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An application

Is every number a class number?
Is every number the class number of an imaginary quadratic field?

F(h) = #{d < X : —d fundamental discriminant class number h}

F(1) = 9. Watkins calculated F(h) for all h < 100. How does
F(h) behave asymptotically?



An application

Is every number a class number?
Is every number the class number of an imaginary quadratic field?

F(h) = #{d < X : —d fundamental discriminant class number h}

F(1) = 9. Watkins calculated F(h) for all h < 100. How does
F(h) behave asymptotically? Class number formula: d > 6

h(—d) = VdL(1,x_q)/m.

Since L(1, xq4) is of constant size, about X discriminants get
squished into /X class numbers.

Conjecture: h/log h < F(h) < hlog h.

Genus theory: If 2*||h then —d has at most A + 1 odd prime
factors.

Perhaps
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“Granularity” of distribution of L(1, x_g): In how small an interval
(o, v + 0) does the distribution mimic the distribution of random
Euler products?

To get hold of class numbers, would need to understand
distribution in intervals of length § < 1/v/X.

Know only how to handle intervals of length about 1/ log X, from
knowing that about log X moments match with random model.



“Granularity” of distribution of L(1, x_g): In how small an interval
(o, v + 0) does the distribution mimic the distribution of random
Euler products?

To get hold of class numbers, would need to understand
distribution in intervals of length § < 1/v/X.

Know only how to handle intervals of length about 1/ log X, from
knowing that about log X moments match with random model.
Theorem: (S; refined error term by Lamzouri)
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Idea of proof: Can assume d < X = H?loglog H.
1 ds
h) = ——H—.
Z H 277// Z h(—d)* s
h<H <X

Connect Y ;-5 h(—d)™° to E(L(1,X)®) using class number
formula. -



Corollary: F(H) < H?(loglog H)?/(log H). For almost all
discriminants —d, the class number is not a power of 2 times a
bounded odd number.



Corollary: F(H) < H?(loglog H)?/(log H). For almost all
discriminants —d, the class number is not a power of 2 times a
bounded odd number.

More refined conjectures/understanding of F(h): Holmin, Jones,
Kurlberg, McLeman and Petersen. Related to Cohen—Lenstra
heuristics.

Conjecture:  For h odd F(h) ~ Cc(h)h/ log h with

_15HH<1——,.),andc(h HH(I——)

p>2i=2 p"||hi=1

1

Theorem: (Lamzouri)

15 H? H?(log log H)3
F(h)y== +0 .
l;, 4 log H ( (log H)3/2 )

hodd

Based on understanding L(1, x—p) as p runs over primes = 3
(mod 4).



Analogous problems for real quadratic fields

d > 0 fundamental discriminant; fundamental unit
€g = (ty + ug\/d)/2 (solution to Pell equation t?> — du? = 4 with
smallest u > 0)
L(la Xd)
logeqg

h(d) =Vd



Analogous problems for real quadratic fields

d > 0 fundamental discriminant; fundamental unit
€g = (ty + ug\/d)/2 (solution to Pell equation t?> — du? = 4 with
smallest u > 0)
L(la Xd)
logeqg

Chowla family: d = am? + 1, €4 =2m+ Vd.

Dahl & Lamzouri: Distribution of class numbers in the Chowla
family.

Matching L(1, x4) with suitable random Euler product. Probability
of X(p) = +£1 or 0 depends on p (mod 4).

Theorem: (Dahl & Lamzouri) Fcs(h) number Chowla fundamental
discriminants with class number h

h(d) =Vd

1
Z Fen(h) ~ RH log H
h<H

where G =1 —1/3%41/52 —1/7% + ... is the Catalan constant.



Can also arrange by size of ¢4 rather than size of d.

Prime geodesic theorems — Sarnak, Hooley, ... . The lengths of
closed geodesics on SL>(Z)\H correspond to regulators of real
discriminants, with multiplicity equal to the class number.
Lamzouri — distribution of L(1, x4) under this ordering.
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discriminants, with multiplicity equal to the class number.
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Other related questions

1. Distribution of values of ((1 + it), or L(1, x) for characters x
(mod q).

Distribution in the complex plane — work of Lamzouri.

Extreme values of |((1 + it)| tend to have arg(¢(1 + it)) being
small.



Can also arrange by size of ¢4 rather than size of d.

Prime geodesic theorems — Sarnak, Hooley, ... . The lengths of
closed geodesics on SL>(Z)\H correspond to regulators of real
discriminants, with multiplicity equal to the class number.
Lamzouri — distribution of L(1, x4) under this ordering.

Other related questions

1. Distribution of values of ((1 + it), or L(1, x) for characters x
(mod q).

Distribution in the complex plane — work of Lamzouri.

Extreme values of |((1 + it)| tend to have arg(¢(1 + it)) being
small.

2. Distribution of other families of L—functions at the edge of the
critical strip.

Duke (Artin L-functions), Luo (symmetric square L-functions),
Cogdell & Michel (k-th symmetric power), Liu, Royer, Wu, ... .
In general, good bounds for the coefficients of L-functions is not
known (Ramanujan conjecture). Can still get good bounds for L(1)
— Iwaniec, Molteni, Xiannan Li.



3. Similar “almost periodicity” for values in the critical strip, but
away from critical line.

Lamzouri: Distribution of {(o + it) for 1/2 < o < 1.
“Universality theorems” — e.g. recent work of Lamzouri, Lester &
Radziwill.



3. Similar “almost periodicity” for values in the critical strip, but
away from critical line.

Lamzouri: Distribution of {(o + it) for 1/2 < o < 1.

“Universality theorems” — e.g. recent work of Lamzouri, Lester &
Radziwill.

4. Maximal character sums: x (mod q) primitive character

n<x

If x(—1) = —1 then

PIRY

n<q/2

(2 X(2))L(1, %)

Montgomery & Vaughan, Granville & S., Goldmakher, ...
Bober, Goldmakher, Granville & Koukoulopoulos

#{x (mod q) : M(x) > (e”/q/m)7} lies between

exp(— Ce;) and exp(—ce;).



Further afield

5. Error term in the prime number theorem.
tp
e
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et for different 4 > 0 behave like independent random variable.
Monach, Rubinstein & Sarnak, ...



Further afield

5. Error term in the prime number theorem.
tp
e
o) —et =3
. P

et for different 4 > 0 behave like independent random variable.
Monach, Rubinstein & Sarnak, ...
6. Error term in the circle problem.

P(x) = Z r(n) —mx = ——— Z 3—/4 cos(2m/nx + 7 /4).

Heath-Brown; Hughes & Rudnick (in annuli).
Open: distribution of the error term in the sphere problem.

R*1< Z r3(n) — gm‘iﬁ).
n<R2

Note: r3(n) related to the class number of —4n, and so to
L(]-a X*4f7)!



Theorem (Selberg)
For T large, and t in [T,2T]

log ((3 + it) is distributed like a complex Gaussian

with mean O and variance ~ loglog T.



Theorem (Selberg)
For T large, and t in [T,2T]

log ((3 + it) is distributed like a complex Gaussian

with mean O and variance ~ loglog T.

Given a nice fixed domain B Cc C

1 log {(3 + it) 1 122
— te|T,2T]: —=E——¢€B; ~ — 12 dx dy.
Tmeas{ e[T,2T] oglog T € } - /zeB e x dy

Equivalently Re log {(3 + it) and Im log (3 + it) are d|str|buted
like independent Gaussians with mean 0 and variance ~ 3 Ioglog T.



For fixed V

1
7meas{t €e|[T,2T]:
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For fixed V
1 00
log|c(z +t)l e 1 2

% loglog T a

Typically values of [((5 + it)| are either large or small, but not
usually of constant size. E.g.

((3 + it)| > exp(e\/loglog T), 50 % of the time,
[¢(5 + it)| < exp(—ey/loglog T), 50 % of the time.

1
7meas{t €e|[T,2T]:



For fixed V
1 00
log|c(z +t)l e 1 2

% loglog T a

Typically values of [((5 + it)| are either large or small, but not
usually of constant size. E.g.

((3 + it)| > exp(e\/loglog T), 50 % of the time,
[¢(5 + it)| < exp(—ey/loglog T), 50 % of the time.

Ramachandra’s conjecture:

1
7meas{t €e|[T,2T]:

{C(% +it),t € R} is dense in C.
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1
—meas
T

{te[tzTy

\/%IoglogT

arg(¢(5 + it))

ZV}N\/%T

S(t) = %arg{(% + it)

N(T)=#{p=05+iv:
T 7

~ Tiog L+ I s(Ty+o(TY).

2T 2re 8

0<y< T}

r

e /2 dx.



arg(C(3 + 1) _

1 o0 2
> VL~ / e X 2dx.
\/%IoglogT } vVam Jv

S(t) = %arg{(% + it)

1
7meas{t €|[T,2T]:

N(T)=#{p=0+iv: 0<y<T}
T 7

— T -1

Fujii's work: In the range hlog T — oo but h <1,

h T
N(t + h) = N(t) — 5~ log >—
27 27
is approximately normal with mean O and variance

~ # log(hlog T).



Proof of Selberg’s theorem for log |((% + it)]

Sketch of recent proof by Radziwitt & S.
Analogue of this proof for S(t)?
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Step 1: Move away from the critical line.

Relate log|({(1/2 + it)| to log|( (oo + it)| for most values of t.

Here
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Need W = o(+/loglog T). Choice: W = (logloglog T)*.




Proof of Selberg’s theorem for log |((% + it)]

Sketch of recent proof by Radziwitt & S.
Analogue of this proof for S(t)?
Step 1: Move away from the critical line.

Relate log|({(1/2 + it)| to log|( (oo + it)| for most values of t.

Here
1 w

27" log T
Need W = o(+/loglog T). Choice: W = (logloglog T)*.
Step 2: For most values of t € [T,2T] show that

Uo+lt|‘H< aﬁ:t)‘%l‘

Need X larger than T1/W  Choice X = T1/(logloglog T)?

go —



From Steps 1 and 2: for most t
log [¢(3 + it)| ~ log |¢(a0 + it)|

NRZ

n<X

|ogn nao-i-lt ~ Re Z W'

p<X

1



From Steps 1 and 2: for most t
log [¢(3 + it)| ~ log |C(ao + it)|

NRZ

n<X

1

Iog n n‘70+’t -
p<X

Step 3: Compute moments of the sum over primes:

2T 1 kj2
/ Re m) dtw,uk(iloglog T) ,

where 1y denote the Gaussian moments

~J0 if k is odd
=113 -(k—1) if kis even.



From Steps 1 and 2: for most t
log [¢(3 + it)| ~ log |C(ao + it)|

NRZ

n<X

1

Iog n n‘70+’t -
p<X

Step 3: Compute moments of the sum over primes:

2T 1 kj2
/ Re m) dtw,uk(iloglog T) ,

where 1y denote the Gaussian moments
0 if k is odd
Mk = e
1-3---(k—1) if kis even.

Gaussian determined by its moments. Hence Selberg's theorem.



Step 1: Moving away from the critical line
Lemma: If T <t <2T and o > 1/2 then

t+1
[ oglcth + i)l —tog <o + i) dy < (o~ 1/2)1og T
t—
Conclude: Apart from a set of measure O(T/A),
log |C(% + it)| = log |¢(oo + it)| + O(AW).
Good if A is large and AW = o(+/loglog T).



Step 1: Moving away from the critical line
Lemma: If T <t <2T and o > 1/2 then

1
[ oglcth + i)l —tog <o + i) dy < (o~ 1/2)1og T
Conclude: Apart from a set of measure O(T/A),
log [¢(3 + it)| = log |( (o0 + it)| + O(AW).
Good if A is large and AW = o(+/loglog T).
G(s) = s(s = )a*/°T(s/2),  &(s) = G(s)¢(s)

Stirling's formula:

t+1 G(o + iy)
log —2 ") 14y <« (0 —1/2)log T.
/t_l‘og G2 )‘y o—1/2)log

Lemma equivalent to:

)
/t_l ) IogM‘dy < (0—1/2)log T.



Recall Hadamard factorization formula:

£(s) = eA+BsH (1 _ f) &S/P

P P

|5(s)|=fp[\1—;\



Recall Hadamard factorization formula:

£(s) = eA+BsH (1 _ f) &S/P

P p
S
|£<s)|—[p[)1 H
t+1 i
[ el il [ S s = Zde
_ 2
ST G
If |t —~] > 2:
(0-1/2)

/t“ ’ 0g P 1/2)* + (y —v)?
t—1 (B=0)+(y—7)?
Contribution of these zeros:
(o 1/2) —1/2)log T.
; NCEE < (0 —1/2)log
[t—y[>2

dy < .
‘ (t—7)?



Zeros near t: If [t — | <2

T (B-1/2P 4 (v - (- 1/2)% + X2
/t—l ‘|Og (B=0)+(y—")? ‘d /_w‘log (B—0)? ++X2
=27n(c —1/2).

Contribution of all these zeros is also < (0 —1/2)log T.



Zeros near t: If [t — 7| <2

T (B-1/2P 4 (v - (- 1/2)% + X2
/r—l ‘ 8 (B=0)+(y—)? ‘d /_oo ‘ log (B—0)? ++x2
=27n(c —1/2).

Contribution of all these zeros is also < (0 —1/2)log T.
Conclusion:

t+1 (l iy) )
[, Vs ggaigllar= [ sl sl
+ O((c —1/2)log T)

< (c—1/2)log T.



