
The maximum of the zeta function in intervals of
length 1

K. Soundararajan

May 24, 2019



Fyodorov, Hiary, Keating problem
Choose t uniformly from [T , 2T ].
What is the distribution of

max
|t−u|≤1

log |ζ(12 + iu)|?

Natural problem from random matrix theory:
Pick a large random g ∈ U(N). What is the distribution of

max
θ

log |det(e iθI − g)|?

Conjecture: Fyodorov, Hiary, Keating:

max
|t−u|≤1

log |ζ(12 + iu)| = log logT − 3

4
log3 T + XT ,

for a random variable XT whose distribution is explicitly given.
XT = O(1) almost surely.
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What does this mean?

Spacing between zeros at height T is ≈ 2π/ logT .
Roughly speaking: ζ changes on the scale of 1/ logT .
Think of an interval of length 1 as having about logT different
values of ζ(12 + iu).

Selberg’s theorem: log |ζ(12 + it)| is normal with mean 0 and
variance ∼ 1

2 log logT .

First Guess: Pick logT independent samples of a Gaussian with
mean zero and variance 1

2 log logT . What is the typical size of the
maximum of these samples?
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Toy problem
Pick N independent standard normal variables. What is the
distribution of their maximum?
Probability that standard normal variable ≤ M is

1− 1√
2π

∫ ∞
M

e−x
2/2dx ≈ 1− C

e−M
2/2

M
.

Probability that all N variables are ≤ M is(
1− C

e−M
2/2

M

)N
≈ exp

(
− CN

e−M
2/2

M

)
.

Want:
MeM

2/2 ≈ N; M ≈
√

2 logN

eM
2/2 ≈ N√

logN
;

M2

2
= logN − 1

2 log logN

M =
√

2 logN
(

1− 1

4

log2N

logN

)
.
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Take N = logT , and scale by
√

1
2 log logT .

Suggests

max
|t−u|≤1

log |ζ(12 + iu)| = log logT
(

1− 1

4

log3 T

log2 T

)
.

Fyodorov, Hiary, Keating:

max
|t−u|≤1

log |ζ(12 + it)| = log logT
(

1− 3

4

log3 T

log2 T

)
.

Why the discrepancy?
Answer: Values of log |ζ(12 + iu)| don’t quite behave like logT
independent Gaussians. Nearby values are correlated.
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Correlations of nearby values of ζ(1
2 + it)

Covariance of log |ζ(12 + it)| and log |ζ(12 + it + ih)|.
Think of prime sums:∑

p≤x

1

p
1
2
+it
, and

∑
p≤x

1

p
1
2+it+ih

.

For the primes p ≤ e1/h we have pit ≈ pit+ih.
Larger primes are uncorrelated.
Analogue of Selberg’s theorem: Covariance of log |ζ(12 + it)| and
log |ζ(12 + it + ih)| equals

1

2

∑
p≤min(e1/h,T )

1

p
=

1

2
log min(h−1, logT ).
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The picture

For each k ≤ log2 T consider

Pk(u) = Re
∑

eek≤p<eek+1

1

p
1
2
+iu

.

These behave independently, like Gaussians with mean 0 and
variance 1

2 .

Given t uniformly in [T , 2T ] and as u varies in [t − 1, t + 1] how
do these Pk(u) change?
Note: Pk changes on the scale of e−k .
So imagine that ek different samples of Pk are given.
Picture for log |ζ(12 + it)|:

P1
(
t +

i1
e

)
+ P2

(
t +

i1
e

+
i2
e2

)
+ P3

(
t +

i1
e

+
i2
e2

+
i3
e3

)
+ . . . .

where ik ≤ ek .
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Branching Brownian motion

Start at time 0 and perform standard Brownian motion.
At time t there is a chance e−t that the particle splits into two.
The two new particles both perform standard Brownian motion
starting at this point.
After further time t they have a chance e−t of splitting into two.
And so on.

After time T , what is the location of the maximum of these
particles?
Theorem (Bramson): The maximum looks almost surely like

√
2
(
T − 3

4
logT

)
+ O(1).

Toy Problem: Xi ,j = ±1 equal probability. Maximum of

X0 + X1,i1 + X2,i2 + . . .+ Xk,ik

where 1 ≤ ir ≤ 2r for each 1 ≤ r ≤ k?
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What is known?

Large literature in random matrix theory: Paquette & Zeitouni.
With probability 1 (for picking random matrix g)

max
θ

log |det(e iθI − g)| = logN − 3

4
log2N + O(1).

Theorem: Arguin, Belius, Harper For each prime p let X (p) denote
independent random variables uniform on unit circle. Then

max
h∈[0,1]

Re
∑
p≤T

X (p)

p
1
2+ih

= log logT − 3

4
log3 T + o(log3 T ).

Theorem: Arguin, Belius, Bourgade, Radziwill, & S.; Najnudel For
almost all t

max
|t−u|≤1

|ζ(12 + iu)| = (logT )1+o(1).
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Related work
Fyodorov, Hiary, Keating: Conjecture on moments of ζ in
intervals of bounded length.
Theorem: Arguin, Ouimet, Radziwill If β ≤ 2 then for almost all t∫ 1

−1
|ζ(12 + it + ih)|βdh = (logT )

β2

4
+o(1).

If β > 2, then for almost all t∫ 1

−1
|ζ(12 + it + ih)|βdh = (logT )β−1+o(1).

Random multiplicative functions: the work of Harper
X (p) independent random variables uniform on T.
Extend completely multiplicatively to X (n) – random multiplicative
function.
What can one say about the distribution of∑

n≤x
X (n)?
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∑
p≤x

X (p) Central Limit Theorem

∑
n≤x

ω(n)≤k

X (n) Gaussian — Hough, Harper

∑
x≤n≤x+y

X (n) Gaussian if y = o(x/ log x) Chatterjee & S.

E
∣∣∣∑
n≤x

X (n)
∣∣∣2 = x .

Theorem: Harper

E
∣∣∣∑
n≤x

X (n)
∣∣∣ � √

x

(log log x)
1
4

.

Established Helson’s conjecture: E|
∑

n≤x X (n)| = o(
√
x).
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Relevance to earlier problems:

E
∣∣∣∑
n≤x

X (n)
∣∣∣ � √xE[( 1

log x

∫ 1
2

− 1
2

|FX (12 + it)|2dt
) 1

2
]

where

FX (s) =
∏
p≤x

(
1− X (p)

ps

)−1
.

Conjecture(?):

1

T

∫ T

0

( 1

logT

∫ 1

0
|ζ(12 + it + ih)|2dh

) 1
2
dt � 1

(log logT )
1
4

.

Theorem: S. & Zaman (in progress) f (z) =
∑∞

n=1 X (n)zn/
√
n

where X (n) are independent standard complex Gaussians. Put

F (z) = exp(f (z)) =
∞∑
n=0

a(n)zn.

Then, almost surely, a(n)→ 0 as n→∞. In fact:

E(|a(n)|)� (log n)−
1
4 .
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Ideas behind Arguin, Belius, Bourgade, Radziwill, & S.

Theorem: For almost all t ∈ [T , 2T ]

max
|t−u|≤1

|ζ(12 + iu)| = (logT )1+o(1).

Proof of the upper bound:
A Sobolev inequality:

f (u)2 =
f (1)2 + f (−1)2

2
+

∫ u

−1
f ′(v)f (v)dv −

∫ 1

u
f ′(v)f (v)dv

max
u∈[−1,1]

|f (u)|2 ≤ |f (1)|2

2
+
|f (−1)|2

2
+

∫ 1

−1
|f ′(v)f (v)|dv .

Conclude:

max
|t−u|≤1

|ζ(12 + iu)|2 � |ζ(12 + it ± i)|2 +

∫ 1

−1
|ζ ′(12 + it)ζ(12 + it)|dt.
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Hence

1

T

∫ 2T

T

(
max
|t−u|≤1

|ζ(12 + iu)|2
)
dt

� 1

T

∫ 2T

T

(
|ζ(12 + it)|2 + |ζ ′(12 + it)ζ(12 + it)|

)
dt.

Easy:∫ 2T

T
|ζ(12 + it)|2dt � T (logT );

∫ 2T

T
|ζ ′(12 + it)|2dt � T (logT )3.

By Cauchy–Schwarz

1

T

∫ 2T

T

(
max
|t−u|≤1

|ζ(12 + iu)|2
)
dt � (logT )2.

meas
(
t ∈ [T , 2T ] : max

|t−u|≤1
|ζ(12 + iu)| > V logT

)
� T

V 2
.
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Ideas for the lower bound

First part: Convert to prime sums
A large value of ζ(σ + it) implies a large value of ζ near 1/2 + it.

Lemma Suppose 1
2 ≤ σ ≤

1
2 + (logT )−

1
2
−ε. Then

P
(

max
|t−u|≤1

|ζ(12 +iu)| ≥ V
)
≥ P

(
max

|t−u|≤1/4
|ζ(σ+iu)| ≥ 2V

)
+o(1).

K large integer. Put

σ0 =
1

2
+

(logT )
3
2K

logT
; X = exp

(
(logT )1−

1
K

)
Use mollifiers to prove: most of the time

ζ(σ0 + iu)
∏
p≤X

(
1− 1

pσ0+iu

)
≈ 1.

In fact, this holds for all u ∈ [t − 1, t + 1] for almost all t.



Ideas for the lower bound

First part: Convert to prime sums
A large value of ζ(σ + it) implies a large value of ζ near 1/2 + it.

Lemma Suppose 1
2 ≤ σ ≤

1
2 + (logT )−

1
2
−ε. Then

P
(

max
|t−u|≤1

|ζ(12 +iu)| ≥ V
)
≥ P

(
max

|t−u|≤1/4
|ζ(σ+iu)| ≥ 2V

)
+o(1).

K large integer. Put

σ0 =
1

2
+

(logT )
3
2K

logT
; X = exp

(
(logT )1−

1
K

)
Use mollifiers to prove: most of the time

ζ(σ0 + iu)
∏
p≤X

(
1− 1

pσ0+iu

)
≈ 1.

In fact, this holds for all u ∈ [t − 1, t + 1] for almost all t.



Reduced to understanding

max
|t−u|≤1

Re
∑
p≤X

1

pσ0+iu
.

Split the prime sum into K − 1 different ranges:

J0 = [2, exp((logT )
1
K )],

Jj = (exp((logT )
j
K ), exp((logT )

j+1
K )], 1 ≤ j ≤ K − 2.

Pj(u) = Re
∑
p∈Jj

1

pσ0+iu
.

Note: each Pj(u) for 0 ≤ j ≤ K − 3 is approximately Gaussian
with mean 0 and variance

∼ 1

2

∑
p∈Jj

1

p2σ0
∼ 1

2K
log logT .

Different Pj are uncorrelated.

Pj changes on the scale of (logT )−
j
K .
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Conclude:

P
(

max
|u−t|≤1

log |ζ(12 + iu)| ≥ (1− 2ε) log logT
)

≥ P
(

max
|u−t|≤ 1

4

K−3∑
j=1

Pj(u) ≥ (1− ε) log logT
)

+ o(1).

Key step:

P
(

max
|u−t|≤ 1

4

(
Pj(u) ≥ (1− ε)

K
log logT for all 1 ≤ j ≤ K−3

))
= 1+o(1).

Shouldn’t just make
∑
Pj large, but each constituent must be

large!
Note:

P(Pj(u) >
1

K
log logT ) ≈ exp

(
−

( 1
K log logT )2

1
K log logT

)
= (logT )−

1
K .
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Idea behind the key step
Imagine u = t + k/ logT , and that 0 ≤ k < logT .
Let T (k) be the event: (with λ < 1)

Pj(t + k/ logT ) ≥ λ

K
log logT , for all 1 ≤ j ≤ K − 3.

This has probability about (logT )−λ
2(K−3)/K .

By Cauchy–Schwarz

P
( ⋃

0≤k<logT

T (k)
)
≥
(∑

k

P(T (k))
)2/∑

k,`

P(T (k) ∩ T (`))

Proof: (
E
[∑

k

1T (k)

])2
=
(
E
[
1∪kT (k)

∑
k

1T (k)

])2
≤ P

(⋃
k

T (k)
)
E
[(∑

k

1T (k)

)2]
.
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Numerator:(∑
k

P(T (k))
)2
� (logT × (logT )−λ

2(K−3)/K )2.

Goal: Show that denominator ≈ numerator.
Key: Pj changes on the scale of (logT )−

j+1
K .

Typical case: k and ` are not close to each other:
|k − `| ≥ (logT )1−1/2K .
Then all the Pj(t + k/ logT ) behave independently of
Pj(t + `/ logT ).
So

P(T (k) ∩ T (`)) ≈ P(T (k))× P(T (`)).

These terms give:

≈
(∑

k

P(T (k))
)(∑

`

P(T (`))
)
.



Atypical case: k − ` ≈ (logT )1−
r
K .

For j ≤ r , Pj(t + k/ logT ) and Pj(t + `/ logT ) are strongly
correlated.
But for r + 1 ≤ j ≤ K − 3 they behave independently.
Probability: (logT )−λ

2r/K (logT )−2λ
2(K−3−r)/K .

Multiplied by number of atypical cases: (logT )2−r/K gives the
result.


