
Background Reading for Topological Data Analysis 

 

Topological data analysis (TDA) is a methodology for applying the 

mathematical study of shape (topology) to the study of large and complex data 

sets.  Its development was initiated around the year 2000.  It has now seen 

applications in a large number of varied domains.  The purpose of this 

document is to give a brief summary of the literature and outline of the 

directions in which the methodology has been applied.   

 

There are two distinct threads in the subject. One is the mapping thread, which 

produces shapes encoded as graphs or simplicial complexes on which one can 

operate directly.  The second thread is the shape measurement thread, in which 

one can construct invariants of shapes that can be used to obtain understanding 

of data as well as to coordinatize various kinds of unstructured data.  Both 

themes appear prominently in applications.  

 

An overall survey of the area is given in [1]: G. Carlsson, Topology and Data, 

Bull. Am. Math. Soc. 46 (2009) 255-308  

 

Mapping 

 

This area is concentrated around one construction, given in [1] and [11], which 

is a generalization of the notion of Reeb graphs in computational geometry. It 

takes as input a point cloud (a data set equipped with a dissimilarity measure), 

and produces as output a network or graph in the computer science sense, 

which we refer to as the topological model.  These graphs can be taken as 

maps describing the “similarity landscape” of the data.  This kind of 

topological summary has been extremely useful in various applications.  

There is a theory developing around the stability of the construction, which 

will simplify and strengthen the ability to perform inference with it.  Examples 

of this kind of work are [31] and [32].  In addition, the topological model as 

constructed by Ayasdi includes a great deal of functionality beyond the simple 

display of the map, which permits the development of models and applications 

deriving from the topological analysis, as well as inference of various kinds. 

Explicit comparisons with some other methods for unsupervised analysis have 

been performed in [21] in the context of hyperspectral imaging. The published 

research has been concentrated in the biomedical realm, although the range of 

applications is growing beyond that. The applications include work in 

numerous areas, enumerated below with the corresponding references.  

 

https://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/S0273-0979-09-01249-X.pdf
https://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/S0273-0979-09-01249-X.pdf


Cancer genomics: [4], [12], [27] 

Genetics: [12], [14], [16] 

Infectious Disease: [2], [3], [15] 

Asthma: [19], [20] 

Diabetes: [41] 

Autism related syndrome: [18] 

Chemical Imaging: [21] 

Traumatic Brain Injury: [7], [8] 

 

 

Shape Measurement 

 

The work here is concentrated around persistent homology.  This method is 

an adaptation of the homology signatures in standard algebraic topology, that 

are able to capture the presence of various kinds of patterns in shapes.  A 

survey of the method is given in [10].  The output of this method is a signature 

called a barcode (or equivalently, a persistence diagram), which is somewhat 

analogous to the dendrograms produced by hierarchical clustering, but which 

capture higher order properties of a shape.  There are two directions of 

applications of these signatures.  One is the measurement of the overall shape 

of given data sets.  This kind of application is carried out in [13] (viral 

evolution), [22] and [42] (image processing), and [35] and [36] 

(neuroscience).  Applications of this kind of analysis includes the construction 

of compression schemes [26] and coordinatization of texture data [28].  The 

second direction is the coordinatization of unstructured data, such as databases 

of molecules or images.  This kind of application is exemplified by the work 

described in [33] and [43], and has been shown to be quite effective in drug 

discovery and in the materials science of glasses and other materials.  The 

technical background for both methods are given in [1], [10], [29], [30], and 

[40].  There is considerable theoretical work concerning stability properties of 

persistent homology, for example in [23] and [24].  The work describing 

coordinatization methods based on persistent homology is exemplified in [38] 

and [39].   
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