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Choose t uniformly from [T,2T].
What is the distribution of

max_log |¢(3 + iu)|?
t—u|<1

Natural problem from random matrix theory:
Pick a large random g € U(N). What is the distribution of

m(;axlog |det(e’1 — g)|?

Conjecture: Fyodorov, Hiary, Keating:

max Iog |C( +iu)| =loglog T — - Iog3 T + X7,

[t—ul<

for a random variable X+ whose distribution is explicitly given.
X7 = O(1) almost surely.



What does this mean?

Spacing between zeros at height T is ~ 27/ log T.
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What does this mean?

Spacing between zeros at height T is ~ 27/ log T.

Roughly speaking: ¢ changes on the scale of 1/log T.

Think of an interval of length 1 as having about log T different
values of (3 + iu).

Selberg's theorem log ](( + it)| is normal with mean 0 and
variance ~ 3 Ioglog T.

First Guess: Pick log T independent samples of a Gaussian with
mean zero and variance 5 Lloglog T. What is the typical size of the
maximum of these samples?



Toy problem
Pick N independent standard normal variables. What is the
distribution of their maximum?
Probability that standard normal variable < M is

2/ e—M?/2
1—-— e "/ dx ~ C .
V2 /




Toy problem
Pick N independent standard normal variables. What is the
distribution of their maximum?
Probability that standard normal variable < M is

2/ e—M?/2
1—-— e 2y ~1 - CE .
\ 2T /
Probability that all N variables are < M is

e~ M /2 N e~ M?/2

(1—C

v ) zexp(—CN v )



Toy problem
Pick N independent standard normal variables. What is the
distribution of their maximum?
Probability that standard normal variable < M is

2/ e—M?/2
1—-— e 2y ~1 - CE .
\ 2T /
Probability that all N variables are < M is

e~ M /2 N e~ M?/2

(1—c ) zem<—CN v )

MeM*/2 5 N: M~ \/2log N

M
Want:



Toy problem
Pick N independent standard normal variables. What is the
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2

elvl2/2 N
\/IogN'

M — \/m( 1Iog2N>.

4 log N

=log N — Iog log N
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Take N = log T, and scale by \/%Iog log T.

Suggests
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max Iog|§( + iu)| = loglog T Ziog, T)"

lt—ul<

Fyodorov, Hiary, Keating:

3|0g3 T
| £) = log | T( 7)
s og|¢(3 + it)| = loglog Jiog, T

Why the discrepancy?
Answer: Values of log |((3 + iu)| don't quite behave like log T
independent Gaussians. Nearby values are correlated.
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Correlations of nearby values of ((3 + it)

Covariance of log [¢(2 + it)| and log [¢(% + it + ih)|.
Think of prime sums:

For the primes p < e/ we have p't ~
Larger primes are uncorrelated.
Analogue of Selberg's theorem: Covariance of log |¢(3 + it)| and

log |¢(3 + it + ih)| equals

1 1 1
5 Z -=3 log min(h™*, log T).

p<min(el/#,T)
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The picture

For each k < log, T consider

1

Pr(u) = Re .
ek < peeektl p2

These behave independently, like Gaussians with mean 0 and

variance %

Given t uniformly in [T,2T] and as u varies in [t — 1, t + 1] how

do these Py (u) change?

Note: P) changes on the scale of e k.

So imagine that e different samples of P are given.

Picture for log |((3 + it)]:

i W Wi
Pl(t+—1)+7?2(t+—1+—22)+7>3(t+—1+—22+—33>+....
e e e e e e

where i < ek,



Branching Brownian motion

Start at time 0 and perform standard Brownian motion.

At time t there is a chance e~ ! that the particle splits into two.
The two new particles both perform standard Brownian motion
starting at this point.

After further time t they have a chance et of splitting into two.
And so on.
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Branching Brownian motion

Start at time 0 and perform standard Brownian motion.

At time t there is a chance e~ ! that the particle splits into two.
The two new particles both perform standard Brownian motion
starting at this point.

After further time t they have a chance et of splitting into two.
And so on.

After time T, what is the location of the maximum of these
particles?

Theorem (Bramson): The maximum looks almost surely like

3
V2(T -  log T)+0(1).
Toy Problem: X;; = &1 equal probability. Maximum of

Xo + Xl,i1 + X2’,'2 + ...+ Xk,ik

where 1 <, < 2" foreach 1 <r < k?
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What is known?

Large literature in random matrix theory: Paquette & Zeitouni.
With probability 1 (for picking random matrix g)

maaxlog |det(e’’] — g)| = log N — % logo N + O(1).

Theorem: Arguin, Belius, Harper For each prime p let X(p) denote
independent random variables uniform on unit circle. Then

X
max_Re Z 1( P) = loglog T — 3 Iog3 T + o(log3 T).
hel0d] S poih

Theorem: Arguin, Belius, Bourgade, Radziwill, & S.; Najnudel For

almost all t

max_[¢(3 + iv)| = (log T)te)
[t—u|<1
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Random multiplicative functions: the work of Harper

X(p) independent random variables uniform on T.

Extend completely multiplicatively to X(n) — random multiplicative
function.

What can one say about the distribution of

> X(n)?

n<x



ZX(p) Central Limit Theorem
p<x

Z X(n) Gaussian — Hough, Harper

n<x
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Z X(n) Gaussian if y = o(x/ log x) Chatterjee & S.
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ZX(p) Central Limit Theorem
p<x

Z X(n) Gaussian — Hough, Harper

n<x
w(n)<k

Z X(n) Gaussian if y = o(x/ log x) Chatterjee & S.

x<n<x+y

2
E‘ZX(n)‘ — x.
n<x
Theorem: Harper

E‘ZXn‘x\/;.

(loglog x)%

n<x

Established Helson's conjecture: E[3° _ X(n)| = o(v/x).
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Relevance to earlier problems:

B3 X(n)] = v& K@ / I +,-t)|zdt>%}

n<x

where

Fx(s) =[] (1— X(p))_l.

p<x
Conjecture(?):

1/T 1 /1 L 2\ 1
= IC(& + it + ih)[2dh) " dt = ————.
T Jo (Iog TJo 2 ) (log log T)%

Theorem: S. & Zaman (in progress) f(z) => 72, X(n)z"/+/n
where X(n) are independent standard complex Gaussians. Put

F(z) = exp(f(2)) = Y _a(n)z".

n=0

Then, almost surely, a(n) — 0 as n — oo. In fact:

E(la(n)]) < (log n) 7.
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|deas behind Arguin, Belius, Bourgade, Radziwill, & S.

Theorem: For almost all t € [T,2T]

max_|¢(% + iu)| = (log T) o),

|t—u[<1

Proof of the upper bound:
A Sobolev inequality:
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|deas behind Arguin, Belius, Bourgade, Radziwill, & S.

Theorem: For almost all t € [T,2T]

max_|¢(% + iu)| = (log T) o),

|t—u[<1

Proof of the upper bound:
A Sobolev inequality:

u 2 _ fAP+F(=1)° ’ "(v)f(v)dv — 1 "(v)f(v)dv
= R [ rwrman - [ e
FP IFED2
uen[1_ai<71] 1f(u)]? < 5 + > +/1 |F'(v)f(v)|dv.
Conclude:

1
ltma|>21|C(%+iu)|2<< |<(§+itii)]2+/ I¢'(3 +it)C(3 + it)|dt.
—u|< -1



Hence

127 :
7o (e, G i)
2T
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Easy:

2T 2T
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Hence

1 2T '
7o (e, G i)
2T
<7 [ (16 + 0 + 160G + 00 + i) de

Easy:

2T 2T
/ !C(%+it)|2dt < T(log T); / ]C'(%+it)]2dt < T(log T)3.
T T

By Cauchy-Schwarz

2T
/ max_|((3 + iu)| )dt < (log T)%

[t—ul<1

meas(t €[T,2T]: max [¢(3+iu)| > Vlog T> <

T
[t—u|<1 V2’



|deas for the lower bound

First part: Convert to prime sums
A large value of ((o + it) implies a large value of ¢ near 1/2 + jt.
Lemma Suppose % <o< % + (log T)_%_E. Then

P( max_|((3+iu)| > V) > IF’( max/4\§(0+iu)] > 2V>+o(1).

[t—u|<1 [t—u|<1



|deas for the lower bound

First part: Convert to prime sums
A large value of C(a + it) implies a large value of { near 1/2 + it.
Lemma Suppose 5<0 <1 5+ (log T) ™2 3=¢. Then

]P’( max |C( +iu)| > V) 2]?( max |((o+iu)| >2V>+o( ).

[t—ul< [t—u|<1/4
K large integer. Put

3
1 log T)2k
gy L (g T,

— 1-%
> og T X = exp ((Iog T) K)

Use mollifiers to prove: most of the time

((Jo—i—iu)H (1—/30_011.[1)%1

p<X

In fact, this holds for all u € [t — 1, t + 1] for almost all t.



Reduced to understanding
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Reduced to understanding
R Z :
max Re —.
_ oo+1u
lt—u|<1 pox P

Split the prime sum into K — 1 different ranges:
1
Jo = [2,exp((log T) )],
1

J; = (exp((log T)*),exp((log T)'K )], 1<j<K—2.

1

pEJ;

Note: each Pj(u) for 0 < j < K — 3 is approximately Gaussian
with mean 0 and variance

Different P; are uncorrelated.

P; changes on the scale of (log T) «.



Conclude:

IP’( max_log |¢(3 + iu)| > (1 — 2¢) log log T)

|lu—t|<1
K-3
> IP’( max Pi(u) > (1 — ¢€)log log T) + o(1).

lu—t|< ‘=



Conclude:
IP’(l ma‘x log [¢(3 + iu)| > (1 — 2¢) log log T)
u—t|<
K3

ZIP’( max Pi(u) > (1 — ¢€)log log T)—l—o(l).
|u— t\<4J 1

Key step:

(1—¢) .
. > < 5 << — e .
IED<um_ta;11 (Pj(u) 7 loglog T forall1<;j <K 3)) 1+o0(1)

Shouldn't just make ) P; large, but each constituent must be
large!
Note:

1
P(P; ~loglog T) ~ _ K SE
(Pi(u) > < loglog T) exp( T loglog T



Idea behind the key step
Imagine u =t + k/log T, and that 0 < k < log T.
Let 7(k) be the event: (with A < 1)
Pi(t+k/log T) > %Ioglog T, foralll<j<K-3.

This has probability about (log T)_)‘Q(K_3)/K.



Idea behind the key step
Imagine u =t + k/log T, and that 0 < k < log T.
Let 7(k) be the event: (with A < 1)

A
Pi(t+k/log T) > Rloglog T, foralll<j<K-3.

This has probability about (log T)_)‘Q(K_3)/K.
By Cauchy-Schwarz

IP’( U T(k))z(Z]P’( )/ZIP k) NT(0))

0<k<log T

Proof:

P o) GRS )
<P(UT)E{(Se)]



Numerator:

(ZIP’ ) (log T x (log T) N (K=3)/K)2,

Goal: Show that denominator ~ numerator
Key: P; changes on the scale of (log T)
Typical case: k and ¢ are not close to each other:
|k — (] > (log T)*"1/2K.
Then all the Pj(t + k/log T) behave independently of
Pi(t+¢/log T).
So
P(T (k) NT () = P(T(k)) x P(T(¢)).

These terms give:

~ (P (Yo R(T().
k ¢



Atypical case: k — ¢ ~ (log T)! k.

For j <r, Pi(t+ k/log T) and Pj(t + ¢/ log T) are strongly
correlated.

But for r +1 < j < K — 3 they behave independently.
Probability: (log T)~*"/K(log T)=2X(K-3-r)/K

Multiplied by number of atypical cases: (log T)2_’/K gives the
result.



