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Refinements of the resonance method

Recent work: originating with (i) Aistleitner, (ii) Bondarenko &
Seip.
Extensions by (iii) Aistleitner, Mahatab, Munsch, Peyrot; (iv) de la
Breteche and Tenenbaum.
Related to progress on “Gál sums” or “gcd sums”.
Theorem: (Bondarenko & Seip) There is a set N = {n1, . . . , nN}
of N natural numbers such that

N∑
k,`=1

(nk , n`)√
nkn`

≥ N exp
(

(1− ε)
√

logN log3 N√
log2 N

)
.

Allow for resonators with larger terms.
Exploit positivity — known at present only for ζ(s), and L(σ, χ)
for characters χ (mod q).
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Large values σ = 1/2

Theorem: (Bondarenko & Seip) For all large T

max√
T≤t≤T

|ζ( 1
2 + it)| ≥ exp

(
(1− ε)

√
logT log3 T√

log2 T

)
.

Note localization to [
√
T ,T ]. Method does not give large values

on [T , 2T ]. Also crucial that the coefficients of ζ(s) are all positive
(equal to 1). Does not extend to L(1/2 + it, χ−4) for example.

Theorem: (de la Breteche & Tenenbaum) If q is a large prime,
there exist primitive characters χ (mod q) such that

|L( 1
2 , χ)| ≥ exp

(
(1− ε)

√
log q log3 q√

log2 q

)
.

Don’t have a similar result for L( 1
2 , χd), or for |L( 1

2 + i , χ)|.
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Large values for 1 > σ > 1/2

Refinement pioneered by Aistleitner.
Theorem: (Aistleitner) Fix 1 > σ > 1

2 . For large T ,

max√
T≤t≤T

|ζ(σ + it)| ≥ exp
(
C (σ)

(logT )1−σ

(log logT )σ

)
.

“Only” recovers result of Montgomery in this situation.
Introduces the possibility of long resonators.

Theorem: (Aistleitner, Mahatab, Munsch, Peyrot) For large prime
q, there exist primitive characters χ (mod q) such that

|L(σ, χ)| ≥ exp
(
C (σ)

(log q)1−σ

(log log q)σ

)
.

Open problem: Corresponding result for L(σ, χd).
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Large values values for σ = 1

Theorem: (Aistleitner, Mahatab, Munsch) There is a constant C
such that

max√
T≤t≤T

|ζ(1 + it)| ≥ eγ(log2 T + log3 T − C ).

Granville & S. conjecture: for a specified constant C1

max
T≤t≤2T

|ζ(1 + it)| = eγ(log2 T + log3 T + C1 + o(1)).

Established a slightly weaker lower bound — off by log4 T .

Theorem: (Aistleitner, Mahatab, Munsch, Peyrot) If q is a large
prime there is a primitive character χ with

|L(1, χ)| ≥ eγ(log2 q + log3 q − C ).
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Large values of L(σ, χ)

Large sieve/zero density estimates: Apart from ≤ √q characters

log L(σ, χ) ≈
∑
p≤X

χ(p)

pσ
, X = (log q)10.

Resonator: (biases χ(p) towards 1 for p ≤ y)

R(χ) =
∏
p≤y

(
1− χ(p)

2

)−1
=
∑

n∈S(y)

χ(n)

2Ω(n)
.

Lower bound the ratio I2/I1 where

I1 =
∑

χ (mod q)

|R(χ)|2, I2 =
∑

χ (mod q)

(∑
p≤X

χ(p)

pσ

)
|R(χ)|2.

If the contribution of ≤ √q bad characters to I2 is negligible, this
produces large values of L(σ, χ).
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I2 =
∑

χ (mod q)

(∑
p≤X

χ(p)

pσ

) ∑
m,n∈S(y)

χ(m)

2Ω(m)

χ(n)

2Ω(n)

= φ(q)
∑

pm≡n (mod q)
m,n∈S(y)

1

2Ω(m)+Ω(n)pσ
.

All terms are positive! Focus just on the terms where n = pk.
Assuming y ≤ X , these terms alone give

I2 ≥ φ(q)
∑
p≤y

1

pσ
1

2

∑
m≡k (mod q)

m,k∈S(y)

1

2Ω(m)+Ω(k)
� y1−σ

log y
I1.

Need: contribution of the ≤ √q bad characters is negligible.
Since |R(χ)| ≤ 2π(y), this is

≤ √q22π(y)
∑
p≤X

1

pσ
≤ q

3
4 , if y ≤ 1

10
log q log log q.
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Conclusion: With y = 1
10 log q log log q, there are primitive

characters χ (mod q) with

log |L(σ, χ)| ≈ Re
∑
p≤X

χ(p)

pσ
� y1−σ

log y
� (log q)1−σ

(log log q)σ
.

Features/Limitations of the method
Need positivity in the orthogonality relations:

1

φ(q)

∑
χ (mod q)

χ(m)χ(n) =

{
1 if m ≡ n (mod q)

0 otherwise.

Works also for even characters, but not odd characters:

2

φ(q)

∑
χ (mod q)
χ(−1)=−1

χ(m)χ(n) =

{
±1 if m ≡ ±n (mod q)

0 otherwise
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Analogue in t–aspect:

1

T

∫ ∞
−∞

Φ
( t

T

)(m
n

)it
dt = Φ̂(T log(n/m)).

Can choose smooth Φ with Φ̂(ξ) ≥ 0.
Note: Such Φ will necessarily be supported near 0.
Reason for

√
T ≤ t ≤ T and cannot localize to [T , 2T ].

Need positivity of coefficients of L–functions.
E.g. cannot work with

log L(σ, f × χ) ≈
∑
p≤X

λf (p)
χ(p)

pσ

or

log |L(σ + i , χ)| ≈ Re
∑
p≤X

p−i
χ(p)

pσ
.
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Resonator exploits terms of much larger size than previously!

I1 =
1

φ(q)

∑
χ (mod q)

|R(χ)|2 ≥
∑

n∈S(y)

1

4Ω(n)
=
(4

3

)π(y)
≥ qθ.

Contribution of terms smaller than x to the resonator:∑
n∈S(y)
n≤x

1

2Ω(n)
≤ xδ

∑
n∈S(y)

1

2Ω(n)nδ
= xδ

∏
p≤y

(
1− 1

2pδ

)−1

For any fixed δ > 0 this is

� xδ exp
(
Cδ

y1−δ

log y

)
= xδqo(1).

Negligible for x = qA with A arbitrarily large.
Resonator uses terms of size about qlog log q.
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Bondarenko & Seip’s result on gcd sums

Theorem: (Bondarenko & Seip) There is a set N = {n1, . . . , nN}
of N natural numbers, and positive real numbers c1, . . ., cN such
that

N∑
k,`=1

ckc`
(nk , n`)√

nkn`
≥
(∑

k

c2
k

)
exp

(
(1− ε)

√
logN log3 N√

log2 N

)
.

N chosen as a set of square-free numbers that are divisor closed
That is, if n ∈ N all d |n are also in N .
Divide P = [e logN log2 N, e

K logN log2 N] into blocks
Pk = [ek logN log2 N, e

k+1 logN log2 N].
Will take K = log2 N.

N square-free numbers containing at most mk primes from Pk .
ck will be a multiplicative function f (nk) – f a modified version of
the function in resonance method.
On Pk , take f (p) = A(k)/

√
p — throughout P,

1 ≥ f (p) ≥ 1/
√
p.
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Restrict just to n`|nk . Since N is divisor closed:

N∑
k,`=1

ckc`
(nk , n`)√

nkn`
≥

N∑
k=1

f (nk)
√
nk

∑
n`|nk

f (n`)
√
n`.

Trivially ∑
k

c2
k ≤

∑
n

f (n)2 =
∏
p

(
1 + f (p)2

)
.

Goals:
1. Make ratio large:

∞∑
n=1

f (n)√
n

∑
d |n

f (d)
√
d
/ ∞∑

n=1

f (n)2.

2. Check that |N | ≤ N.
3. Show that ∑

n 6∈N

f (n)√
n

∑
d |n

f (d)
√
d = o( full sum).
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Goal 1:∑
n

f (n)√
n

∑
d |n

f (d)
√
d =

∏
p

(
1 +

f (p)
√
p

(
1 + f (p)

√
p
))

=
∏
p

(
1 + f (p)2 +

f (p)
√
p

)
.

Since f (p) ≤ 1 always: ratio amounts to maximizing

exp
(∑

p

f (p)
√
p

)
.

Goal 2: Recall:
Pk = [ek logN log2 N, e

k+1 logN log2 N],
N – numbers with at most mk primes from this interval for each k .

#N ≤
K−1∏
k=1

( ∑
j≤mk

(
eK+1 logN

j

))
≤ exp

(∑
k

mk

(
k+log

logN

mk

))
.
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Essentially need: ∑
k

kmk ≤ logN.

Goal 3:
Want: ∑

n 6∈N

f (n)√
n

∑
d |n

f (d)
√
d = o( full sum).

If n 6∈ N then for some 1 ≤ k ≤ K − 1 we must have that n has
more than mk prime factors from Pk .
Enough to show:∑
p|n =⇒ p∈Pk

Ω(n)>mk

f (n)√
n

∏
p|n

(
1 + f (p)

√
p
)

= o
( ∏

p∈Pk

(
1 + f (p)2 +

f (p)
√
p

))
.

Usual Taylor series argument: constraint

mk ≥
∑
p∈Pk

f (p)2.
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Problem: Constraints: Goals 2 & 3

mk =
∑
p∈Pk

f (p)2,
∑
k

kmk ≤ logN.

Maximize: Goal 1 ∑
p

f (p)
√
p
.

Motivates: On Pk take f (p) = A(k)/
√
p for suitable A(k).

Then

mk = A(k)2
∑
p∈Pk

1

p
= A(k)2 log

log(ek+1 logN log2 N)

log(ek logN log2 N)
≈ A(k)2

k + log2 N
.

Constraint: ∑
k

kA(k)2

k + log2 N
≤ logN

Maximize: ∑
k

A(k)

k + log2 N
.
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p

f (p)
√
p
.

Motivates: On Pk take f (p) = A(k)/
√
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Then
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∑
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1

p
= A(k)2 log

log(ek+1 logN log2 N)

log(ek logN log2 N)
≈ A(k)2

k + log2 N
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Should choose A(k) = A/k for 1 ≤ k ≤ log2 N.
Constraint:

A2
∑

k≤log2 N

1

k(k + log2 N)
≤ logN; A =

√
logN log2 N

log3 N
.

Ratio:

exp
( ∑

k≤log2 N

A

k(k + log2 N)

)
≈ exp

(√logN log3 N√
log2 N

)
.

Bondarenko–Seip choice:

f (p) =

√
logN log2 N

log3 N

1
√
p(log p − log2 N − log3 N)

.
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Application to large values of |L(1
2 , χ)|

Theorem: (de la Breteche & Tenenbaum) If q is a large prime,
there exist primitive characters χ (mod q) such that

|L( 1
2 , χ)| ≥ exp

(
(1− ε)

√
log q log3 q√

log2 q

)
.

Apply the Bondarenko–Seip construction with N =
√
q.

Let f be the multiplicative function given there.
Resonator coefficients:

r(n) =
( ∑

k≡n (mod q)
k∈N

f (k)2
) 1

2
.

Resonator:
R(χ) =

∑
n≤q

r(n)χ(n).
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Want: large value of∣∣∣ ∑
χ (mod q)

L( 1
2 , χ)|R(χ)|2

∣∣∣/ ∑
χ (mod q)

|R(χ)|2.

Denominator:

φ(q)
∑
n<q

r(n)2 = φ(q)
∑
n<q

( ∑
k≡n (mod q)

k∈N

f (k)2
)

= φ(q)
∑
k∈N

f (k)2.

Numerator: For χ 6= χ0 replace L( 1
2 , χ) by

∑
a≤q χ(a)/

√
(a).

∑
χ (mod q)

∑
a≤q

χ(a)√
a

∑
m,n≤q

r(m)r(n)χ(m)χ(n) + O
(√

q
∣∣∣∑
n≤q

r(n)
∣∣∣2)

= φ(q)
∑

a,m,n≤q
am≡n (mod q)

r(m)r(n)√
a

+ O
(√

q
∣∣∣∑
n≤q

r(n)
∣∣∣2).
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Handling the error term: Since N has only
√
q elements, r(n) 6= 0

only on ≤ √q residue classes.

√
q
∣∣∣∑
n≤q

r(n)
∣∣∣2 ≤ √q√q∑

n≤q
r(n)2 � Denominator.

Main term: a, m, n given with am ≡ n (mod q).

r(m)r(n) ≥
( ∑

ak=`
k,`∈N

k≡m,`≡n

f (k)2
) 1

2
( ∑

ak=`
k,`∈N

k≡m,`≡n

f (`)2
) 1

2

≥
∑
ak=`
k,`∈N

k≡m,`≡n

f (k)f (`)

Given a, sum over m and n gives∑
m,n≤q

am≡n (mod q)

r(m)r(n) ≥
∑
ak=`
k,`∈N

f (k)f (`).
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Conclude: Numerator

≥ φ(q)
∑
a≤q

1√
a

∑
ak=`
k,`∈N

f (k)f (`) = φ(q)
∑
`∈N

f (`)√
`

∑
ak=`
a≤q

f (k)
√
k .

If a ≤ q is ignored, this is exactly the numerator of the gcd sum
theorem!
Can get rid of the a ≤ q condition, by applying Rankin’s trick.
To sum up:∣∣∣ ∑
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L( 1
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max
χ
|L( 1

2 , χ)| ≥ Ratio ≈ exp
(
C

√
log q log3 q√

log2 q

)
.



Conclude: Numerator

≥ φ(q)
∑
a≤q

1√
a

∑
ak=`
k,`∈N

f (k)f (`) = φ(q)
∑
`∈N

f (`)√
`

∑
ak=`
a≤q

f (k)
√
k .

If a ≤ q is ignored, this is exactly the numerator of the gcd sum
theorem!
Can get rid of the a ≤ q condition, by applying Rankin’s trick.

To sum up:∣∣∣ ∑
χ (mod q)

L( 1
2 , χ)|R(χ)|2

∣∣∣ ≥ φ(q)
∑
`∈N

f (`)√
`

∑
k|`

f (k)
√
k

∑
χ (mod q)

|R(χ)|2 ≤ φ(q)
∑
n

f (n)2.

max
χ
|L( 1

2 , χ)| ≥ Ratio ≈ exp
(
C

√
log q log3 q√

log2 q

)
.



Conclude: Numerator

≥ φ(q)
∑
a≤q

1√
a

∑
ak=`
k,`∈N

f (k)f (`) = φ(q)
∑
`∈N

f (`)√
`

∑
ak=`
a≤q

f (k)
√
k .

If a ≤ q is ignored, this is exactly the numerator of the gcd sum
theorem!
Can get rid of the a ≤ q condition, by applying Rankin’s trick.
To sum up:∣∣∣ ∑

χ (mod q)

L( 1
2 , χ)|R(χ)|2

∣∣∣ ≥ φ(q)
∑
`∈N

f (`)√
`

∑
k|`

f (k)
√
k

∑
χ (mod q)

|R(χ)|2 ≤ φ(q)
∑
n

f (n)2.

max
χ
|L( 1

2 , χ)| ≥ Ratio ≈ exp
(
C

√
log q log3 q√

log2 q

)
.



Other applications of the resonance method

Milicevic: Large values of Hecke–Maass eigenforms on hyperbolic
surfaces.

Large character sums: χ (mod q) primitive character.
When does one have cancelation in

∑
n≤x χ(n)?

Granville & S. For every fixed A, there are characters with∣∣∣ ∑
n≤(log q)A

χ(n)
∣∣∣ ≥ (ρ(A) + o(1)

)
(log q)A.

On GRH: If log x/ log log q →∞ then
∑

n≤x χ(n) = o(x).
Hough: Resonance method in this context & refined many results.
de la Breteche & Tenenbaum: There exist characters χ with∣∣∣ ∑

n≤√q
χ(n)

∣∣∣ ≥ q
1
4 exp

(
C

√
log q log3 q√

log2 q

)
.
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