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Theme of the lectures

How are the values of ζ(s) distributed?

Concretely: fix 1/2 < σ ≤ 1, and let T be large.
If t is chosen randomly from [T , 2T ] (or [0,T ])
what can be said about the distribution of ζ(σ + it)?

Answer: Theory of almost periodic functions.
Typical values of constant size, and determined by behavior of
small primes.

More interesting questions on the critical line:
What do typical values of ζ(1/2 + it) look like?
Answer: Selberg’s central limit theorem. Typical values are either
big or small, and not usually of constant size.
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Larger values.
What can say about the moments∫ T

0
|ζ(1/2 + it)|2kdt?

What size of values of ζ are picked up by the 2k-th moment?

Moment conjectures of Keating and Snaith.
Lower bounds of the right order of magnitude. Sharp upper
bounds assuming RH.
Extreme values? Can one bound

max
0≤t≤T

|ζ(σ + it)|?

How large/small can |ζ(σ + it)| be? Special interest: σ = 1/2.
Lindelöf Hypothesis. Gulf between bounds on RH and known
Ω–results.
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Lindelöf Hypothesis. Gulf between bounds on RH and known
Ω–results.



Fyodorov–Keating conjectures:
For t chosen randomly from [T , 2T ], distribution of

max
t≤u≤t+1

|ζ(1/2 + iu)|?

∫ t+1

t
|ζ(1/2 + iu)|2kdu?

Conjectured answers based on Branching Brownian Motion.
Known for analogous quantity in random matrix theory.
Partial crude progress for ζ(s).
Links to behavior of random multiplicative functions.



Fyodorov–Keating conjectures:
For t chosen randomly from [T , 2T ], distribution of

max
t≤u≤t+1

|ζ(1/2 + iu)|?

∫ t+1

t
|ζ(1/2 + iu)|2kdu?

Conjectured answers based on Branching Brownian Motion.
Known for analogous quantity in random matrix theory.
Partial crude progress for ζ(s).
Links to behavior of random multiplicative functions.



Theme: Analogous problems for families of L–functions

Some prototypical families.

1. Dirichlet characters χ (mod q), with q large. Unitary example.
Distribution of L(σ, χ), L(1/2, χ)?

2. Quadratic Dirichlet characters. Symplectic example.
d a fundamental discriminant with |d | ≤ X .
Distribution of L(1, χd) (related to class numbers), or L(1/2, χd).

3. Families arising from modular forms. Orthogonal example.
E an elliptic curve over Q of conductor N.
Ed — quadratic twist by fundamental discriminant d
Behavior of central value L(1/2,Ed) (assume root number 1).

These families often yield arithmetic information.
New features/problems: could happen that many central values are
zero, although not expected to be the case.
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Distribution of values at the edge of the critical strip
Family of quadratic Dirichlet characters χd ; d a fundamental
discriminant.
Recall (d· ) primitive Dirichlet character (mod |d |). Built out of

(−4

·

)
,
(8

·

)
,
(−8

·

)
,
((−1)(p−1)/2p

·

)
.

Almost periodicity.
For example: if d1 and d2 are fundamental discriminants with
d1 ≡ d2 (mod 840) then

L(2, χd1) ≈ L(2, χd2).

Indeed 840 = 8× 3× 5× 7 and so

|L(2, χd1)− L(2, χd2)| ≤
∑
∃p≥11
p|n

1

n2
< 0.06
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Analogous result at the edge of the critical strip. No longer true
always, but most of the time

L(1, χd1) ≈ L(1, χd2)

if d1 ≡ d2 (mod 4
∏

p≤z p).
That is, apart from a small number of exceptional |d | ≤ X ,

L(1, χd) ≈
∏
p≤z

(
1− χd(p)

p

)−1
.

Probabilistic model to analyze the truncated product.
Independent random variables defined on primes:

X (p) =

{
1 or − 1 with probability p

2(p+1)

0 with small probability 1
p+1 .

Random Euler product:

L(1,X) =
∏
p

(
1− X (p)

p

)−1
.
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A qualitative argument

Partial summation and Pólya–Vinogradov:

L(1, χd) =
∑
n≤N

χd(n)

n
+

∫ ∞
N

∑
N<n≤y

χd(n)
dy

y2

=
∑
n≤N

χd(n)

n
+ O

(√|d | log |d |
N

)
.

Take N =
√
X (logX )100, and z tending to infinity slowly with X .

L(1, χd) ≈
∑
n≤N

n∈S(z)

χd(n)

n
+
∑
n≤N

n 6∈S(z)

χd(n)

n

S(z) — smooth numbers, p|n =⇒ p ≤ z .
First sum depends only on primes p ≤ z : Fixing d in a progression
(mod 4

∏
p≤z p) fixes this sum. Can handle z ≤ 1

10 logX
Second sum is small in mean square as z →∞.
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For any choice of signs εp for p ≤ 1
10 logX

#{|d | ≤ X : χd(p) = εp for all p ≤ z} ∼ 6

π2
X
∏
p≤z

( p

2(p + 1)

)
.

Therefore ∑
n≤N

n∈S(z)

χd(n)

n
≈
∏
p≤z

(
1− χd(p)

p

)−1
behaves like random Euler product∏

p≤z

(
1− X (p)

p

)−1
≈ L(1,X).



Second term in mean square:∑[

|d |≤X

( ∑
n≤N

n 6∈S(z)

χd(n)

n

)2
=

∑
n1,n2≤N

n1,n2 6∈S(z)

1

n1n2

∑[

|d |≤X

( d

n1n2

)
.

Sum over d is a character sum over ( ·
n1n2

). If n1n2 6= � this
cancels, by Pólya–Vinogradov.
Nuisance: d must be (essentially) square-free:∑

|d |≤X

(∑
k2|d

µ(k)
)( d

n1n2

)
=
∑

k≤
√
X

µ(k)
∑
|d |≤X
k2|d

( d

n1n2

)

�
∑

k≤
√
X

min
(√

n1n2 logX ,
X

k2

)
� X

3
4 (logX )2.



Second term in mean square:∑[

|d |≤X

( ∑
n≤N

n 6∈S(z)

χd(n)

n

)2
=

∑
n1,n2≤N

n1,n2 6∈S(z)

1

n1n2

∑[

|d |≤X

( d

n1n2

)
.

Sum over d is a character sum over ( ·
n1n2

). If n1n2 6= � this
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Contribution of the terms n1n2 6= � (“non diagonal”/“off
diagonal”):

�
∑

n1,n2≤N

1

n1n2
X

3
4 (logX )2 � X

3
4 (logX )4.

Main terms – diagonal contribution –

∼
∑

n1,n2≤N
n1n2=�

n1,n2 6∈S(z)

1

n1n2

6

π2
X
∏

p|n1n2

( p

p + 1

)
.

n1 = am2
1, n2 = am2

2. At least one of a, m1, or m2 must be > z .

Main term � X
∑

a,m1,m2

1

a2m2
1m

2
2

� X

z
.

Conclude: For most d , the second term (over non-smooth n) is
small.
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Theorem: Typical values of L(1, χd) are distributed like random
Euler products L(1,X).

Toy problem: X (n) = ±1 independently for each n. Consider

∞∑
n=1

X (n)

n
.

Heavily determined by first few values of X (n).
Probability that

∑∞
n=1 X (n)/n > 10?

Random Euler product distribution:

Prob
(
L(1,X) ≥ eγτ

)
= exp

(
− eτ−C1

τ
+ O

(eτ
τ2

))
C1 =

∫ 1

0
tanh y

dy

y
+

∫ ∞
1

(tanh y − 1)
dy

y
= 0.8187 . . . .

Similarly for Prob(L(1,X) ≤ ζ(2)/(eγτ)).
Moral: L(1, χd) ∈ [1/10, 10] usually!
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Quantitative/Uniform results?
How well does the probabilistic model approximate the distribution
of L(1, χd)?
Range of values τ for which

#{|d | ≤ X : L(1, χd) ≥ eγτ} ≈ #{d}Prob(L(1,X) ≥ eγτ).

Similarly for small values L(1, χd) ≤ ζ(2)/(eγτ).

Largest viable range for uniformity?

τ ≤ τmax = log2 X + log3 X + C1 + o(1).

Probability L(1,X) ≥ eγτmax becomes < 1/X .
Suggests the conjectures:

max
|d |≤X

L(1, χd) = eγ(log2 X + log3 X + C1 + o(1))

min
|d |≤X

L(1, χd) = ζ(2)
(
eγ(log2 X + log3 X + C1 + o(1))

)−1
.
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Approximating L(1, χd) by short Euler products
Generalized Riemann Hypothesis: (smooth weighting)∑

n

Λ(n)χ(n)e−n/x �
√
x log(qx).

Guarantees that χ(p) cancel out, once p > (log q)2.
On GRH, the least quadratic non-residue mod p is ≤ (log p)2.
Probabilistic model suggests that the least quadratic non-residue is
� (log p) log log p.
On GRH

L(1, χd) ≈
∏

p≤(log |d |)2

(
1− χd(p)

p

)−1
.

Probabilistic model suggests enough to take product up to
(log |d |).
On GRH

ζ(2)((2 + o(1))eγ log log |d |)−1 ≤ L(1, χd) ≤ (2 + o(1))eγ log log |d |
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Unconditional bounds:

C (ε)|d |−ε ≤ L(1, χd) ≤ 1

4

(
2− 2√

e
+ o(1)

)
log |d |.

Lower bound: Siegel’s (ineffective) theorem.
Upper bound: follows from Burgess & refinement by Stephens.
Related to least quadratic non-residue being ≤ p1/(4

√
e)+ε.

Much better results if a small number of bad characters are
omitted.
Large sieve/zero density estimates.
Apart from at most Q2/A+ε primitive characters χ (mod q) with
q ≤ Q

L(1, χ) ≈
∏

p≤(log q)A

(
1− χ(p)

p

)−1
.

Can use this to compute moments of L(1, χ) and compare with
moments of random Euler products.
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Uniform results

Theorem: (Granville & S.) Uniformly in |z | ≤ logX/(500(log2 X )2)∑[

|d |≤X
d 6∈L

L(1, χd)z =
6

π2
XE(L(1,X)z) + O

(
X exp

(
− logX

5 log2 X

))
,

where L excludes � logX discriminants having a possible
Landau–Siegel zero.

Theorem: (Granville & S.) e ≤ A ≤ log2 x .

#{|d | ≤ X : L(1, χd) ≥ eγτ} = #{d} exp
(
−eτ−C1

τ

(
1+O

( 1

A
+

1

τ

)))
,

uniformly in the range
• τ ≤ log2 X + log4 X − log2 A− 20.
• τ ≤ log2 X + log3 X − log2 A− 20 on GRH.
Similar result for small values of L(1, χd).
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Distills/refines work of many: Chowla, Elliott, Montgomery &
Vaughan, Heath-Brown, Graham & Ringrose.
The range τ ≤ log2 X + log4 X − log2 A− 20 established a strong
form of a conjecture of Montgomery & Vaughan. Proportion of
|d | ≤ X with L(1, χd) ≥ eγ log2 X is

exp
(
− (e−C1 + o(1))

logX

log logX

)
.

Key ingredient: Work of Graham & Ringrose on character sums.
The least quadratic non-residue can be as large as log p log3 p.

The GRH range almost obtained a second conjecture of
Montgomery & Vaughan. Gives extreme values of size
eγ(log2 X + log3 X − log(2 log 2)− ε). Proportion of d for which

this happens is � X−
1
2 .

Motivated our conjectures on extreme values for L(1, χd).



Distills/refines work of many: Chowla, Elliott, Montgomery &
Vaughan, Heath-Brown, Graham & Ringrose.
The range τ ≤ log2 X + log4 X − log2 A− 20 established a strong
form of a conjecture of Montgomery & Vaughan. Proportion of
|d | ≤ X with L(1, χd) ≥ eγ log2 X is

exp
(
− (e−C1 + o(1))

logX

log logX

)
.

Key ingredient: Work of Graham & Ringrose on character sums.
The least quadratic non-residue can be as large as log p log3 p.
The GRH range almost obtained a second conjecture of
Montgomery & Vaughan. Gives extreme values of size
eγ(log2 X + log3 X − log(2 log 2)− ε). Proportion of d for which

this happens is � X−
1
2 .

Motivated our conjectures on extreme values for L(1, χd).


