|ζ(12 + it)|2kdt ≈

∫ T

0
Pk

( log t

2π

)
dt

for a polynomial Pk of degree k2.
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0
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( log t
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dt

Pk(x) =
(−1)k

k!2
1

(2πi)2k

∫
z1,...,z2k

A(z1, . . . , z2k)
k∏

i ,j=1

ζ(1 + zi − zk+j)

×∆(z1, . . . , z2k)2 exp
(x

2

k∑
j=1

(zj − zk+j)
) 2k∏

j=1

dzj

z2kj

where the integrals are over small circles centered at 0 and

∆(z1, . . . , z2k) =
∏

1≤i≤j≤2k
(zj − zi ).

P3(x) ≈ 5.7× 10−6x9 + 4× 10−4x8 + 1.1× 10−2x7

+ 0.14x6 + x5 + 3.98x4 + 8.6x3 + 10.2x2 + 6.59x + 0.91
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Analogous symmetrization in other families
E.g. consider – restricting to positive discriminants –∑[

d≤X
Λ(12 + α1, χd) · · ·Λ(12 + αk , χd),

Λ(12 + s, χd) = (d/π)s/2Γ(1/4 + s/2)L(12 + s, χd) = Λ(12 − s, χd).

Answer must be symmetric under all αj → εjαj where εj = ±1.

Diagonal contribution:(d
π

)∑αj/2∏
j

Γ(14 +
αj

2 )
∑

n1,...,nk
n1···nk=�
(nj ,d)=1

∏
j

1

n
1
2
+αj

j

.

The sum over n1, . . ., nk can be written as

A(α1. . . . , αk)
∏

1≤i≤j≤k
ζ(1 + αi + αj).

Symmetrize this expression by summing over all 2k choices of εj .
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When can the heuristics on moments be made precise?
If there are more elements in the family in comparison to how
many terms are needed to approximate power of the L–function
(“analytic conductor”).

Example: ζ(12 + it) — think of the integral as having size T .
Approximate functional equation:

ζ(s)k ≈
∑

n≤T k/2

dk(n)

ns
+
(
πs−1/2

Γ((1− s)/2)

Γ(s/2)

)k ∑
n≤T k/2

dk(n)

n1−s

Allows evaluation of second and fourth moments.
Important/interesting to go beyond this rule of thumb.
Possiblities: (i) evaluate a higher moment; (ii) make the family
smaller (e.g. integrate over short interval); (iii) get a power saving
in the error term; (iv) compute moment with a short Dirichlet
polynomial thrown in (an “amplifier”).∫ T

0
|ζ(12+it)|2dt = MT+O(T

1
3
+ε);

∫ T+T
2
3

T
|ζ(12+it)|4dt � T

2
3
+ε
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Analogues in many different families. Can be hard to make the rule
of thumb work.∑∗

χ (mod q)

|L(12 , χ)|4 = MT + O(q1−δ) Matt Young

Asymptotic large sieve: Conrey, Iwaniec & S., Chandee, Li,
Matomaki & Radziwill:∑

q≤Q

∑∗

χ (mod q)

|L(12 , χ)|6,
∑
q≤Q

∑∗

χ (mod q)

∫ 1

−1
|L(12 + it, χ)|8.

∑∗

χ (mod q)

L(12 , f×χ)L(12 , g × χ) = MT+O(q1−δ) Kowalski-Michel-Sawin

∑[

|d |≤X

L(12 , χd)4,
∑[

|d |≤X

L(12 ,Ed)2 ( S., S. & Young, Florea)
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Two Principles

Lower bounds Principle: If one can compute the first moment (plus
epsilon) then can get the right lower bound for all larger moments.
(Rudnick & S., Radziwill & S.)
“Plus epsilon” means one should be able to compute the moment
multiplied by a short Dirichlet polynomial.

Upper bounds Principle: Whenever one can compute some
moment (plus epsilon) then one can get the right upper bound for
all smaller moments. (Radziwill & S.)

Upper bounds on GRH: In general families one can establish the
conjectured upper bound. (S., plus sharp refinement by Adam
Harper)
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Outstanding open problems.

1. Find correct lower bounds for small moments (e.g. less than the
first).
Uniform such bounds as k → 0+ imply positive proportion of non
vanishing.
Known in some cases due to Chandee & Li; not known for the
family of quadratic twists of E .

2. Establish upper bounds for large moments – related to
sub-convexity, Lindelöf hypothesis.



Upper bounds Principle

Theorem: (Heap, Radziwill & S.) For 0 ≤ k ≤ 2∫ 2T

T
|ζ(12 + it)|2kdt � T (logT )k

2
.

Previous work:
• k = 1/n by Heath-Brown (Ramachandra k < 2 assuming RH)
• k = 1 + 1/n by Bettin, Chandee & Radziwill
Key input: (Deshouillers & Iwaniec, Hughes & Young, Bettin, Bui,
Li, & Radziwill)∫ 2T

T
|ζ(12 + it)|4|A(t)|2dt, A(t) =

∑
n≤N

a(n)n−1/2+it .



Quadratic twists of an elliptic curve
E – elliptic curve over Q with conductor N.
E – fundamental discriminants d with root number of Ed being 1.
Theorem: Radzwill & S. For 0 ≤ k ≤ 1∑[

|d |≤X
d∈E

L(12 ,Ed)k � X (logX )k(k−1)/2,

#{d ∈ E , |d | ≤ X , L(12 ,Ed) ≥ (logX )k−1/2} � X (logX )−k
2/2.

Work of Young; Kowalski, Michel, & Sawin should allow similar
results for ∑∗

χ (mod q)

|L(12 , χ)|2k , 0 ≤ k ≤ 2

∑∗

χ (mod q)

|L(12 , f × χ)|2k , 0 ≤ k ≤ 1.

∑[

|d |≤X

|L(12 , χd)|k � X (logX )k(k+1)/2, 0 ≤ k ≤ 2. Larger range??
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Proof for quadratic twists of an elliptic curve
Iterative scheme inspired by the “pure Brun sieve.”
Closely related to Harper’s work on sharp conditional bounds for
moments.

`1 = 2d100 log logX e, `j+1 = 2d100 log `je,

stopping at the largest R with `R > 104.

P1(d) =
∑

p≤X 1/`2
1

a(p)
√
p
χd(p),

Pj(d) =
∑

X
1/`2

j−1≤p≤X 1/`2
j

a(p)
√
p
χd(p).

Ideas:
Think of exp(P1(d) + . . .+PR(d)) as being like L(12 ,Ed)(log |d |)

1
2 .

Work with Taylor series approximations to exp(Pj(d)) – fewer
terms needed as j gets larger.



A general inequality
Recall: E`(x) =

∑`
j=0 x

j/j!. If ` is even and x ≤ `/e2 then

ex ≤
(

1 +
e−`

16

)
E`(x).

Lemma: y ≥ 0. x1, . . ., xR real numbers. `1, . . ., `R positive even.
Then, for any 0 ≤ k ≤ 1

yk ≤ Cky
R∏
j=1

E`j ((k − 1)xj) + C (1− k)
R∏
j=1

E`j (kxj)

+
R−1∑
r=0

(
Cky

r∏
j=1

E`j ((k − 1)xk) + C (1− k)
r∏

j=1

E`j (kxj)
)(e2xr+1

`r+1

)`r+1

,

where C = exp((e−`1 + . . .+ e−`R )/16).
Plan: Apply this with

y = L(12 ,Ed)(log |d |)
1
2 ; xj = Pj(d).
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Proof of Lemma

W.H. Young’s inequality:

ab ≤ ap/p + bq/q, 1/p + 1/q = 1.

Suppose xj ≤ `j/e2 for all 1 ≤ j ≤ R.

yk ≤ ky exp((k − 1)(x1 + . . .+ xR)) + (1− k) exp(k(x1 + . . .+ xR))

exp(kxj) ≤
(

1+
e−`j

16

)
E`j (kxj), exp((k−1)xj) ≤

(
1+

e−`j

16

)
E`j ((k−1)xj).

Therefore, with C = exp((e−`1 + . . .+ e−`R )/16)

yk ≤ Cky
R∏
j=1

E`j ((k − 1)xj) + C (1− k)
R∏
j=1

E`j (kxj).

Gives first term in bound of Lemma.
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Suppose 0 ≤ r ≤ R − 1 such that xj ≤ `j/e2 for j ≤ r , but
xr+1 > `r+1/e

2.

Young’s inequality gives

yk ≤ ky exp((k − 1)(x1 + . . .+ xr )) + (1− k) exp(k(x1 + . . .+ xr ))

≤ Cky
r∏

j=1

E`j ((k − 1)xj) + C (1− k)
r∏

j=1

E`j (kxj)

≤
(
Cky

r∏
j=1

E`j ((k − 1)xj) + C (1− k)
r∏

j=1

E`j (kxj)
)(e2xr+1

`r+1

)`r+1

.

Last inequality holds because (e2xr+1/`r+1)`r+1 is always positive,
and is ≥ 1 in the case xr+1 ≥ `r+1/e

2.

Lemma follows upon summing over all these possibilities.
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y = L(12 ,Ed)(log |d |)
1
2 ; xj = Pj(d).

Aj(d) = E`j ((k − 1)Pj(d)), Bj(d) = E`j (kPj(d))

Lemma bounds L(12 ,Ed)k(log |d |)
k
2 by

� L(12 ,Ed)(log |d |)
1
2

( R∏
j=1

Aj(d) +
R−1∑
r=0

r∏
j=1

Aj(d)
(e2Pr+1(d)

`r+1

)`r+1
)

+
( R∏

j=1

Bj(d) +
R−1∑
r=0

r∏
j=1

Bj(d)
(e2Pr+1(d)

`r+1

)`r+1
)

Note Aj and Bj are Dirichlet polynomials of length ≤ X 1/`j . So

R∏
j=1

Aj(d),
R∏
j=1

Bj(d),
r∏

j=1

Aj(d)Pr+1(d)`r+1 ,

r∏
j=1

Bj(d)Pr+1(d)`r+1

are all short Dirichlet polynomials of length ≤ X 1/1000.



y = L(12 ,Ed)(log |d |)
1
2 ; xj = Pj(d).

Aj(d) = E`j ((k − 1)Pj(d)), Bj(d) = E`j (kPj(d))

Lemma bounds L(12 ,Ed)k(log |d |)
k
2 by

� L(12 ,Ed)(log |d |)
1
2

( R∏
j=1

Aj(d) +
R−1∑
r=0

r∏
j=1

Aj(d)
(e2Pr+1(d)

`r+1

)`r+1
)

+
( R∏

j=1

Bj(d) +
R−1∑
r=0

r∏
j=1

Bj(d)
(e2Pr+1(d)

`r+1

)`r+1
)

Note Aj and Bj are Dirichlet polynomials of length ≤ X 1/`j . So

R∏
j=1

Aj(d),
R∏
j=1

Bj(d),
r∏

j=1

Aj(d)Pr+1(d)`r+1 ,
r∏

j=1

Bj(d)Pr+1(d)`r+1

are all short Dirichlet polynomials of length ≤ X 1/1000.



Proposition:

∑[

|d |≤X
d∈E

( R∏
j=1

Bj(d) +
R−1∑
r=0

r∏
j=1

Bj(d)
(e2Pr+1(d)

`r+1

)`r+1
)
� X (logX )

k2

2

∑[

|d |≤X
d∈E

L(12 ,Ed)(log |d |)
1
2

( R∏
j=1

Aj(d) +
R−1∑
r=0

r∏
j=1

Aj(d)
(e2Pr+1(d)

`r+1

)`r+1
)

� X (logX )
k2

2 .

Conclude: ∑[

|d |≤X
d∈E

L(12 ,Ed)k � X (logX )(k
2−k)/2.

• Compute averages of short Dirichlet polynomials.
• Compute first moment times short Dirichlet polynomial.
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Idea behind Proposition
Can focus on diagonal contributions — here, square terms.
Primes in Pj(d) are disjoint for different j — behave independently
on average.

Ed(Bj(d)) ≈
∏

X
1/`2

j−1≤p≤X 1/`2
j

(
1 +

k2

2

a(p)2

p
+ . . .

)

Ed

(
Pr+1(d)`r+1

)
≈ `r+1!

2`r+1/2(`r+1/2)!

( ∑
X 1/`2r ≤X 1/`2

r+1

a(p)2

p

)`r+1/2

≤ ``r+1/2
r+1 (2 log `r )`r+1/2 ≤

(`r+1

10

)`r+1

Recall: `j+1 = 2b100 log `jc.∑[

|d |≤X
d∈E

r∏
j=1

Bj(d)
(e2Pr+1(d)

`r+1

)`r+1
)
�
(

logX
1

`2r

) k2

2
( e

10

)`r+1

.
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Similar calculation for terms involving L(12 ,Ed).

Ed(L(12 ,Ed)Aj(d))

≈
∏

X
1/`2

j−1≤p≤X 1/`2
j

(
1 +

(k − 1)a(p)
√
p

a(p)
√
p

+
(k − 1)2

2

a(p)2

p
+ . . .

)

Ed

(
L(12 ,Ed)Pr+1(d)`r+1

)
�
(`r+1

10

)`r+1

Conclude

∑[

|d |≤X
d∈E

L(12 ,Ed)
r∏

j=1

Aj(d)
(e2Pr+1(d)

`r+1

)`r+1
)
�
(

logX
1

`2r

) k2−1
2
( e

10

)`r+1

.

Completes sketch of Proposition.
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Lower bounds Principle

Story for ζ(s)
Titchmarsh: k ∈ N∫ ∞

0
|ζ(12 + it)|2ke−t/Tdt �k T (logT )k

2
.

Ramachandra: unconditionally for 2k ∈ N, on RH for all k ≥ 0∫ T

0
|ζ(12 + it)|2kdt � T (logT )k

2
.

Heath-Brown: Lower bound holds for all rational k ≥ 0.

Conrey & Ghosh: Elegant proof for k ∈ N∫ T

0
|ζ(12 + it)|2kdt ≥ T

∑
n≤T

dk(n)2

n
∼ (1 + o(1))akT (logT )k

2
.
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Idea: nit for n ≤ T 1−ε is a family of nearly orthogonal vectors:

1

T

∫ T

0
nitm−itdt ≈

{
1 if m = n

0 if m 6= n.

Can also compute their inner product with ζ(s)k : for n ≤ T 1−ε

1

T

∫ T

0
ζ(12 + it)knitdt ≈ 1

T

∫ T

0

∑
m≤T k

dk(m)

m
1
2
+it

nitdt ≈ dk(n)√
n
.

Now invoke Bessel’s inequality.

Equivalently: Use for any A(s) =
∑

n≤T 1−ε a(n)n−s

∣∣∣ ∫ T

0
ζ(12+it)kA(12−it)dt

∣∣∣2 ≤ (∫ T

0
|ζ(12+it)|2kdt

)(∫ T

0
|A(12+it)|2dt

)
.

Optimal choice: a(n) = dk(n).
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Analogues for families?
Methods for ζ don’t extend automatically.
How to compute, for small n,∑[

|d |≤X

L(12 , χd)kχd(n)?

Rudnick & S. k ∈ N. Use Hölder’s inequality, for suitable Dirichlet
polynomial B

∑[

|d |≤X

L(12 , χd)B(d) ≤
(∑[

|d |≤X

L(12 , χd)k
) 1

k
(∑[

|d |≤X

B(d)
k

k−1

) k−1
k
.

How to handle fractional power B(d)
k

k−1 ?
Trick: Just choose B(d) = A(d)k−1 for a Dirichlet polynomial A.
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x = X 1/(2k), and put A(d) =
∑

n≤x χd(n)/
√
n.

Evaluate ∑[

|d |≤X

A(d)k ,
∑[

|d |≤X

L(12 , χd)A(d)k−1,

and use Hölder.

A(d)k =
∑
n≤xk

dk(n; x)√
n

χd(n); dk(n) =
∑

m1···mk=n
mi≤x

1.

Only diagonal terms matter:∑[

|d |≤X

A(d)k =
∑
n≤xk

dk(n; x)√
n

∑[

|d |≤X

(d
n

)
� X

∑
n≤xk
n=m2

dk(m2)

m
.

Conclude ∑[

|d |≤X

A(d)k � X (logX )k(k+1)/2.
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Want a similar lower bound for∑[

|d |≤X

L(
1

2
, χd)A(d)k−1 =

∑
n≤xk−1

dk−1(n; x)√
n

∑[

|d |≤X

L(12 , χd)χd(n)

� X
∑

n≤xk−1

dk−1(n; x)√
n

∑
m≤X
nm=�

1√
m

Restrict to n ≤ x so that dk−1(n; x) = dk−1(n).
Write n = n1n

2
2 with n1 squarefree.∑
m≤X
nm=�

1√
m

=
1
√
n1

∑
r≤
√

X/n1

1

r
� logX
√
n1

So get lower bound � X (logX )k(k+1)/2:

� X logX
∑
n≤x

dk−1(n)√
n
√
n1
� X logX

∏
p≤x

(
1+

k − 1
√
p
√
p

+
(k − 1)k/2

p

)
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Theorem: (Rudnick & S) For all k ∈ N∑[

|d |≤X

L(12 , χd)k �
(∑[

|d |≤X

L(12 , χd)A(d)k−1
)k/(∑[

|d |≤X

A(d)k
)k−1

�k X (logX )k(k+1)/2.

Method extends to give correct lower bounds for all rational k ≥ 1.
If k = r/s start with∑[

|d |≤X

L(12 , χd)(B(d)s)k−1,

with (ζ(w)z =
∑

n dz(n)/nw )

B(d) =
∑
n≤x

d1/s(n)
√
n

χd(n).
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Take x = X 1/(2r). Then B(d)s(k−1) = B(d)r−s is still a short
Dirichlet polynomial, and can evaluate this. Get∑[

|d |≤X

L(12 , χd)(B(d)s)k−1 �k X (log x)k(k+1)/2.

Similarly, B(d)sk = B(d)r is a short Dirichlet polynomial, and so
can evaluate ∑[

|d |≤X

(B(d)s)k �k X (log x)k(k+1)/2.

By Hölder:

∑[

|d |≤X

L(12 , χd)k � (X (log x)k(k+1)/2)k

(X (log x)k(k+1)/2)k−1
�r ,s X (logX )k(k+1)/2.

Note: Implied constant depends not just on k, but on height of
k = r/s. “Discontinuous” in k .
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Radziwill & S: Refinement which provides “continuous” lower
bounds in k.
Obtain lower bounds of the right order for all k ≥ 1.

If one knows two moments (plus epsilon) then can get lower
bounds for small k as well.
Chandee & Li – small rational moments of L(12 , χ).
Alternative treatment of lower bounds — in progress, Heap,
Radziwill & S.

(∑[

|d |≤X

L(12 , χd) exp(P(d)(k − 1))
)k

≤
(∑[

|d |≤X

L(12 , χd)k
)(∑[

|d |≤X

exp(kP(d))
)(k−1)/k

.

Theorem: For all 0 ≤ k ≤ 2∫ 2T

T
|ζ(12 + it)|2kdt � T (logT )k

2
.
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