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Refinements of the resonance method

Recent work: originating with (i) Aistleitner, (ii) Bondarenko &
Seip.

Extensions by (iii) Aistleitner, Mahatab, Munsch, Peyrot; (iv) de la
Breteche and Tenenbaum.

Related to progress on "Gal sums” or “gcd sums”.

Theorem: (Bondarenko & Seip) There is a set N' = {ny,...,nn}
of N natural numbers such that
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Allow for resonators with larger terms.
Exploit positivity — known at present only for {(s), and L(o, x)
for characters x (mod q).



Large values 0 = 1/2

Theorem: (Bondarenko & Seip) For all large T
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Note localization to [v/T, T]. Method does not give large values
on [T,2T]. Also crucial that the coefficients of ((s) are all positive
(equal to 1). Does not extend to L(1/2 + it, x_4) for example.
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Large values 0 = 1/2

Theorem: (Bondarenko & Seip) For all large T

. v/log Tlogs T
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Note localization to [v/T, T]. Method does not give large values
on [T,2T]. Also crucial that the coefficients of ((s) are all positive
(equal to 1). Does not extend to L(1/2 + it, x_4) for example.

Theorem: (de la Breteche & Tenenbaum) If g is a large prime,
there exist primitive characters x (mod g) such that

1 ex . \/log glogs q
L3001 2 exp (1 = =22,

Don't have a similar result for L(%,xq4), or for [L(3 +i,)|.



Large values for 1 > o > 1/2

Refinement pioneered by Aistleitner.
Theorem: (Aistleitner) Fix 1 > o > 1. For large T,

(log T)'=7 )

max  |¢(o + it)| Zexp(C(a)W .

VT<t<T

“Only" recovers result of Montgomery in this situation.
Introduces the possibility of long resonators.



Large values for 1 > o > 1/2

Refinement pioneered by Aistleitner.
Theorem: (Aistleitner) Fix 1 > o > 1. For large T,

(log T)'=7 )

max  |C(o + it)] > exp (C(a) (log o8 T

VT<t<T
“Only" recovers result of Montgomery in this situation.
Introduces the possibility of long resonators.
Theorem: (Aistleitner, Mahatab, Munsch, Peyrot) For large prime
q, there exist primitive characters x (mod g) such that
(log q)'— )
(loglog q)7/°

Open problem: Corresponding result for L(o, xq)-

Lo, X)| = exp (C(0)



Large values values for o =1

Theorem: (Aistleitner, Mahatab, Munsch) There is a constant C
such that

max |((1+it)| > e”(log, T +logz T — C).
VT<t<T

Granville & S. conjecture: for a specified constant C;

SN oy
T;nééT|C(1+lt)| e(logy T +logs T + C1 + o(1)).

Established a slightly weaker lower bound — off by log, T.



Large values values for o =1

Theorem: (Aistleitner, Mahatab, Munsch) There is a constant C
such that

max |((1+it)| > e”(log, T +logz T — C).
VT<t<T

Granville & S. conjecture: for a specified constant C;

N
T;nééT|C(1+lt)| e(logy T +logs T + C1 + o(1)).

Established a slightly weaker lower bound — off by log, T.
Theorem: (Aistleitner, Mahatab, Munsch, Peyrot) If g is a large
prime there is a primitive character x with

IL(1,x)| > e"(logy g + logz g — C).



Large values of L(o, x)

Large sieve/zero density estimates: Apart from < ,/q characters

log L(o,x) ~ > X(f), X = (log q)*°.
p<X p



Large values of L(o, x)

Large sieve/zero density estimates: Apart from < ,/q characters

log L(o, x) X = (log q)*°
p<X
Resonator: (biases x(p) towards 1 for p < y)
- ~x(p)\ 1 x(n)
RO = H (1 2 ) - >Q(n) "
p<y neS(y)

Lower bound the ratio //l; where

b= YRR b= Y (2R

g
x (mod q) x (modgq) p<X P

If the contribution of < ,/q bad characters to /> is negligible, this
produces large values of L(o, x).



x(m) x(n)
b= Z ( Z xlp ) 29(m) 2Q(n)
x (mod q) p<X m,neS(y)

=00 D amam

pm=n (mod q)
m,neS(y)



x(p x(m) x(n)
h= ), (Z ) 20(m) 29(n)

x (modgq) p<X m,n€S(y)

= ¢(q) Z 29(m)+2(m) po

pm=n (mod q)
m,neS(y)

All terms are positive! Focus just on the terms where n = pk.
Assuming y < X, these terms alone give

1 ylfo'

11
h>d(a)) =5 > 5 > h
o (m)+Q(k)
p<y P72 m=k (mod q) 2 logy
m,keS(y)




B \(p x(m) x(n)
h= ), ( Z ) 20(m) 29(n)
x (mod q) p<X m,neS(y)

= ¢(q) Z 29(m)+2(m) po

pm=n (mod q)
m,neS(y)

All terms are positive! Focus just on the terms where n = pk.
Assuming y < X, these terms alone give

hro@> =2 % Ly
2= o0 Q(m)+Q(k) 1
p<y P72 m=k (mod q) 2 logy
m,keS(y)

Need: contribution of the < ,/q bad characters is negligible.
Since |R(x)| < 27, this is

1 3 1
27 = .
< /q2*" ) p§<x o <gqs, ify< 10 log g log log q.



Conclusion: With y = % log g log log g, there are primitive
characters x (mod g) with

l-0o l-0o

|
Iog]L(U,X)|xReZ X(f) > (log 9) s
P logy = (loglogq)



Conclusion: With y = % log g log log g, there are primitive
characters x (mod g) with

l-0o )1—0

x(p) ¥ (logq
log | L ~R ‘
og[L(0, x)] ep;( p7 ~ logy ~ (loglog )’

Features/Limitations of the method
Need positivity in the orthogonality relations:

1 _J1 ifm=n (modq)
m N (%;d q)x(m)x(n) B {0 otherwise.

Works also for even characters, but not odd characters:

2 Z X(m)X(”):{il if m=+n (mod q)

#(q) X (mod q) 0 otherwise
x(—1)=—



Analogue in t—aspect:

1 o0 t m\ it ~
= /oocb(T) (;> dt = (T log(n/m)).
Can choose smooth ® with 6(5) > 0.

Note: Such & will necessarily be supported near 0.
Reason for /T < t < T and cannot localize to [T,2T].



Analogue in t—aspect:

oo it ~
_1,_/Ood><_tr) ()" de = &(T10g(n/m)).

Can choose smooth ® with <T>(§) > 0.

Note: Such ® will necessarily be supported near 0.

Reason for v/T < t < T and cannot localize to [T,2T].

Need positivity of coefficients of L—functions.

E.g. cannot work with

08 L(s. £ x ) = 3 Ar(p) L2

p<X

or

log |L(o + i, x)| =~ Re Z p_iX(f).
p<X P



Resonator exploits terms of much larger size than previously!

1 1 4N 7(y)
/1=¢(q)x > RP2 Y mm=(5) =

(mod q) neS(y)



Resonator exploits terms of much larger size than previously!

1 1 4\ (y)
h=sy 2 ROOP= Y. = (5) =d"

(mod q) neS(y)
Contribution of terms smaller than x to the resonator:
X9 _ 0 =
P > 29 =TI (1 5, )
Py

nES(y) neS(y

n<x

-1

For any fixed § > 0 this is

5 y'=0 — I go1).
< x°exp | CGs—— ) = x%q
log y

Negligible for x = g with A arbitrarily large.
Resonator uses terms of size about ¢'°&'°8 9.



Bondarenko & Seip's result on gcd sums

Theorem: (Bondarenko & Seip) There is a set N = {ny,...,ny}
of N natural numbers, and positive real numbers ¢, ..., cy such
that
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N
(nk, ne) \/log N'logz N
kg; CkCgi\/m > (Zk: c,%) exp ((1 - e)—m )

N chosen as a set of square-free numbers that are divisor closed
That is, if n € N all d|n are also in NV.

Divide P = [elog N log, N, eX log N log, N] into blocks

Py = [eXlog N log, N, ekT1log N log, N].

Will take K = log, N.

N square-free numbers containing at most my primes from Pj.



Bondarenko & Seip's result on gcd sums
Theorem: (Bondarenko & Seip) There is a set N = {ny,...,ny}

of N natural numbers, and positive real numbers ¢, ..., cy such
that
N (nk, ne) v/log Nlogs N
ks ¢ 2 3
CkCp———t > ( ck) exp ((1 - e)—)
k;I v/ NNy Zk: \/log, N

N chosen as a set of square-free numbers that are divisor closed
That is, if n € N all d|n are also in NV.

Divide P = [elog N log, N, eX log N log, N] into blocks

Py = [eXlog N log, N, ekT1log N log, N].

Will take K = log, N.

N square-free numbers containing at most my primes from Pj.

¢k will be a multiplicative function f(nk) — f a modified version of
the function in resonance method.

On Py, take f(p) = A(k)/\/p — throughout P,

1> f(p) > 1/\/p.



Restrict just to ng|ng. Since N is divisor closed:

> aaltetd> S 10 5 o m

k=1 ng|ng

S <S> fn?=1] (1 + f(p)2>.
k

n p

Trivially



Restrict just to ng|ng. Since N is divisor closed:
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1. Make ratio large:
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Restrict just to ng|ng. Since N is divisor closed:

(i, ne) f(n)
> ac > > f(ne)y/me
k=1 v ne|nk
Trivially
S <> P =TI (1+F(e)?)
k n P
Goals:

1. Make ratio large:

2. Check that |NV| <
3. Show that




Goal 1:
IR LD BUCICE [T+ 1+ ro)ve))

n d|n
f(p)
= 1+ f(p)*+ —)
I1 (14 2+ 2
Since f(p) < 1 always: ratio amounts to maximizing

exp(Zf\(;;))

P




Goal 1:

S f\(/f%) S f(d)Vd = ];[ (1+ '1%)(1 +(p)vp))

n d|n
f(p)
=1 (1+fp)?>+—=%).
1;[ ( ﬁ)
Since f(p) < 1 always: ratio amounts to maximizing
f(p)
exp — ).
=)

Goal 2: Recall:
Py = [eXlog N log, N, ek log N log, N],
N — numbers with at most my primes from this interval for each k.

K

LN < 1—[11< Z (eK+1ong N>) < exp (ka<k—i—|og Io,ikN))'

k=1 j<my k




Essentially need:
Z kmy < log N.
k



Essentially need:
Z kmy < log N.
k

Goal 3:
Want:

Z Zf(d ( full sum).

nQ/\/ d|n

If n € NV then for some 1 < kK < K — 1 we must have that n has
more than my prime factors from P.
Enough to show:

> O (ro0e) <o T (1764 12)).

p|ln = pePy pln PEPy
Q(n)>my

Usual Taylor series argument: constraint



Problem: Constraints: Goals 2 & 3

my = Z f(p)?, kak <log N.

PEPy k

f
> 12

P

Maximize: Goal 1



Problem: Constraints: Goals 2 & 3

my = Z f(p)?, kak <log N.

PEPy k

Maximize: Goal 1

f(p)

(]

I <
o

Motivates: On Py take f(p)
Then

1 log(e¥*1 log N log, N) A(k)?
my = A(k)? = = A(k)?log 2"~ .
k (k) P;k p (k) log(ek log N log, N) k + log, N

A(k)/\/p for suitable A(k).

Constraint: )
kA(k
p k 4 logy, N

AR
— k +logy N

Maximize:



Should choose A(k) = A/k for 1 < k < log, N.
Constraint:

1 log N log, N
A2 Z ————<logN; A=,|——>—.
k<logy N k(k + |0g2 N) |0g3 N
Ratio:
A \/log N'logs N
exp Z — ) rexp | —— ).
k<log, N k(k + logy N)> ( Vlogz N )



Should choose A(k) = A/k for 1 < k < log, N.
Constraint:

log N log, N

1
A? — = <logN; A=
2. k(k +logy Ny = &7 logz N

k<log, N

Ratio:

F—
oo 5 imay) oo (VIR

Bondarenko—Seip choice:

F(p) = log N'log, N 1
logg N /p(log p — logy N — logz N)




Application to large values of ]L(%,X)\

Theorem: (de la Breteche & Tenenbaum) If g is a large prime,
there exist primitive characters x (mod g) such that

\/log glog; q>.
V9ogs q

LGl = e ((1-9)



Application to large values of ]L(%,X)\

Theorem: (de la Breteche & Tenenbaum) If g is a large prime,
there exist primitive characters x (mod g) such that

1 ex . /log glogs q
L5001 2 exp (1= =22,

Apply the Bondarenko—Seip construction with N = ,/q.
Let f be the multiplicative function given there.
Resonator coefficients:

n=( > f(k)2>i.

k=n (mod q)
keN

Resonator:



Want: large value of

> LEORWES Y RGO

x (mod q) (mod q)



Want: large value of

> LEORWES Y RGO
x

x (mod q) mod q)

Denominator:

AD)DrmP=o@Y (D FK?) =dla) D (k>

n<q n<q k=n (mod q) keN
keN



Want: large value of

> LG IRk |\/ > IRWP

x (mod q) (mod q)

Denominator:

ADD rmP=o@Y (D FK?) =ola) D f(k)

n<q n<q k=n (mod q) keN
keN

Numerator: For x # xo replace L(%,x) by > .<q x(a)//(a).

> XD S dmrmin(a) + 0(va| 3 et

x (mod q) a<q m,n<q

—ot) Y s o(vd T rnl]).

n<q

)

n<q



Handling the error term: Since A has only /q elements, r(n) # 0
only on < ,/q residue classes.

ﬂ‘ Z r(n)’2 < \/6\/62 r(n)?> < Denominator.

n<q n<q



Handling the error term: Since A has only /q elements, r(n) # 0
only on < ,/q residue classes.

ﬂ‘ Z r(n)’2 < \/6\/62 r(n)?> < Denominator.

n<q n<q

Main term: a, m, n given with am = n (mod q).

N[

(o) = (Y FR) (X A7)

ak={( ak=V¢
kteN kteN

k=m/=n k=m/¢=n

> Y AR
2ien

k=m{=n
Given a, sum over m and n gives
> r(m)r(n) > Y F(K)F(0).

m,n<q ak=/{
am=n (mod q) kteN



Conclude: Numerator

>0 2 X 0 =s@ Y " vk

a<q ak=/ LeN ak=/
kteN a<q



Conclude: Numerator

>0 2 X 0 =s@ Y " vk

< k=¢ leN k=¢

=T Qv © %<q
If a < g is ignored, this is exactly the numerator of the gcd sum
theorem!
Can get rid of the a < g condition, by applying Rankin’s trick.



Conclude: Numerator

RE)SE SWOTOEROD SRS ST

a<q ak=/ EGN ak=/
kLeEN a<q

If a < g is ignored, this is exactly the numerator of the gcd sum
theorem!

Can get rid of the a < g condition, by applying Rankin’s trick.
To sum up:

Y GIRWP| = ol Z 23w

x (mod q) ZEN’ ke

Y. RO < ¢(q) an)2

x (mod q)

| |
max ‘L(%v X)| > Ratio ~ exp (CM)
! Viogz g



Other applications of the resonance method

Milicevic: Large values of Hecke—Maass eigenforms on hyperbolic
surfaces.



Other applications of the resonance method

Milicevic: Large values of Hecke—Maass eigenforms on hyperbolic
surfaces.

Large character sums: x (mod q) primitive character.

When does one have cancelation in >, . x(n)?

Granville & S. For every fixed A, there are characters with

X )] = (p(A) + (1)) (log @),

n<(log q)*

On GRH: If log x/ loglog g — oo then >~ _ x(n) = o(x).
Hough: Resonance method in this context & refined many results.
de la Breteche & Tenenbaum: There exist characters y with

v/ [
‘n;f ‘ > q4 exp <Cf/g%3 q>‘



