Moments of zeta and L-functions

K. Soundararajan

May 22, 2019



Moments of ((s)
Classical problem: Asymptotics for
T
Mk(T):/ IC(L + it) [Pk dt.
0

Hardy-Littlewood:

;
/ IC(X +it)Pdt ~ Tlog T.
0

Ingham:
T 1, 4 1 4
/0 IC(5 + it)["dt ~ 52 T(log T)".

No other moments are known.
RH implies Lindeldf Hypothesis — [¢(5 + it)| < (1 + [t])© — which
is equivalent to

M (T) < C(k,e) T



Conrey-Ghosh(-Gonek) conjecture:

Mi(T) ~ agi T (log T)¥,

with
10 (S5
and

g1=1, g =2 g3=42, g4=24024, g =777

Keating—Snaith Conjectures:



Questions

Where do these conjectures come from?
Why is the rate of growth (log T)*?
Which values of C(% + it) are picked up by the 2k-th moment?



Questions

Where do these conjectures come from?

Why is the rate of growth (log T)k2?

Which values of C(% + it) are picked up by the 2k-th moment?
Related questions for families of L—functions:
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Questions

Where do these conjectures come from?

Why is the rate of growth (log T)kZ?

Which values of C(% + it) are picked up by the 2k-th moment?
Related questions for families of L—functions:

ST LG )P ~ Cegllog )
x (mod q)

D L3 xa)* ~ CX(log X))/
ld|<X
D7 LB E % xa)* ~ GeX(log X)H1/2
ld]<Xx
Analogous problems over function fields.
Progress toward these conjectures? Asymptotics known in some

cases. Lower bounds of the right order? Upper bounds of the right
order?
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True if o > 1.

Answer converges if 0 > 1/2, and correct if Lindelof Hypothesis
holds.

Suggests answer for o = 1/2 plausibly related to
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S

> d(n)® Ress—o (C(s + DK A(s + 1) T

n S
n<T

) ~ ak(log T)kz.



S

3 O Res, o (cfs + 1) Als + 1) ~ anllog T)*

n<T

Similar calculations in other families:

Z L kg #{|d| < X} Z CkX(logX)k(k+1)/2,
ld|<X n<X

Note dy(p?) = k(k 4+ 1)/2, which determines the power of log X.



Quadratic twists of an elliptic curve E

L(s, Eq)* =) akrfsn) Xa(n)

n=1

ak(n) multiplicative function:

o-2)"0-2) " - £
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Quadratic twists of an elliptic curve E

o0

L(s, Eq)* =) akrfsn) Xa(n)

n=1

ak(n) multiplicative function:

ap\ K Bp _k_ooa(e)
(1-22) (-2) =25

{=0
Expect
b ak(n?)
1 £k k
SULGEa) e ) 3D 2
ld|<X n<X
de&

Power of log X determined by average value of ax(p?).

k(k; Doz + )
k(k—1) _k(k+1)

==t (1+ a3+ B3).

ak(p?) = (kap)(kBp) +




Heuristic 2: Extrapolations of Selberg's theorem

An analogy with the divisor function
Erdés—Kac: For n < N, w(n) is approximately normal with mean
log log N and variance loglog N.
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(log log N)<—1

#{n<N: wh)=k}~N (k—1)]

e log log N‘

True as stated for fixed k; uniformity in k — work of Sathe—Selberg.



Heuristic 2: Extrapolations of Selberg's theorem

An analogy with the divisor function

Erdés—Kac: For n < N, w(n) is approximately normal with mean
log log N and variance loglog N.

Better version: w(n) is approximately Poisson with parameter
log log N:

(log log N)<—1

— loglog N
e .
(k — 1)1

#{n<N: wh)=k}~N
True as stated for fixed k; uniformity in k — work of Sathe—Selberg.

X is a Poisson random variable with parameter A\. Then
ST AW
Xy _ AN EA e
E(t")=e ;0 T .

Dominated by terms £ =~ t\.



Since di(n) looks like k(") this suggests

= Z die(n) =< exp((k — 1) loglog x) = (log x)*~1.

n<x

Dominated by terms with w(n) ~ k log log x.



Since di(n) looks like k(") this suggests

= Z die(n) =< exp((k — 1) loglog x) = (log x)*~1.

n<x

Dominated by terms with w(n) ~ k log log x.
Note that the constant in the asymptotic is not predicted:

1

Io X
,de g )1)! 7

n<x

-1

Io X
e ol

n<x

Behavior of w(n) in the large deviations range w(n) ~ kloglog n
differs from Poisson by constants.



X is a random variable with mean g and variance o

E(eX) = . /oo exp (tu - (u;'j)z) du

210 J 0o 2

2)2
:etu+t202/2 1 /Ooexp<_(u—,u—ta)

210 J—oo 202

2.2
— ethttio /2.

Dominant contribution: u = u + to? + O(o).



X is a random variable with mean 1 and variance 2.

1 [ (u—p)
E(eX) = / ex (tu— 7) du
(™) ey | P 52
2\2
 tu+t2e?/2 1 oo (u—,u—ta)
_eu 0/27m_/;ooeXp<_M)du
— etu+t2o'2/2'

Dominant contribution: u = u + to? + O(o).

Selberg: log |¢( + it)| is normal with mean 0 and variance
~ % loglog T.

Extrapolating Selberg suggests:

T
Mk(T)_/O exp(2k log [¢(L + it)[)dt

1
= T exp ((2k)21 log log T) = T(log T)k2.



Explains what the 2k—th moment measures:
The 2k—th moment of zeta is dominated by

{t€[0,T]:[¢(3 +it)] =< (log T)*},

and this set has measure T /(log T)¥.



Explains what the 2k—th moment measures:
The 2k—th moment of zeta is dominated by

{t€[0,T]:[¢(3 +it)] =< (log T)*},

and this set has measure T /(log T)¥.
k-th moment of L(3, x4) dominated

L(%v Xd) = (|Og ’d|)k+1/27

and the number of such |d| < X is about X /(log X)**/2.
k-th moment of L(%, E4) dominated by values of size

(log X)~1/2 4 such values = X/(IogX)k2/2.



Heuristic 3: Random matrix theory
Assume RH.

T T
N(T) = #{0 <y < T: ((3+i7) =0} = ;- log 5—+O(log T).

Let 0 < y1 <7, < ... denote the ordinates of zeros of ((s). Then

21n
n logn’
Write
~  logvy,
Yn = Yn )
27

and, on average, Yp+1 — Yn is of size 1.



Heuristic 3: Random matrix theory
Assume RH.

N(T) = #{0 <7< T+ ((3+i7) =0} = 5 log 5+ O(log T).

Let 0 < y1 <7, < ... denote the ordinates of zeros of ((s). Then

21n
n logn’
Write
~  logvy,
Yn = Yn )
27

and, on average, Yp+1 — Yn is of size 1.
Question: What is the distribution of the spacings Jp11 — 7n?
Given an interval (a, ) in (0, 00) what can we say about

1
lim —#{n <N : 7,11 —7n € (o, 5)}7?

N—oo N



Eigenvalues of random matrices

Conjectured answer: The normalized spacings between consecutive
zeros of ((s) behave like the normalized spacings between
consecutive eigenvalues of a large random matrix.

Originates in work of Hugh Montgomery (1973) on the Pair
Correlation of zeros of ((s). The connection with RMT was made
during a chance encounter between Montgomery and Freeman
Dyson.



Eigenvalues of random matrices

Conjectured answer: The normalized spacings between consecutive
zeros of ((s) behave like the normalized spacings between
consecutive eigenvalues of a large random matrix.

Originates in work of Hugh Montgomery (1973) on the Pair
Correlation of zeros of ((s). The connection with RMT was made
during a chance encounter between Montgomery and Freeman
Dyson.

Precise version: Consider the unitary group U(N), and pick a
random matrix g from U(N) (random with respect to Haar
measure on U(N)). Let €1, ..., eV denote the eigenvalues of g,
arranged so that 0 < 6; < 6, < ... <0y < 2xw. Consider the
distribution of the normalized angles:

These have mean spacing 1. Average their distribution over U(N),
and let N — oo.



Random numbers vs Random eigenvalues: Figure due to
Eric Rains

. .
. -
e, .

M e ehms
O] ves

“'Fig.l. a Eigenvalues of a random U eU(100). b 100 independent uniform points ing'



Odlyzko's marvelous data

Nearest neighbor spacings, N = 10420

0.6 0.8 1.0
T

density

04

0.2

0.0

0.0 0.5 1.0 1.5 20 25
normalized spacing

e - s & it gt &t e a .



Odlyzko's less marvelous data!
distribution of log(|Z(1)])

2 for N = 10712 and 10720 vs. normal distribution
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o
N=1020
gL
e normat
8 L
o
8L
o
2 wn
‘@
s 8
-
gL
o
w0
2L
e
2L
g |
<
Q i 1 ! 1 |
o
” -3 2 -1 0 1 2 3

scaled and translated log of the absolute value of the zeta function

Figure 2.10.1.  Comparison of the distribution of log |{(1/2+it)| over two ranges of 10¢



Keating and Snaith’s insight

Model properties of ((s) around height T by random matrices of a
particular size V.
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particular size V.

How to choose N7 Average spacing between consecutive zeros of
((s) at height T is about 27/ log T. Average spacing between two
“eigen-angles” of a random matrix of size N is about 27/N. This

suggests taking
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N — N=logT.
ogT - N °8




Keating and Snaith’s insight

Model properties of ((s) around height T by random matrices of a
particular size V.
How to choose N7 Average spacing between consecutive zeros of
((s) at height T is about 27/ log T. Average spacing between two
“eigen-angles” of a random matrix of size N is about 27/N. This
suggests taking

27 2

~ — N=logT.
ogT - N 8

Analog of {(s)?
Answer: Characteristic polynomial of the random matrix.

For example: one can model ((s) near the 10%°-th zero, by
characteristic polynomials of random matrices of size 42.



Keating and Snaith's marvelous graph

_-- CUE

s Riemann Zeta

""" Gaussian

-6

Fig. 1. The CUE valve distribution for Relog Z with N = 42, Odlyzko’s data for the value distribution of
Relog £(1/2 + ir) near the 10201 zero (taken from [29]), and the standard Gaussian, all scaled to have unit
variance



Back to moments
Compute the analogue in random matrix theory:

/ det(/ — g)P*dg = /
U(N) [0,1]"’

1
X o T 1e(6) — e(6m)Pdts - - db
T 1<j<m<N

‘2/(

N
11— e(9n))
n=1



Back to moments
Compute the analogue in random matrix theory:

ok 2k
det(/ — g)[**dg = )|
U(N) [0,1]¥

1
X o T 1e(6) — e(6m)Pdts - - db
T 1<j<m<N

The Selberg integral:

/ Ht"‘ Y1 — )8t H \t; — tj|*Vdty...dt,
(3 P 1<i<j<n

H Mo+ )N+ N1+ +1)7)
MNa+ B4+ (n+j— 1Dy +7)

Jj=0



Back to moments
Compute the analogue in random matrix theory:

2k 2k
det(/ — g)*dg = )|
U(N) [0,1]V

1
X o T 1e(6) — e(6m)Pdts - - db
T 1<j<m<N

The Selberg integral:

/ Ht"‘ Y1 — )8t H \t; — tj|*Vdty...dt,
(3 P 1<i<j<n

H Mo+ )N+ N1+ +1)7)
NMa+B8+(n+j—1)I(1+7)

j=0
Moment integral evaluates to
N

[ rorex ) N

P ~ Bk 7oy
L CERR COT



Analogous conjectures in other families

Katz—Sarnak philosophy: Model low lying zeros in families of
L-functions by eigen-angles nearest to 0 in random matrices chosen
from appropriate classical groups.
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Analogous conjectures in other families

Katz—Sarnak philosophy: Model low lying zeros in families of
L-functions by eigen-angles nearest to 0 in random matrices chosen
from appropriate classical groups.

L(1/2,x) for x (mod g) modeled again by U(N) — like for ((s).
L(3, xa) modeled by random matrices from USp(2N).

Near the real axis, the density of zeros of L(s, xq4) is (log|d|)/(27)
per unit length.

Eigenvalues of a matrix from USp(2N): e
in ascending order 0 < 07 < ... < 7.
Haar measure on USp(2N):

0y eFitn arranged

N
Normalizing constant x H (cos 0; — cos0; ) H sin 0) 2d0,.
1<i<j<N k=1

Conjecture: Behawor of 1 Iogld‘ is exactly the same as the
behavior of 01 S

Note: in symplectic family — zeros near 1/2 are “repelled.”



Keating—Snaith Scaling: d of size X corresponds to N of size
log v/ X.

Conjecture:

% Zb L(%)Xd)k ~ frax(log \/)?)k(k-u)/z
# }Id\ﬁx



Keating—Snaith Scaling: d of size X corresponds to N of size

log v/ X.

Conjecture:
#{d }Z (3. xa)* ~ fiak(log vV X)(k1/2
ld|<X

k-th moment of characteristic polynomial averaged over USp(2N)
with respect to the Haar measure.
Selberg integral again!

22NkH F(L+N+)I(1/2+ k+J) Nk(k+1)/2
LT24+ )T+ k+N+j) — “(k(k+1)/2)!

(k(k+1)/2)!

ARV ANCTTY



Heuristic 4: Symmetrization of diagonal terms

Even primitive Dirichlet characters x (mod q).
Introduce “shifts” aq, ..., ak, 81, ..., Bkx: want to understand

k
x (mod q)j=1
x(=1)=1

A3 +s,x) = (q/)3T(1/4+s/2)L(345,X) = e A(3—5,X), exex =1

2k—th moment corresponds to setting all o; = 3; = 0.



Heuristic 4: Symmetrization of diagonal terms

Even primitive Dirichlet characters x (mod q).
Introduce “shifts” aq, ..., ak, 81, ..., Bkx: want to understand

k
x (mod q)j=1
x(=1)=1
A(%+S7X) = (q/ﬂ')%r(l/4+5/2)L(%+S7 X) = GX/\(%_S7Y)7 6)(6? =1

2k—th moment corresponds to setting all o; = 3; = 0.
Observe: Conjecture symmetric in (a1, ..., ak, B1,--., k).
Proof: Obviously symmetric in (a1, ...,ak) and (51, .., Bk)-

AG + @i, XI5 = 51, X) = M3 — @i, X)exN 5 + B, X)
= A3 + B, X)A(3 — @i, X)






k
8)= 5D (03=5). 6nd) = [[r(+ PG -

Jj=1 Jj=1
o(na) = Z ny“eon O
n=ny---ny
a > o(n;a)
HL(s—i-aj,X) = Z n’s
j=1 n=1
k
[1ts =53 Z D),
Jj=1 =1

Diagonal Contribution = (q/7)*(®f) G(a, ) times

3 a(n; )Uzg . —h)

1
:H(lJrﬁ(p_al+...+p_°‘k)(p61+...+pﬁk)+...



H(1+—(p*“1+ PP ) )

plq
= A(s; o, B)Z(s; o, B),
where k
Z(sia f) = ] ¢(s+aj = B).
=1

Diagonal contribution:

(97 60, /) A 0. )23 0. ).



H(1+—(p*°‘1+ PP ) )

plq
= A(s; o, B)Z(s; o, B),
where K
Z(sia f) = ] ¢(s+aj = B).
ji=1

Diagonal contribution:

(97 60, /) A 0. )23 0. ).

Symmetry? Can permute (aq,...,ax) and (51, ..., Bk) but not
allowed to switch «'s and 's.
Conjecture: symmetrize this answer

S ()60 YA 0 78)2 (b ma, 7).

TE€Sak/(Sk % Sk)



For example, k = 3 is a sum of 20 terms:

e One “no swap” term (aq, az, as; f1, B2, 53).

e Nine “one swap” terms e.g. (01, a2, a3; a1, B2, 53).

e Nine “two swap” terms e.g. (01, B2, a3; a1, a2, £3).

e One “all swap" term: (51, B2, f3; au, a2, 3).

Each individual term has singularities. E.g. “no swap” term has
singularities when o = f3;.

The sum is regular!

Now let all the shifts — 0.



For example, k = 3 is a sum of 20 terms:

e One “no swap” term (aq, az, as; f1, B2, 53).

e Nine “one swap” terms e.g. (01, a2, a3; a1, B2, 53).

e Nine “two swap” terms e.g. (01, B2, a3; a1, a2, £3).

e One “all swap" term: (51, B2, f3; au, a2, 3).

Each individual term has singularities. E.g. “no swap” term has
singularities when o = f3;.

The sum is regular!

Now let all the shifts — 0.

Similar “recipe” for moments in families of L-functions: Conrey,
Farmer, Keating, Rubinstein, & Snaith.

Works only for integral moments: k € N.

Identifies all lower order terms in conjecture for moments.

-
) log t
1 2k dt ~
/0 IC(5 + it)|*dt /0 Pk< 5 )dt

for a polynomial Py of degree k2.



T T
. log t
1 2k gt ny logt
/0 IC(5 + it)|“dt /O Pk< > )dt

()¢ 1 :
Pi(x) = T /21 z2k«4(21,-~-,22k) 'HIC(l‘FZi_Zk-&-j)
----- ij=
X K k dz;
X A(zl,...,zzk exp <§Z — Zkyj ) 2{(
Jj=1 j=1 J

where the integrals are over small circles centered at 0 and

Az1,...,20k) = H (zj — zi).

1<i<j<2k



T T
. log t
1 2k gt ny logt
/0 IC(5 + it)|“dt /O Pk< > )dt

(D 1 :
Pi(x) = T /21 z2k«4(21,-~-,22k) 'HIC(l‘FZi_Zk-&-j)
----- ij=
X <& kdz;
X A(z1, ..., z21)° exp <§Z — Zkyj ) 2{(
Jj=1 j=1 J

where the integrals are over small circles centered at 0 and

Az1,...,20k) = H (zj — zi).

1<i<j<2k

P3(x) =~ 5.7 x 107°x% + 4 x 107*x® + 1.1 x 1072x’
+0.14x% + x® +3.98x* +8.6x3 + 10.2x% + 6.59x + 0.91



Analogous symmetrization in other families
E.g. consider — restricting to positive discriminants —

b
Z A(% + alaXd) t /\(% +ak7Xd)7
d<X

NG +s,xq) = (d/m)*T(1/4 + s/2)L(3 + 5,x4) = A} — 5, X4)-

Answer must be symmetric under all a; — €;a; where ¢; = £1.



Analogous symmetrization in other families
E.g. consider — restricting to positive discriminants —

b
Z A(% + O517Xd) t /\(% +ak7Xd)7
d<X

/\(% + s, Xd) = (d/ﬂ-)S/zr(l/‘I' + 5/2)L(% + S’Xd) = /\(% - s?Xd)'
Answer must be symmetric under all a; — €;a; where ¢; = £1.
Diagonal contribution:

( )Zaj/2Hr(4 0‘! Z H 2+aj.

ni,...,Ngk
ny-- nk—El
(nj,d)=1
The sum over nq, ..., nx can be written as
Alar...,on) J] ¢+ i+ ).
1<i<j<k

Symmetrize this expression by summing over all 2% choices of €.



When can the heuristics on moments be made precise?
If there are more elements in the family in comparison to how
many terms are needed to approximate power of the L—function
(“analytic conductor™).
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Example: C(% + it) — think of the integral as having size T.
Approximate functional equation:
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Allows evaluation of second and fourth moments.



When can the heuristics on moments be made precise?
If there are more elements in the family in comparison to how
many terms are needed to approximate power of the L—function
(“analytic conductor™).

Example: C(% + it) — think of the integral as having size T.
Approximate functional equation:

(o)~ Y ”’ﬁfs”)+(ﬂsl/zr<<;(;/s2>)/2>>" v o)

n<Tk/2
Allows evaluation of second and fourth moments.
Important/interesting to go beyond this rule of thumb.
Possiblities: (i) evaluate a higher moment; (ii) make the family
smaller (e.g. integrate over short interval); (iii) get a power saving
in the error term; (iv) compute moment with a short Dirichlet
polynomial thrown in (an “amplifier”).

T 1 T+T?2§ 5
/ ¢(3+it)[Pdt = MT+0O(T37°); / IC(3+it)|*dt < T3t
0 T



Analogues in many different families. Can be hard to make the rule
of thumb work.

S ILG X)[* = MT + 0(¢*~%) Matt Young
x (mod q)



Analogues in many different families. Can be hard to make the rule
of thumb work.

* 4 1-6
S L. )* = MT + 0(¢* %) Matt Young
x (mod q)

Asymptotic large sieve: Conrey, Iwaniec & S., Chandee, Li,
Matomaki & Radziwill:

>y zz/_wx

q<Q x (mod q) g<Q x (meod q)

ST L Fx)L( g x x) = MT+0(¢*~°) Kowalski-Michel-Sawin
x (mod q)



Analogues in many different families. Can be hard to make the rule
of thumb work.

* 4 1-6
S L. )* = MT + 0(¢* %) Matt Young
x (mod q)

Asymptotic large sieve: Conrey, Iwaniec & S., Chandee, Li,
Matomaki & Radziwill:

>y zz/_wx

q<Q x (mod q) g<Q x (meod q)

ST L Fx)L( g x x) = MT+0(¢*~°) Kowalski-Michel-Sawin
x (mod q)

b b
Z L(%7Xd)4» Z L(%,Ed)2 (S., S. & Young, Florea)
|d|<X |d|<X



Two Principles

Lower bounds Principle: If one can compute the first moment (plus
epsilon) then can get the right lower bound for all larger moments.
(Rudnick & S., Radziwill & S.)

“Plus epsilon” means one should be able to compute the moment

multiplied by a short Dirichlet polynomial.



Two Principles

Lower bounds Principle: If one can compute the first moment (plus
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“Plus epsilon” means one should be able to compute the moment
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Upper bounds Principle: Whenever one can compute some
moment (plus epsilon) then one can get the right upper bound for
all smaller moments. (Radziwill & S.)



Two Principles

Lower bounds Principle: If one can compute the first moment (plus
epsilon) then can get the right lower bound for all larger moments.
(Rudnick & S., Radziwill & S.)

“Plus epsilon” means one should be able to compute the moment

multiplied by a short Dirichlet polynomial.

Upper bounds Principle: Whenever one can compute some
moment (plus epsilon) then one can get the right upper bound for
all smaller moments. (Radziwill & S.)

Upper bounds on GRH: In general families one can establish the
conjectured upper bound. (S., plus sharp refinement by Adam
Harper)



Outstanding open problems.

1. Find correct lower bounds for small moments (e.g. less than the
first).

Uniform such bounds as k — 0+ imply positive proportion of non
vanishing.

Known in some cases due to Chandee & Li; not known for the
family of quadratic twists of E.

2. Establish upper bounds for large moments — related to
sub-convexity, Lindelof hypothesis.



Upper bounds Principle

Theorem: (Heap, Radziwill & S.) For 0 < k <2

2T
/ ¢ + it)|*kdt < T(log T)¥.
.

Previous work:

e k =1/n by Heath-Brown (Ramachandra k < 2 assuming RH)

e k =1+ 1/n by Bettin, Chandee & Radziwill

Key input: (Deshouillers & Iwaniec, Hughes & Young, Bettin, Bui,
Li, & Radziwill)

/2T €3+ it)[*A(t)[Pdt, A(t) = a(n)n /2,
;

n<N



Quadratic twists of an elliptic curve

E — elliptic curve over Q with conductor N.

& — fundamental discriminants d with root number of E; being 1.
Theorem: Radzwill & S. For0 < k<1

b
Z L(3, Eq)* < X(log X)kk=1)/2,

ld|<X
de&

#{d S g, |d‘ S X, L(%7 Ed) 2 (logX)k*1/2} < X(logx)ik2/2.



Quadratic twists of an elliptic curve

E — elliptic curve over Q with conductor N.

& — fundamental discriminants d with root number of E; being 1.
Theorem: Radzwill & S. For0 < k<1

b
> L, Ea)* < X(log X)Kk1/2,

ld|<X
de&

#{d € £,|d| < X, L(3, Ea) > (log X)*"1/?} < X(log X)¥'/2.

Work of Young; Kowalski, Michel, & Sawin should allow similar
results for

S ILE 0P 0<k<2
x (mod q)

Z* L3, Fx X)), 0< k<L
x (mod q)

b
Z ‘L(%’Xd)’k < X(log X)KkH1/2 0 < k < 2. Larger range??
|d|<X



Proof for quadratic twists of an elliptic curve

Iterative scheme inspired by the “pure Brun sieve.”
Closely related to Harper's work on sharp conditional bounds for

moments.

/1 =2[100loglog X1, lj41 =2[100log¢;],

stopping at the largest R with /g > 10*.

)= S 22(p).
pgxl/(e% \/ﬁ
a(p)
Pi(d) = > —=xd(p)-
X1/zj2_1§pgx1//gj2 \/5

Ideas:

Think of exp(P1(d) + ...+ Pr(d)) as being like L(3, Eq)(log \d|)%
Work with Taylor series approximations to exp(Pj(d)) — fewer
terms needed as j gets larger.



A general inequality
Recall: Ey(x) = Zf:o xI/jl. If £ is even and x < £/e? then

—L

e < (1 n 61—6>Eg(x).



A general inequality
Recall: Ey(x) = Zf:o xI/jl. If £ is even and x < £/e? then
—
(1 + 176>E€( X).

Lemma: y > 0. xq, ..., xg real numbers. /1, ..., £r positive even.
Then, forany 0 < k<1

R
y¥ < Chy [ ] Eo((k = 1)x) + C(1 — k HEe kxj)
j=1

Z <CkyHEz — 1)x) + C(1 — k)HEE k) )(ezj(—:::-_l)ZrJrl,

r=0 j=1

where C = exp((e ™ + ... + e r)/16).



A general inequality
Recall: Ey(x) = Zf:o xI/jl. If £ is even and x < £/e? then

e < (1+50)El).

Lemma: y > 0. xq, ..., xg real numbers. /1, ..., £r positive even.
Then, forany 0 < k<1

R
y¥ < Chy [ ] Eo((k = 1)x) + C(1 — k HEe kxj)
j=1

Z(CkyHEz k —1)xk) +C1_k)HEE kXJ)<e2xr+1)Zr+1,

14
—0 j=1 r+1

where C = exp((e ™ + ... + e r)/16).
Plan: Apply this with

y = L(3, Eg)(log |d])2; x; = P;(d).



Proof of Lemma
W.H. Young's inequality:

ab<aP/p+b9/q, 1/p+1/q=1.



Proof of Lemma
W.H. Young's inequality:
ab<aP/p+b9/q, 1/p+1/q=1.
Suppose x; < (j/e? forall 1 <j < R.

yE < kyexp((k—1)(x1+...4+xr))+ (1 — k) exp(k(x1 + . .. + xg))



Proof of Lemma
W.H. Young's inequality:
ab<aP/p+b9/q, 1/p+1/q=1.
Suppose x; < (j/e? forall 1 <j < R.

yE < kyexp((k—1)(x1+...4+xr))+ (1 — k) exp(k(x1 + . .. + xg))

expllog) < 1+ ) By (o). exp((k—1p) < (1450 ) 4 (k—1)x).

Therefore, with C = exp((e ™ + ... + e %r)/16)

R R
y¥ < Chy [ [ Eo((k = 1)x) + C(1 - HEK, kxj).
j=1

Gives first term in bound of Lemma.



Suppose 0 < r < R — 1 such that x; < £;/e? for j < r, but
Xr1 > Uryp1/€2.



Suppose 0 < r < R — 1 such that x; < £;/e? for j < r, but
Xr1 > Uryp1/€2.

Young's inequality gives
vy <kyexp((k —1)(x1 4 ... +x)) + (1 — k) exp(k(x1 + ... + X))

SCkyl_‘[Efj(( )XJ +C1— HEg kXJ
j=1

= (CkyﬂEﬁj((k— 1)x) + C(1—k HEe k) )(e Xr+1> &

J=1 r+1

Last inequality holds because (e2x,41/¢,41)%+! is always positive,
and is > 1 in the case x,11 > £,.1/¢€°.



Suppose 0 < r < R — 1 such that x; < £;/e? for j < r, but
Xr1 > Uryp1/€2.

Young's inequality gives
vy <kyexp((k —1)(x1 4 ... +x)) + (1 — k) exp(k(x1 + ... + X))

< Cky [] Ey((k—1)x) + C(1 - & HEZ kx;)
j=1

= (CkyﬂEfj((k— 1)x) + C(1—k HEE k) )(e Xr+1> &

j=1 r+1

Last inequality holds because (e2x,41/¢,41)%+! is always positive,
and is > 1 in the case x,11 > £,.1/¢€°.

Lemma follows upon summing over all these possibilities.



= L(3. Eg)(log|d))?; x = P;(d).
AJ-() Ey,((k — 1)Pi(d)), Bj(d) = Ey,(kP;(d))



y = L(}, Eq)(log |d])Z; x; = Pi(d).
Aj(d) = E,((k — 1)P;(d)), B;(d) = Ey,(kP;(d))

Lemma bounds L(%,Ed)k(log\dDg by

L(L, Ey)(log |d|)z RA S rA e*Pri1(d) b

< L(3, Ed)(log ]| |)2(j1:[1 j(d +z[:”Hl ( i1 ) )
R R-1 r e Pr+1(d) Lria
(E@ +§¥P )( h1> )

Note \A; and B; are Dirichlet polynomials of length < X4 So

R
TT A st)HA )Pria(d WIHB )Pria1(d)
j=1

are all short Dirichlet polynomials of length < X1/1000,



Proposition:

’ RB erB Pl x10gx)5
dz<:X(Hlj +;)1—[1 ( lria ) )<< (log X)*
deg ~ !

R-1 r
S Q,Ed)(logrdn%(H D+ Y [ (STt
|d|<X j=1 r=0j=1 S
deg
«:XUogX)é
Conclude:

b
Z L(3 Ea)' < X (log X)K*=k)/2,
|d|<X
de€



Proposition:

b R B R-1 r B e Pr+1(d) lri1 X(log X K2
> (e S oo %)) <xeun
ger /

b 1 1 R R e2Pr+1(d) Lry1
7L EogldD)? ([T Aid) + >- TTAe) (222) )
|d‘§X j=1 r=0 j=1 r+1
deg

< X(log X)%
Conclude:

b
> L Ea)F < X(log X)(ERI2,
ld]<X
de€
e Compute averages of short Dirichlet polynomials.
e Compute first moment times short Dirichlet polynomial.



Idea behind Proposition
Can focus on diagonal contributions — here, square terms.
Primes in P;(d) are disjoint for different j — behave independently
on average.



Idea behind Proposition
Can focus on diagonal contributions — here, square terms.
Primes in P;(d) are disjoint for different j — behave independently
on average.

EsBi(d)~ ] (1+"23(g) )

2 2
Xl/zf”SpSXl/[f

lriq! a(p)

Zr 1 ~ +1

Ed(Pr-i—l(d) + ) ~ 2£’+1/2(£r+1/2)! ( Z/ R
1/¢

r+1

XF <X

l £
< gty < ()

Recall: £j41 = 2[100log ().



Idea behind Proposition
Can focus on diagonal contributions — here, square terms.
Primes in P;(d) are disjoint for different j — behave independently

on average.
k% a(p)?
Eq(B;(d)) ~ 11 (1 + (p) +)
Xl/élzflﬁpﬁxl/[fg
lriq! a(p)? tr+1/2
£r+1 ~ +1
Ed(Prﬂ(d) ) 2g,+1/2(£r+1/2)!< Z p )
xl/f?<x1/"r+1
g r+1
< r+1/2 £r+1/2 < r+1
0" (2log ) < (—10 )
Recall: ¢j;1 =2[100log¢;].
2
&P,y 1(d)\ b * e\t
S TT5@(TED) ) < (oexh) " ()

ld|<X j=1
de&



Similar calculation for terms involving L(%, Eq4).

Eq(L(3, Eq)A;(d))

N (k—1a(p)a(p) . (k—1)*a(p)?
~ H (1+ 7 /5 o

2 2
Xl/(ijilgpgxl/éj

B (L3 EDPra(@) ) < (522

> €r+1



Similar calculation for terms involving L(%, Eq4).

Eq(L(3, Eq)A;(d))

N (k—1)a(p) a(p) | (k—1)*a(p)
~ H (1+ 7 /5 o p +)

2 2
Xl/éjilgpgxl/éj

Ed("(%’ Ed)Pr+1(d)£’“) < (£r+1>€r+1

Conclude 0

L(3, Eq) N (EPraldN oy B eyt
|dz<:x 2 td H ( )(T) )<<<og r) (E) )
de&

Completes sketch of Proposition.



Lower bounds Principle

Story for ((s)
Titchmarsh: kK € N

/ (L + it) ke t/Tdt >y T(log T)¥.
0
Ramachandra: unconditionally for 2k € N, on RH for all k >0
T 2
/ ¢ + it)[P*dt > T(log T)¥.
0

Heath-Brown: Lower bound holds for all rational k > 0.



Lower bounds Principle

Story for ((s)
Titchmarsh: kK € N

/ (L + it) ke t/Tdt >y T(log T)¥.
0
Ramachandra: unconditionally for 2k € N, on RH for all k >0
T 2
/ ¢ + it)[P*dt > T(log T)¥.
0

Heath-Brown: Lower bound holds for all rational k > 0.
Conrey & Ghosh: Elegant proof for k € N

T ek di(n)? 2
/0 IC(5+it)[*dt > T Z ——— ~(1+o0(1))axT(log T)*.

n
n<T



Idea: n't for n < T17¢ is a family of nearly orthogonal vectors:

l/Tnitm_itdt% 1 Ifm:n
T Jo 0 ifm#n.

Can also compute their inner product with ((s)¥: for n < T17¢

17 1 | kit 1 (7 di(m) di(n)
T\/Ov §(2+It)ndt~7_/0 Z litn dtw .

m<Tk mz* \/ﬁ

Now invoke Bessel's inequality.



Idea: n't for n < T17¢ is a family of nearly orthogonal vectors:
l/Tnitm_itdt% 1 Ifm:n
T Jo 0 ifm#n.
Can also compute their inner product with ((s)¥: for n < T17¢
di ( ; dk(n)
k lt ~ k it ~ Yk
/ C(3 + it)kn'tdt ~ / Z 2+,t” dt ~ /5

Now invoke Bessel's inequality.
Equivalently: Use for any A(s) = >, _r1-c a(n)n™*

T 2 T ] T .
’/O g(%—i—it)kA(%—it)dt‘ < (/0 \c(;+:t)y2kdt>(/0 !A(%Jr/t)!zdt).

Optimal choice: a(n) = di(n).




Analogues for families?
Methods for { don't extend automatically.
How to compute, for small n,

STLE xa) va(n)?
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Analogues for families?
Methods for ¢ don't extend automatically.
How to compute, for small n,

> L xa) xa(n)?

<X

Rudnick & S. k € N. Use Holder's inequality, for suitable Dirichlet
polynomial B

Zb L(3,xa)B(d) < (Zb L(, Xd)k> % (Zb B(d)ffl>

<X <X <X

k=1
k

How to handle fractional power B(d)k%l?



Analogues for families?
Methods for ¢ don't extend automatically.
How to compute, for small n,

> L xa) xa(n)?

<X

Rudnick & S. k € N. Use Holder's inequality, for suitable Dirichlet
polynomial B

Zb L(3,xa)B(d) < (Zb L(, Xd)k> % (Zb B(d)ffl>

<X <X <X

k=1
k

How to handle fractional power B(d)k%l?
Trick: Just choose B(d) = A(d)*~! for a Dirichlet polynomial A.



x = XY/(2K) "and put A(d) = > n<x Xd(n)/v/n.

Evaluate X
SV A, ST LG, xa)Ad)

ld|<X ld|<X

and use Holder.



x = XY and put A(d) =

Evaluate X
> Al
|d|<X

and use Holder.

A(d)k _ Z di(m; x

Jn

n<xk

Only diagonal terms matter:

Zn<x Xd(n)/\/ﬁ
Z [- 27Xd d)k !
|d|<X

I CIEDS dk%x)z ( J<x d"

ld|<X n<xk

Conclude

ZA

ld|<X

[d|<X n<x

nm2

k< X(log X)kk+1)/2,



Want a similar lower bound for

S @) = 3 S S )

|d|<X n<xk—1 ld|<X

>>deklnx Z\F

nSXk—l




Want a similar lower bound for

> A = 3 ST G )

ld|<X n<xk-1 |d|<X
d n; x)
sx Y bl P
nSXk—l \/7

Restrict to n < x so that dx_1(n; x) = dk_1(n).
Write n = nlng with ny squarefree.

IogX
SV X 17w

,:nm<)|<j r<\/X/n1
So get lower bound > X(log X)k(k+1)/2.
k—1 k—1)k/2
>>X|ogXZ ()>>X|ogXH<1+ +( )/>

Vv VTR p



Theorem: (Rudnick & S) For all k € N

31 o) > (3 LA ) (X A

ld| <X |d|<x |d]<X
> X(log X)k(k+1)/2,



Theorem: (Rudnick & S) For all k € N

k k—1
> 1 > (X @) /(3 A)
|d|<X ld|<X ld|<X
> X(log X)k(k+1)/2,

Method extends to give correct lower bounds for all rational kK > 1.
If k = r/s start with

S L, xa) (BT,

ld]<X

with (((w)* =>_, dz(n)/n")

B(&) = 3 2 ol

n<x



Take x = X1/(21) Then B(d)*(k=1) = B(d)" is still a short
Dirichlet polynomial, and can evaluate this. Get

b
> L3 xa)(B(d)*)< T >y X(log x) <KD/,
jdl<X

Similarly, B(d)** = B(d)" is a short Dirichlet polynomial, and so
can evaluate

Zb(B(d)s)k <Lk X(|ng)k(k+1)/2.
|d]<X



Take x = X1/(21) Then B(d)*(k=1) = B(d)" is still a short
Dirichlet polynomial, and can evaluate this. Get

b
> L3 xa)(B(d)*)< T >y X(log x) <KD/,
jdl<X

Similarly, B(d)** = B(d)" is a short Dirichlet polynomial, and so
can evaluate

Zb(B(d)S)k <k X(|ng)k(k+1)/2

|d|<X
By Holder:
1 (X(|0gx)k(k+1)/2)k k(k+1)/2
Z L(z:x (X(Iogx)k(k+1)/2)k—1 > 1,5 X(log X) ternzz,
|d|<X

Note: Implied constant depends not just on k, but on height of
k = r/s. “Discontinuous” in k.



Radziwill & S: Refinement which provides “continuous” lower
bounds in k.
Obtain lower bounds of the right order for all k > 1.



Radziwill & S: Refinement which provides “continuous” lower
bounds in k.

Obtain lower bounds of the right order for all k > 1.

If one knows two moments (plus epsilon) then can get lower
bounds for small k as well.

Chandee & Li — small rational moments of L(3, x).



Radziwill & S: Refinement which provides “continuous” lower
bounds in k.

Obtain lower bounds of the right order for all k > 1.

If one knows two moments (plus epsilon) then can get lower
bounds for small k as well.

Chandee & Li — small rational moments of L(3, x).
Alternative treatment of lower bounds — in progress, Heap,
Radziwill & S.

(313 xo) exp(P(d) (k - 1)))k
ld]<X

< (X L)) (X et "

ld]<X ld]<X



Radziwill & S: Refinement which provides “continuous” lower
bounds in k.

Obtain lower bounds of the right order for all k > 1.

If one knows two moments (plus epsilon) then can get lower
bounds for small k as well.

Chandee & Li — small rational moments of L(3, x).
Alternative treatment of lower bounds — in progress, Heap,
Radziwill & S.

(3 L) ep(P(d)(k - 1))

ld|<X
< (LG x)) (X exnlkP(d)

ld]<X ld]<X

)<k71)/k.

Theorem: Forall 0 < k<2

2T
/ (X + it)PHdt =< T(log T)K
.



