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What does RH imply about the frequency of large values of
C(5 +it)]?

Does RH give better upper bounds on moments?
Analogues in families of L—functions?
Classical: RH gives moments to the right of the critical line:

.
/ (o + it)|PKdt ~ Z d"(n
0




S(T,V)={te[T,2T]:log|((3 + it)| > V}

Selberg’'s Theorem: meas S(T, V) when V is of size \/loglog T.
2k—th moment picks out V = kloglog T.
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S(T,V)={te[T,2T]:log|((3 + it)| > V}

Selberg’'s Theorem: meas S(T, V) when V is of size \/loglog T.
2k—th moment picks out V = kloglog T.
Theorem: Assume RH. In the range

Vioglog T < V < o(log, T logz T)
2
meas S(T,V) < T exp ( —-(1+ o(l))w).
For larger V, for some ¢ > 0

meas S(T, V) < T exp(—cV log V).

Corollary: On RH, M(T) < T (log T)¥**¢ for any € > 0.
Theorem (Harper): On RH
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On GRH: .
> LG 0P < g(log g)F

x (mod q)

Y LG xa)* < X(log X)HkF/2
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D L3 f x xa)k < X(log X)K(k=1)/2
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Milinovich /Kirila:

Z |<— ‘Zk < T(lOg T)k +2k+1
lpI<T

Najnudel:

2T
/ exp(2knS(t))dt < T(log T)k2+€.
T



The key idea

Selberg in his work on CLT — approximations for log C( + it) in
terms of Y 1/p!/2Hit,

For Im IogC( + it) this can be done. More complicated for
log |C( + it)| — singularities coming from zeros of ((s).
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The key idea

Selberg in his work on CLT — approximations for log C( + it) in
terms of Y 1/p!/2Hit,

For Im IogC( + it) this can be done. More complicated for

log |C( + it)| — singularities coming from zeros of ((s).

Key idea: On RH one can obtain upper bounds for log |C( + it)]
in terms of sums over primes.

If you are near a zero, then |((s)] is likely to be small.
Qualitative version of the idea: RH is equivalent to:

For any t € R, the function |{(o + it)| is increasing in o > 1/2.
Proof: If RH is true then

|E(o + it)] :H‘l—S/p’ :H (0 —1/2) +i(t — )|
p Iz

d

and each term in the product is increasing in o > 1/2.
Unconditional version: (o + it)| is increasing in o > 1 — useful
fact!



Quantitative version of the key idea

Proposition: Assume RH. T large, 2 < x < T2, t € [T,2T]. Then
with o9 = 1/2 + 1/ log x,

A(n) logx/n logT
log ¢(3 +it)] < Rez n°otitlogn logx + log x

n<x
In rough form:

Iog T

p2+lt log x

Key feature: flexibility in choosing x. For example, choosing
x = log T gives Littlewood's quantitative RH — LH.



Quantitative version of the key idea
Proposition: Assume RH. T large, 2 < x < T2, t € [T,2T]. Then
with o9 = 1/2 + 1/ log x,

A(n)  logx/n n log T
notitlogn logx log x

log [C(3 +it)| < Rez

n<x
In rough form:

Iog T

p2+lt log x

Key feature: flexibility in choosing x. For example, choosing
x = log T gives Littlewood's quantitative RH — LH.
Analogues for L-functions in families: for example

2
Xd Z xd(p Iog]d\

log L( L
Iogx
p<X p<f




Proof of the Proposition
By RH, [£(3 +it)| < [£(o0 + it)|. Using Stirling:

08 1C(5 + it)| < log (o0 + )] + 5.

2log x’



Proof of the Proposition
By RH, [£(3 +it)| < [£(o0 + it)|. Using Stirling:

log T
08 1¢(5 + it)| < log|C(o0 + it)| + oo
2 log x
Lemma (a la Selberg): Up to negligible terms
Q’ B A(n) log(x/n) 1 1 xP—$
_C(S)_;X ns  logx +Iogx(§()) +Iogx;(p—s)2'

Proof: Start with

Move line to the left and compute residues:

xP—*

E( )|0gx—<f ) Z(p_s



Use the Lemma with s = ¢ + it and integrate o from oy to infinity.
With sy = o9 + it:

An) log(x/n) 1 ¢
n%logn logx _Iogx(

log ¢(s0)| ~ Re( Y (s0)

n<x

>
=S
Iogxp o0



Use the Lemma with s = ¢ + it and integrate o from oy to infinity.
With sy = o9 + it:

An) log(x/n) 1 ¢
n%logn logx _Iogx(

log ¢(s0)| ~ Re( Y (s0)

n<x

>
=S
Iogxp o0

‘Z‘ <Z\So plz/ X do = elogleSo—

Hadamard's factorization formula + Stirling:

) IogTZ 0_1/2.

so — pl?

pl?

“Re CC(SO 5 log T— ZRe (



Conclude:

(n) log(x/n) N llog T
n%logn logx 2 logx

log [¢(s0)] < Re Z



Conclude:

(n) log(x/n) N llog T
n%logn logx 2 logx

log |{(s0)| < Re Z

Recall:
llog T

2|gx

log [C(5 + it)| < log|¢(s0)] + 7

Therefore

log [¢(5 + it)| < Re Z (n) log(x/n) logT

n%®logn logx log x



Conclude:

log [(s0)| < Re Z (n) log(x/n) | 1log T

n%logn logx 2 logx
Recall: Llog T
og
| <
og <4 +i0) < log C(s0)| + 5 o
Therefore

(n) log(x/n) log T
+ .
n%logn logx log x

log [¢(} + it)| < Re Z

Analogy with arithmetic functions:

win) <) 1+ log n.




Frequency of large values of |((3 + it)|
Recall: S(T,V) = {te[T,2T]:log|¢(3 +it)| > V}.

4§A§|og3 T: X = TA/V; Z:XI/IoglogT

From Proposition: log [((3 + it)| < Si(t) + Sa(t) + V/A with




Frequency of large values of |((3 + it)|
Recall: S(T,V) = {te[T,2T]:log|¢(} +it)| > V}.
4<A<logsT; x=TAYV: 7z = x1/loglog T

From Proposition: log [((3 + it)| < Si(t) + Sa(t) + V/A with

1 1
Si(t) =Re) Tyit? Sa(t) =Re ), Tyie’

z<p<x p

Case 1: 5i(t) > V
Case 2: Sy(t) > V/A.

meas(S(T, V)) < meas(Case 1) 4+ meas(Case 2).
Idea: bound meas(Case 1) and meas(Case 2) by computing

moments of S1(t) and Sx(t). Si(t) is more important, but by
breaking at z, we can compute more moments of it.



Lemma: If y* < T/log T then
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Key point: Uniform in k.
Proof:
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Lemma: If y < T/log T then
2T y -
/ ‘Z al(i) dt < Tk!(ZM) _
T sy P? p

p<y
Key point: Uniform in k.
Proof:

() =y el

2
p<y p n<yk n

If n=pi* - pp then need all p; <y, 3, = k and then

=, ) Ty

Since y* < T/log T, only diagonal terms matter:

[ 2 2

n<yk p<y

) .



Handling Case 1
Recall z = TA/(Vloglog T) For k < Vloglog T/(2A), Lemma gives

e

2T
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Handling Case 1
Recall z = TA/(Vloglog T) For k < Vloglog T/(2A), Lemma gives

2T
/T |S1(t)Fdt < Tk!(,;;)k < Tﬁ(M)"_

e

Conclude:
2T
meas{Si(t) > V(1 — 2/A)} < (V(1—2/A))2k/ 1Su() Prdt
T

kloglog T \k
< Tﬂ<ev2(1 - 2/A)2> ‘

Important range: y/loglog T < V < (loglog T)% choose
k= V?/loglog T:

TV v
meas{Si(t) > V(1-2/A)} <« Vloglog T exp (‘(1 —2/A)?loglog T)



In the range V > (loglog T)% choose k =10V to get

meas{S1(t) > V(1 —-2/A)} < T exp(—V log V).



3
2

In the range V > (loglog T)2 choose k = 10V to get

meas{S1(t) > V(1 —-2/A)} < T exp(—V log V).
In either case conclude

meas{S1(t) > V(1 —2/A)}
TV

\/2
< Vloglog T &P ( ~ (1-2/A)?loglog T)
+ T exp(—V log V).

First term is in the important range for moments — extrapolates
Selberg’s theorem in the large deviations range.



Handling Case 2

Recall x = TA/V, z = x1/1ogloe T For k < V/(2A), Lemma gives

2T 1\ k
/ 155(1)P<dt < Tk!( > f) < T(klogs T)X.
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Handling Case 2

Recall x = TA/V, z = x1/1ogloe T For k < V/(2A), Lemma gives

2T 1\ k
/ 155(1)P<dt < Tk!( > f) < T(klogs T)X.
;

z<p<x

Conclude:

meas{S,(t) > V/A} <« T(k\lzg/z;,_)k

Choose k = V//2A. Since A < logz T and we may assume

V > /loglog T, obtain

meas(Sy(t) > V/A} < Texp - % o5 V).



Putting Case 1 and Case 2 together:
meas(S(T, V))

oV ( % )
———exp( —
Vloglog T P (1-2/A)2loglog T

4
T (_7| v).
+ T exp 1A og




Putting Case 1 and Case 2 together:

meas(S(T, V))

e V. ( % )
_ Y e -
Vloglog T P (1-2/A)2loglog T
4
+ Texp(— — log V>.

4A
Choose
A {Iog3 T if V<log, Tlogs T
4 if V> log, Tlogy T
to deduce:

Theorem: If y/log, T < V = o(log, T logz T) then
meas(S(T, V)) < T exp(—(1+ o(1))V?/loglog T),

and for larger V it is < T exp(—cV log V) for some ¢ > 0.



Corollary:

2T 00
/ IC(L + it)[Pdt = —/ eV dmeas(S(T, V))
T —o0
= 2k/ e*V'measS(T, V)dV
< T(log T)k2+e.

The main contribution coming from terms V = kloglog T.



Corollary:

2T 00
/ IC(L + it)[Pdt = —/ eV dmeas(S(T, V))
T —o0

= 2k/ e*V'measS(T, V)dV

—00

< T(log T)k2+6.

The main contribution coming from terms V = kloglog T.
Related results: Jutila for V < loglog T
2

log log T(l + O(Iogl\:gT))'

S. — resonance method — V < ¢cy/log T/log, T

meas(S(T, V)) < Texp ( -

meas(S(T, V)) >

T %
(log T)* P ( - 10Iog(log T/(8V2log V)))



Harper's refinement
Iterative scheme similar to the argument for unconditional upper
bounds.
Harper's choice of parameters:

P S )
om0 P loglog TR T Tloglog T

stop when g ~ e~ 1000k

Associated Dirichlet polynomials over primes: for 1 <j < R

1
Thi-1<p<75 P



Harper's refinement
Iterative scheme similar to the argument for unconditional upper
bounds.
Harper's choice of parameters:

1 _ (20y1

:0 = P . A—
fo=0, f (loglog T)2" "~ (loglog T)?’

stop when g ~ e~ 1000k

Associated Dirichlet polynomials over primes: for 1 <j < R

1
P= >
Thi-1<p<Th P’
Proposition gives for any 1 < r < R:
1. 1 1
log [((3 +it)| <Re Y  ——+—.
p<Thr p§+’t /Br

Key feature: flexibility in choosing which r to use.
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For any / € N
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meas(7o)(log log T)* < / PL(t)Pldt < Th(loglog T)'.
T
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_3
Case 0: Suppose t is such that |[Re Pi(t)| > 3, * = (loglog T)%
Call the set of such t € [T,2T] as 7p.
For any / € N

2T
meas(7o)(log log T)* < / PL(t)Pldt < Th(loglog T)'.
T
Taking ¢ = (loglog T)?/2, conclude

meas(7p) < T/\(loglog T)™%* < T exp(—(loglog T)?).

So

2T

/TO [6(5 + it)[PHdt < (/T €5+ it)4kdt>§<meas(76))é <T.



Case r: For each 1 < j < r we have

[Re Pj(t)] < 5

Blw

but ,
Re Pry1(t)] > B,
Call this set 7.



Case r: For each 1 < j < r we have

[Re Pj(t)] < 5

Blw

but ,
[Re Pria(t)] > B,

Call this set 7.
Apply Proposition with this value r:

IC(3 + it) | < exp (2kRe (P1(t) + ...+ P(t)) + 2;)

On 7, can bound (for each 1 < j <)

_3
exp(2kRe Pj(t)) < E(2kRe Py(t)), ¢ =2[100kB; *].



/ |C(% +It)|2kdt<< eZk/Br/ HEKJ(2kRe Pj(t))dt
T

2T - 3
< 26 / [1 £, (2kRe Py(6)) (811 Pra (1)

2|1 105r+
) /( ) )
T

j=1



/T|¢(; + it) |2k dt < e2K/Pr /T 1] E,(2kRe Py(t))dt
r rJ:]_

oT 3 2[1/(108+1)]
< &2K/5 /T [T £ (2kRe Py(0)) (811Prsa(2)]) ot
j=1

Key points:
: 3 2[1/(10841)]
[1 £, (2kRe Pi(6)) (B241Pra(2)])
j=1
is a short Dirichlet polynomial.

Length < T tothe > £;8; + Bry1(2(1/(108,41)]) < TH™.
j=1

Pr41(t) is rarely big — gain a lot from that term, enough to
compensate e2k/Br



Extreme values
Recall: Littlewood on GRH
¢(2)((2+0(1))e" loglog |d|) ™" < L(1, x4) < (2+0(1))e” loglog |d]|.

Know unconditionally (Chowla, ..., Granville & S.) there are
arbitrarily large discriminants with

L(1,xq) = €7 (log log |d| + logs [d| — logy |d| + O(1)).

Correspondingly for small values of L(1, x4).
Conjecture (Granville & S.):

L(1,xq) < €'(loglog|d| + logs |d| + C1 + o(1)).

Related question: Least quadratic non-residue (mod p).

Can get as large as > log plogz p — Graham & Ringrose. On GRH
gets as large as > log ploglog p — Montgomery.

GRH implies that the least quadratic non-residue is < (log p)?.



Story on the critical line?

Maximal size of [((5 + it)|? Analogues for central values of
L-functions?

Unconditional results: Subconvexity problem for L-functions.
Bourgain: [((3 + it)] < [t[13/84+<.



Story on the critical line?

Maximal size of [((5 + it)|? Analogues for central values of
L-functions?

Unconditional results: Subconvexity problem for L-functions.
Bourgain: [((3 + it)] < [t[13/84+<.

On RH: Littlewood, ..., Chandee & S., Carneiro & Chandee

€5 + it)| < exp ((loiz + o(l)) M)

2 log log |t
: (log |t[)>2

Explicit versions of slightly weaker result for L-functions: Chandee.



Story on the critical line?

Maximal size of [((5 + it)|? Analogues for central values of
L-functions?

Unconditional results: Subconvexity problem for L-functions.
Bourgain: [((3 + it)] < [t[13/84+<.

On RH: Littlewood, ..., Chandee & S., Carneiro & Chandee

€5 + it)| < exp ((loiz + o(l)) M)

2 log log |t
: (log |t[)>2

Explicit versions of slightly weaker result for L-functions: Chandee.
Questions: How large can we make C(% + it)? Central values of
L-functions? (Q results)

What should be the truth?



Riemann implies Lindelof

s) = s(s — )75/ (s e — 2\es/P
§(s) = s(s — )7 ~*/2r(s/2)¢(s) = 1}(1 p)

1
2

+ it
‘ 3+/t‘_H‘2+, ‘_H‘4




Riemann implies Lindelof

s) =s(s — 1) */2I(s s) = B 2\ es/lp
£(5) = s(s = )7 /2r(s/2)((5) 1}(1 p)

+ it
‘ 3+/t‘_H‘2+/ )_H‘4+

4+x

Functional equation + Stirling: Put f(x) = log =
log [¢(3 + it)] =log t + O(1 f,zf (t—~

Note:

1 [ 44X
2/ log —:2X dx = 2.

— 00

Size of ((3 + it) related to fluctuations in the distribution of
ordinates of zeros of ((s) (i.e. S(t)).



Note f(x) = log((4 + x2)/x?) has a singularity at x = 0.
Idea: Find a nice function ga with ga(x) < f(x), and such that

EA(&) — /OO gA(X)ef27riX5dX

— 00

is compactly supported in [—-A, A].



Note f(x) = log((4 + x2)/x?) has a singularity at x = 0.
Idea: Find a nice function ga with ga(x) < f(x), and such that

EA(&) — /OO gA(X)ef27riX§dX

— 00

is compactly supported in [-A, A]. Then
STft-7) = ealt—)
¥ v

Now use explicit formula to convert RHS to a sum over primes.

S5 [ - s A0 (22).

—00 n N2

Conclude

og ¢(3+it)| < S+ [ (Fu)-e

(%

log n

).



Estimate sum over primes trivially: Assuming ga nice

1 A(n) . /logn A(n) A
=R (=) 2 e,
21 ezn: n%—s—itgA 27 < ;;A Vn <€

Problem: Find minorants ga(x) < f(x) with ga supported in
[—A, A] with minimal

/ " (F(0) — ga(u))du.

— 00
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=R (=) 2 e,
21 ezn: n%—s—itgA 27 < ;;A Vn <€

Problem: Find minorants ga(x) < f(x) with ga supported in
[—A, A] with minimal

/ " (F(0) — ga(u))du.

— 00

Answered by work of Carneiro & Vaaler: minimum L distance

1
= £ (2log2 — 2log(1 + e 4.



Estimate sum over primes trivially: Assuming ga nice

R > 7+,tA (loin)<< > /\\(f';)<<e’rA

n<e2mA

Problem: Find minorants ga(x) < f(x) with ga supported in
[—A, A] with minimal

/m (F(u) — ga(u))du.

Answered by work of Carneiro & Vaaler: minimum L distance
1
= £ (2log2 — 2log(1 + e 4.
With this choice for ga:
1 . |Og t —4 A TA
log [¢(5 + it)] < m(2log2+0(e )) + O(e™).

Optimal: A = (1 — €)loglog t gives bound for log |¢(3 + it)].



Parallels the work of Goldston & Gonek for bounding S(t): On RH

IS(t + h) — S(t)] < (% +o(1)) Iolgoﬁ);t'

Multiplicity of a zero % + iv is bounded by log /(2 loglog~).



Parallels the work of Goldston & Gonek for bounding S(t): On RH

IS(t + h) — S(t)] < (% +o(1)) Iolgoﬁ);t'

Multiplicity of a zero % + iv is bounded by log /(2 loglog~).
Relies on finding majorants/minorants to characteristic function of
[t, t 4+ h] with Fourier transform supported in [-A, A] and with
smallest L' distance.

Problem solved by Beurling/Selberg.



Parallels the work of Goldston & Gonek for bounding S(t): On RH

IS(t + h) — S(t)] < (% +o(1)) Iolgoﬁ);t'

Multiplicity of a zero % + iv is bounded by log /(2 loglog~).
Relies on finding majorants/minorants to characteristic function of
[t, t 4+ h] with Fourier transform supported in [-A, A] and with
smallest L' distance.

Problem solved by Beurling/Selberg.

Refinement of Carneiro, Chandee, & Milinovich:

st (1 o)

Based on finding approximations to (arctan(1/x) — x/(1 + x?)) —
Carneiro & Littman.



Carneiro—Vaaler on polynomials

Suppose
N

F(z) = [ (z - an)

n=1

is a polynomial with all roots in the unit disc: |a,| < 1.
Theorem: For any integer M

log2
max log |F(2)] < A;g —‘Za




Carneiro—Vaaler on polynomials

Suppose
N

F(z) = [ (z - an)

n=1

is a polynomial with all roots in the unit disc: |a,| < 1.
Theorem: For any integer M

I 2
mgxloglF( z)| < A;g —‘Za
Potential example: N = rk

r

F(z) = ][z —el/r)~.

j=1

Analogue of 5(t): bounded by k/2.
Analogue of log |¢|: bounded by 2%.
Think of k as log t/(2loglog t).




Q-results

Theorem: (Titchmarsh, Levinson)There are arbitrarily large t with
(for 3 <o <1)

l1-0
C(0 + it)] > exp (Am).
Note: . (log 1)1
— B og t. —0
H (1_E) —exp(B log log t >

p<(log t)

Recall RH upper bound: exp(C(c)(log t)?>27/log log t).



Q-results

Theorem: (Titchmarsh, Levinson)There are arbitrarily large t with
(for 3 <o <1)

l1-0
C(0 + it)] > exp (Am).
Note: . (log 1)1
— B og t. —0
H (1_5) —exp(B log log t )

p<(log t)

Recall RH upper bound: exp(C(c)(log t)?>27/log log t).
Theorem: (Montgomery) Fix 1 > o > % There are arbitrarily large

with
o Vo —1/2 (logt)t=7 )

20 (loglogt)®

1 Vl0ogt )
20 /loglogt/

Clo+it)] > exp

On RH:
\C(% + it)| > exp (



Montgomery's approach: Use zero density estimates to
: ) 1
approximate log|((o + it)| by Re Z o
p<z

Here z = clog T loglog T. Use pigeonhole principle to find t with
cos(tlogp) € (1/2,1] for all p < z.



Montgomery's approach: Use zero density estimates to

1
approximate log (o + it)| by Re Y  ——.
p<z

Here z = clog T loglog T. Use pigeonhole principle to find t with
cos(tlogp) € (1/2,1] for all p < z.
Alternative approach: Balasubramanian & Ramachandra.

max [((o+it)] > (;/TJFH |C(a+it)|2kdt>2lk > (Z d:(z’;) )2k.

T<t<T+H T —H
n_

Choose k to maximize. For o > 1/2, only gives Levinson's result.

(Bi”ogT), B—=053...
Vl0oglog T

1 .
5+t
TQ%§T|C(2 it)| > exp



True maximal order?

Montgomery suggested that these Q results are optimal.
Seems solid for o > % but need more care on the critical line.



True maximal order?

Montgomery suggested that these Q results are optimal.
Seems solid for o > % but need more care on the critical line.
Extrapolate Selberg's theorem: Perhaps measure of t € [T, 2t]
with log |¢(3 + it)| > V behaves something like

00 V2
XT/ e 2dx ~ Texp(—i)
v/ % loglog T |Og |0g T

Suggests maximal size for V about /log T loglog T.



True maximal order?

Montgomery suggested that these Q results are optimal.
Seems solid for o > % but need more care on the critical line.
Extrapolate Selberg's theorem: Perhaps measure of t € [T, 2t]
with log |¢(3 + it)| > V behaves something like

00 V2
XT/ e 2dx ~ Texp(—i)
v/ % loglog T |Og |0g T

Suggests maximal size for V about /log T loglog T.
Conjecture: Farmer, Gonek & Hughes (2007) “Sub-Gaussian

extreme values”

max_|C( +it)] = exp (5 + 0(1)) /log Tloglog T).

T<t<2T

S



The moment conjectures: a paradox
Keating—Snaith conjecture

1 2T . dk n 2 2
2L i~ a3 HE g og T

n
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The moment conjectures: a paradox
Keating—Snaith conjecture

I 2k di(n)? K
— = 1 ~Y ad | T .
T /T 1C(5 + it)|[*dt ~ g« E . grak(log T)

n<T

Asymptotics:
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The moment conjectures: a paradox
Keating—Snaith conjecture

1 2T . dk n 2 2
2L i~ a3 HE g og T

n
n<T

Asymptotics:

el—7 'S k 'S

2 (2k2 ogk T O )) Bk (4\/E+O( ))
12T ok . /Clog T\
Tfr IC(5 + it)|*"dt  grows like < klogk> :

Weak version: Uniformly in k one has

1o2ro ok clog T\ K
— =+ it)|Ndt > | ———
T./T <2+ 1) _<k|ogk>

cIogT)

1, 2k
max _|¢(5 + it)| dtZexp(loglogT

T<t<2T



CFKRS conjecture:

Tt ek T t
/0\§(2+lt)| dt.“z/0 Pk<log§>dt

for a specified polynomial Py of degree k2.
Weak version: Uniformly in k one has

2T
/ ¢ + it)|*dt < T(log T)¥.
.



CFKRS conjecture:

Tt ek T t
/O\C(2+lt)\ dt%/o Pk<log§>dt

for a specified polynomial Py of degree k2.
Weak version: Uniformly in k one has

2T
/ (X + it)PHdt < T(log T)¥.
.

But this implies

R

1, < mi K2\ 2
T;ﬂ%);TKb-i-/t)\ < min (T(Iog T) )

— oxp (iog Tioglog 7).



Extreme values of L-functions

Earlier methods don’t extend easily to central values.
Heath-Brown (unpublished), Hoffstein & Lockhart: There are
arbitrarily large fundamental discriminants d such that

V/log|d| )

L(%’ Xa) > exp (Cloglog |d]|

C\/@)

L(%,fXXd)>>eXp( m .

Idea: Crucial use of quadratic reciprocity.
Can make xq4(p) = €p for all p < z, by choosing d in a progression

(mOd 4'1_[p<z )
Average over such progressions.



Extreme values of L-functions

Earlier methods don’t extend easily to central values.
Heath-Brown (unpublished), Hoffstein & Lockhart: There are
arbitrarily large fundamental discriminants d such that

V/log|d| )

L(%’ Xa) > exp (Cloglog |d]|

L(3,f X xq) > exp (CI”IOg’d’).
oglog|d|

Idea: Crucial use of quadratic reciprocity.

Can make xq4(p) = €p for all p < z, by choosing d in a progression

(mod 41T, p).

Average over such progressions.

Similar results of |L(3,x)[, x (mod q)? or L(3,f) as f ranges over

all Hecke eigenforms of large weight k (or large level)?

One motivation for work with Rudnick on lower bounds for

moments in families.



The resonance method
Idea: Resonator — R(t) = >_, r(n)n~t. Compute

2T 2T
/1 _/ R(OPdt, b= [ ¢+ in)lR(t)>dr.
T T

Then

\2\
it)| >
721%7'(( + it)| L

Problem: Choose a(n) so as to maximize the ratio |h|/h.

If R(t) is a short Dirichlet polynomial then both /; and / can be
evaluated. Two quadratic forms in the coefficients r(n) — problem
is to optimize their ratio.



The resonance method
Idea: Resonator — R(t) = >_, r(n)n~t. Compute

2T 2T
/1 _/ R(OPdt, b= [ ¢+ in)lR(t)>dr.
T T

Then

\2\
it)| >
TQ%ETK( + it)| L

Problem: Choose a(n) so as to maximize the ratio |h|/h.

If R(t) is a short Dirichlet polynomial then both /; and / can be
evaluated. Two quadratic forms in the coefficients r(n) — problem
is to optimize their ratio.

Method widely applicable:

> LG IRWE, DD RWPA

x (mod q) X (mod q)

S LGRS IR

ld|<X ld]<X



The quadratic forms

R(t) =) r(n)n"

n<N

If N < T1~¢ — short Dirichlet polynomial — only diagonal terms

matter. oT
h :/ IR(e)Pdt ~ TS [r(m)
T n<N
2T 1

12%/ Z i Z r(m)W(%)itdtzT Z r(m)\/;n)

T <7 m,n<N mk=n<N




The quadratic forms

R(t) =) r(n)n"

n<N

If N < T1~¢ — short Dirichlet polynomial — only diagonal terms

matter. oT
b= [ IR@Pde~ T S ()
T n<N
2T 1 it r(m)r(n)
12%/ Z — Z r(myr(n)(—) dt=T Z — .
T o kT (m) mk—n<N vk

Similar quadratic forms in other families: e.g. N < /q,
1
el o IRCIP =Y ()P,
T\ (mod q) n<N
1
pyom: L3 )R~ >

a) | ea o) ke

r(m)r(n)
vk



Or, with N < X3
b
> U R(xa)? ~ CX > r(m)r(n2)

ld|<X ny,m<N
niny=0

b r(m)r(n2)
L(3. xa)R(xa)> ~ CX —.
Idz;X 2 ’ kgz\;Y vk

ny,m<N
knin,=0



Or, with N < X3

SR~ XY

ld|<X ny,m<N
niny=0

b r(m)r(n2)
L(3. xa)R(xa)> ~ CX —.
Idz;X 2 ’ kgz\;Y vk

ny,m<N
knin,=0

Theorem: (S) For large N

max| Z mk \ /(Z| ?) = e ((1+o(1))¢g%).

Corollary: There exist t € [T,2T], |d| € [X,2X] with

(3 +it) > e ((1+ 0(1))ﬁlvo'g°lgogTT),
L(3.xd) > exp (;\/I\i%)-



Forall3<V < %\/Iog T/loglog T the measure of t € [T,2T]
with [((3 + it)| > e" exceeds

T v?
(log T)* &P ( B 10Iog;(log T/(8V2log V)))

The set on which |¢(3 + it)| > exp(%/log T/loglog T) has
measure | T
> Texp(—ciOg ),

loglog T

suggesting that still larger values should be possible.



Forall3<V < %\/Iog T/loglog T the measure of t € [T,2T]
with [((3 + it)| > e" exceeds

T v?
(log T)* P ( B 10Iog;(log T/(8V2log V)))

The set on which |((3 + it)| > exp(£+/log T/loglog T) has
measure on T
og
> Te (— ci),
P loglog T
suggesting that still larger values should be possible.
Can use a similar argument to produce large values of |((o + it)],

L(o, xq) etc.
Hilberdink; Voronin

Like with moments, this only gives Levinson type Q-results: e.g.

o 1-0
(o + it)] > exp <C(a)(||oi|tc))gt).



Optimizing the ratio of quadratic forms

Theorem: (S.) For large N

EN r(m%mk) / (ZN H(mP) = exp ((1+0(1)) %)

max
r




Optimizing the ratio of quadratic forms

Theorem: (S.) For large N

npe| 35 AV (3 o) = o (ot LS

The lower bound in the theorem.
Choose r(n) = f(n) — real valued multiplicative function
supported on square-free numbers.

Denominator:
> o =TT+ 16

n<N



Optimizing the ratio of quadratic forms

Theorem: (S.) For large N

npe| 35 AV (3 o) = o (ot LS

The lower bound in the theorem.
Choose r(n) = f(n) — real valued multiplicative function
supported on square-free numbers.

Denominator:
> o =TT+ 16
n<N

Numerator:

W5
I;V \F mg/k
(mk)=1



Rankin's trick, for any a > 0: Numerator

>Z Z Z (k) Z f(m)2ma

(mk) 1 k

:1:[ (1+f\(};)+f(p)2) - ,\}al;[(lera(f\(ngf(p)z))




Rankin's trick, for any a > 0: Numerator

D S o DO

(m k) 1 K k2 (mao=1
_ 1;[ (1+ W + f(p)z) - ,\}a];[ (1+pa(f\%) + f(p)2>>'

Heuristic choice of resonator: Suppose f(p) < 1 always, that f(p)?
dominates f(p)/,/p, and that p® — 1 ~ a'log p.
Then

f(p)

1
Numerator > 5 1;[ (1 + W + ,r(p)2)7

provided constraint:

Z f(p)*logp < log N — (log2)/c.



Problem: Maximize ratio
IT (4 "2 4 t67) / (14 7(61) = 0 (2 o)y

- p

under constraint

> f(p)*logp < log N.
p



Problem: Maximize ratio
I+ ) re2) /(14 70R) = 0 (2 )

under constraint
> f(p)*logp < log N.

p
Motivates the choice: L = /log Nloglog N, a = 1/(log L)3
L

for L2 < p < exp((log L)?).

f(p) = Jplogp



Problem: Maximize ratio
I+ ) re2) /(14 70R) = 0 (2 )

under constraint
> f(p)*logp < log N.

P
Motivates the choice: L = /log Nloglog N, a = 1/(log L)3
L
f(p) = for L? < p < exp((log L)?).
0)= oiogs (105 1)?)
L? L?
Zf(p)2logp: Z — = < log N
plogp loglL
P L2<p<exp((log L)2)
Z f(p) Z L L _ gN
7 VP pednl(iogLy) PIOBP 08 L Vioglog N



The upper bound of the Theorem

Guess that the lower bound example is close to optimal.

Define g multiplicative by (L = v/log N log log N)
, L
g(p*) = min ( 7)

1,
pk/2log p



The upper bound of the Theorem

Guess that the lower bound example is close to optimal.

Define g multiplicative by (L = v/log N log log N)

) L
g(pk) = miIn (1, kalogp)
rm 2
r(miyr(m) < 3 (U7 + gkar(m?)




g(k) g(p) , g(p)?
k§1;[(1+ﬁ+p+...)

<<exp< Z ﬁ11+2 Z L )

p<log N/ loglog N p>log N/ loglog N P |Og P
Vioeg N >
VioglogN/"

k<N

= exp (14 0(1)



g(k) g(p) , g(p)?
<];[(1+ﬁ+—|—...)

k<N ko p
L
<K exp +2
<pS|og /\%E)glogN VP = p>log ,;bg log N plog P>
log N
—exp (14 o(l))\/?é%)
Since g(p?) = min(17 L/(p*?10g p)).
alogp 1
kz: H ( ) H (1 + \m—l)'
. alogp UL L VIog N
First factor < exp (pzlln i ) < NYL = exp (\/W)'
Second factor < exp (O(Z \;ﬁ» < exp (o(l(ﬁ»

pln



Frequency of large values

2T 2T
‘/ C(%+it)\R(t)|2dt’ < e‘// |R(t)[2dt
T T
+/ €3 + it)||R(t)|?dt
L

where L is the subset of [T,2T] on which ]C(% +it)] > eV.



Frequency of large values

2T

2T
3+ IR < e [ RO
T
+ [ 1 + 1RGP

where L is the subset of [T,2T] on which ]C(% +it)] > eV.

Two applications of Cauchy—Schwarz —- second term
2T 1 1 2T 1
< 1 . \|4 4 4 4 2.
< (/T 3+ i) (meas() ([ R() )

If N < TY27¢ can compute 4-th moment of R(t).
Small modifications to the resonator yield bounds for meas(L).



