
 
An outline of the ten lectures 

 
Lecture 1: Introduction to Mathematical Molecular Bioscience and Biophysics 
Biophysics, bioinformatics, and systems biology concern quantitative modeling, analysis, 
simulation, computation, and prediction of modern biological sciences.   Among, them, 
biophysics emphasizes the application of physical laws to understand the molecular mechanisms 
of biological systems across all scales, from molecular to organismic. In contrast, bioinformatics 
focuses on statistical, mathematical and computer science based methodological developments 
for understanding biological data. Notably, systems biology concerns the computational and 
mathematical modeling and analysis of complex biological systems, particularly, their time 
evolution.  It is fair to say that biophysics is mechanistic, bioinformatics is data-driven and 
systems biology is knowledge-based. While overlapping with biophysics, bioinformatics, and 
systems biology, mathematical molecular bioscience and biophysics (MMBB) is unique in 
emphasizing the application and development of mathematical approaches for solving 
challenging problems in molecular bioscience and biophysics, such as the understanding of 
biomolecular structure-function relationship, the determination of ion channel gating mechanism 
and the discovery of new drugs for curing human diseases. MMBB is also very keen on creating 
biology inspired mathematics as mathematical physics did to mathematics in the past century.  
This lecture starts with a historical review of biological science to elucidate its status, challenge, 
trend, and future. Discussions are given to the connection and distinction of various quantitative 
biology disciplines, including biophysics, bioinformatics, systems biology, and MMBB after an 
introduction to essential experimental methods and theoretical models.     
 
Lecture 2: Differential Geometry Based Biomolecular Surface Modeling 
Differential geometry concerns with the geometric structures, such as curves and surfaces, on 
differentiable manifolds. It utilizes techniques from calculus, variation, linear algebra and 
multilinear algebra  and draws upon results from differential topology differential equation to 
study problems in geometry. In molecular biology, geometric modeling provides the structural 
representation of molecular structures and bridges the gap between molecular structural data and 
theoretical/mathematical models. One of the simplest molecular geometric models is the space-
filling Corey-Pauling-Koltun (CPK) theory, which represents an atom by a solid sphere with a 
van der Waals (VDW) radius.  With the 3D space-filling representation of a protein, various 
geometrical definitions, including VDW surface, solvent accessible surface, and solvent-
excluded surface, have been introduced to distinguish a protein from its surrounding 
environment and to understand  macromolecular interactions. The differential geometry of 
surfaces is a natural tool to describe biomolecular shapes and interactions.  It avoids geometrical 
singularities such as cusps and tips, in many other commonly used surface definitions and thus 
provides a sound basis for advanced physical modeling, including multiscale models for 
electrostatics, charge and material transport. Multiscale curvature maps are utilized to identify 
the hot spots of protein-ligand and protein-protein interactions. Utilizing the Euler-Lagrange 
variation, a differential geometry based surface model, the minimal molecular surface, is 
introduced for biomolecular geometric modeling. Surface evaluation is employed to detect 
protein binding pockets and to analyze molecular topological changes. 
 
Lecture 3: Differential Geometry Based Models for Electrostatics and Solvation 



Under physiological condition,  65-90 percent of cellular mass is water and thus biomolecular 
solvation is the basic process that underpins the molecular mechanism for almost all other 
important biological processes, including protein folding, protein mutation, molecular 
recognition, protein-protein interaction, protein-ligand binding, transcription, post-translational 
modification,  translation, enzyme catalysis, phosphorylation, and signal transduction. The 
biomolecules solvation involves bond construction/reconstruction, electrostatics and  van der 
Waals forces due to the possible  interactions  with water molecules, aqueous ions, counterions, 
and other molecules. Explicit solvation models are computationally prohibited for large systems 
with solute molecules consisting of hundreds or millions of atoms, and at the same time, 
surrounded by millions of solvent molecules, which in turn rapidly change their positions and 
orientations. Implicit solvent models utilize a multiscale approach to reduce the complexity and 
the large number of degrees of freedom by a discrete atomistic description of the solute molecule 
while a continuum dielectric representation of the solvent. Some of the well-known issues in 
implicit solvent modeling include the ad hoc division between solvent and solute and the neglect 
of nonlinear  effects due to solvent-solute mutual polarization. Geometric measure theory is 
introduced to represent the solute shape by the gradient of a hypersurface function.  The variation 
principle is used to minimize the entropically and enthalpically unfavorable work of solute cavity 
formation and van der Waals interactions in a nonpolar solvent model. Since electrostatic effect 
is fundamental in nature and ubiquitous in all biomolecules, a polar component is indispensable. 
In a differential geometry based full solvation model, both polar component modeled by the 
Poisson-Boltzmann theory and nonpolar component are coupled with the solvent-solute interface 
via the total free energy variation. The density functional theory (DFT) is introduced for solute 
electrons to further account for the electronic rearrangement associated with the molecular 
surface reconstruction.  The total free energy decay during variational simulations is proved 
rigorously.      
Lecture 4: Variational Approaches to Membrane Transport 
Lipid bilayer membrane is one of the most important biomolecular systems that establish the 
heterogeneous environments between intercellular and intracellular spaces and provide a 
platform for various essential transmembrane processes. Membrane transporters, including ion 
channels, are membrane transport proteins that regulate most cross-membrane material 
exchanges or information fluxes so as to sustain the regular functions of cells and subcellular 
organelles. Ion channels are pore-forming proteins that regulate signal transduction and action 
potential by gating the flow of ions across the cell membrane, controlling the flow of ions across 
secretory and epithelial cells, and modulating cell volume. Ion channels are prominent 
components of the nervous system for their role in transmitter-activated nerve impulse across 
neural synapses. They are responsible for numerous nervous and neuromuscular diseases and 
thus are some of the most important therapeutic targets. There are numerous ion channel models, 
ranging from simple-minded  Hodgkin–Huxley model, Poisson-Nernst-Planck (PNP) theory, and 
molecular dynamics, to expensive quantum mechanical approaches. Variational multiscale 
models are formulated to reduce the number of degrees of freedom and simplify the model 
complexity of full-atom models while enhancing the description and predictive power of the 
classic PNP model. For proton transport, a variational density functional model is proposed to 
deal with the quantum effect in proton channels. It is shown that the proposed models reduce to 
appropriate simple models at various limits.  
  
Lecture 5: Numerical Methods for Biomolecular Simulations 



Mathematical modeling and simulation of biomolecular systems encounter a wide variety of 
computational challenges, such as the integration of molecular dynamics, the solution of coupled 
partial differential equations (PDEs) from multiscale models, the optimization of the loss 
function for biological predictions, the tracking of molecular free boundaries,  the evaluation of 
biomolecular topological persistence barcodes and the  diagonalization of the biomolecular 
graph/Hodge  Laplacian matrices. Therefore, the development of efficient numerical methods 
and computational algorithms is an important task of mathematical molecular bioscience and 
biophysics. In fact, the numerical analysis of biomolecular systems furnishes rich mathematical 
development. For example, the electrostatic analysis may involve the Ewald method for system 
with periodic boundary conditions, multipole methods such as the treecode and fast multipole 
methods (FMM) for accelerating pairwise long-range integrations, interface methods such as 
immersed interface methods (IIM) and matched interface and boundary (MIB) for enforcing 
dielectric interface conditions on non-smooth solvent-solute interfaces, and boundary integral 
methods using induced surface charges to speed up electrostatic analysis. This lecture focuses on 
high-order MIB methods for solving elliptic interface problems arising from the Poisson-
Boltzmann (PB) model. The problem is difficult due to its discontinuous interface, singular 
charge source, and nonlinearity. Methods and challenges for PB based molecular dynamics are 
also discussed. 
 
Lecture 6: Graph Theory Based Modeling and Analysis  
Arguably, graph theory is the most important subject in discrete mathematics.  It concerns with 
the use of graphs as mathematical structures for modeling pairwise relations, i.e., edges, between 
vertices, nodes, or points. There are many different graph theories, such as geometric graphs, 
algebraic graphs, and topological graphs, that are versatile mathematical tools for analyzing 
biomolecular structure, function, dynamics and transport. For example, algebraic graph theory, 
particularly spectral graph theory, studies the algebraic connectivity via characteristic 
polynomials, eigenvalues, and eigenvectors of matrices associated with graphs, such as 
adjacency matrix or Laplacian matrix. This approach has been used in normal mode analysis and 
elastic network model, including Gaussian network model and anisotropic network model.  
Geometric graphs admit geometric objects as graph nodes or vertices and can significantly 
reduce the computational complexity of algebraic graph approaches for excessively large 
biomolecules. This lecture discusses the development of multiscale weighted colored graphs for 
biomolecular flexibility analysis, protein B factor prediction, protein domain classification, and 
protein hinge detection. It also deals with the functional prediction from massive biomolecular 
data arising from protein-ligand binding, protein-protein interaction, and protein folding stability 
changes upon mutation. 
 
Lecture 7: Topology Based Modeling and Analysis 
In mathematics, topology studies the topological invariants of continuous space or discrete space 
under continuous deformations. In chemistry, topological analysis based on the theory of atoms 
in molecules, electron localization function, and quantum chemical topology, provides powerful 
tools for characterizing chemical bonds and atoms, and for analyzing electron pair localization. 
In molecular biology, topology provides the ultimate abstraction of geometric complexity by 
concerning only the connectivity of different components in the space arising from biomolecular 
data and characterizing independent entities, rings, and higher-dimensional faces of the space in 
terms of  Betti numbers. Topological analysis and modeling of biomolecular structures give rise 



to intrinsic topological invariants of macromolecules, such as independent components (atoms), 
rings (pockets), and cavities. However, traditional topology oversimplifies biomolecular 
complexity and leaves too little information for analyzing biomolecular data. Persistent 
homology bridges between geometry and topology and offers a more powerful tool for data 
analysis. It turns out that persistent homology neglects chemical and biological information in 
diverse biomolecular data. Element-specific persistent homology, atom specific persistent 
homology, multi-level persistent homology, and electrostatic persistence are introduced to embed 
chemical and biological information into topological invariants during the topological abstraction 
of massive and diverse biomolecular data.  Multiresolution induced multidimensional persistence 
is proposed to extract appropriate topological properties over a wide range of spatial scales. 
 
Lecture 8: de Rham-Hodge Theory Based Modeling and Analysis 
The de-Rham-Hodge theory is an important landmark of the 20th Century mathematics that 
coherently connects differential geometry, algebraic topology and partial differential equation 
(PDE).  The de-Rham-Hodge theory provides a rigorous foundation for Maxwell’s theory, 
quantum mechanics, quantum field theory and Yang-Mills theory, among many others.  This 
lecture describes the application of the de Rham-Hodge theory for biomolecular analysis and 
modeling.  Based concepts, including exterior derivatives, differential forms, closed form, exact 
form, (co)cycle, (co)boundary, de Rham (co)chain complexes, and Hodge duality are reviewed. 
Discussions are given to de Rham cohomology, Hodge star operator, and Hodge decomposition 
theorem. These concepts and techniques are applied to biomolecular manifolds arising from 
biomolecular structural data. Discrete exterior calculus tools in three dimensional (3D) space are 
developed for Hodge decomposition on an arbitrarily complex geometry with appropriate 
boundary conditions.  Applications are considered for cryo-electron microscopy (cryo-EM) maps 
and protein structures. It is shown that the eigenvectors from Hodge Laplacian operators shed 
light on anisotropic motion of proteins and cryo-EM maps. Additionally, when de Rham-Hodge 
theory is applied to protein flexibility analysis and it offers some of the best predictions of B 
factors. In associated with machine learning, element-specific de Rham-Hodge theory and de 
Rham-Hodge persistence provide a new paradigm for the prediction of biomolecular data. 
 
 Lecture 9: Mathematics for Biomolecular Data 
Thanks to the rapid advance in gene sequencing, X-ray crystallography, nuclear magnetic 
resonance (NMR) and cryo-EM technologies, the GenBank has collected over two hundred 
million sequences, while the Protein Data Bank (PDB) has accumulated more than 150,000 
biological macromolecular structures. Meanwhile, the availability of high-performance graphics 
processing unit (GPU) and stochastic gradient descent (SGD) algorithm makes various deep 
learning algorithms feasible for large datasets. The developments in biological data and machine 
learning algorithms have given rise to an unprecedented opportunity for bioinformatics and 
biomolecular data analysis. However, biomolecular datasets contain complex macromolecular 
structures for which brute force 3D image representations involve excessively large machine 
learning dimensions and are not scalable from different structures. The need to analyze massive 
diverse and complex biomolecular datasets calls for innovative mathematical methods for 
macromolecular structural complexity reduction. This lecture provides a brief summary of the 
problems in biomolecular data analysis and major machine learning algorithms.  The design and 
construction of various mathematical techniques discussed in the early lectures, namely, 
differential geometry, algebraic topology, graph theory, and de Rham-Hodge theory, are 



highlighted to provide new powerful tools for simplifying macromolecular structural complexity 
and for generating scalable feature vectors for machine learning predictions. The mathematical 
representations of biomolecular datasets are coupled with many machine learning and deep 
learning architectures to predict protein-protein and protein-ligand binding affinities, protein 
folding stability change upon mutation, drug toxicity, solvation, solubility, permeability, and 
partition coefficient.      
 
Lecture 10: Mathematics for drug discovery 
One of the ultimate goals of modern biological science is to reveal the secret of life and cure 
human diseases. Drug discovery is an expensive and time-consuming process which takes over 
10 years and about US$2.6 billion to bring an average drug to market. The discovery process 
involves disease identification, target hypothesis, lead discovery, lead optimization, preclinical 
development, clinical trials, and drug efficacy optimization. Although much progress has been 
made in computer-aided drug design and discovery, the process is still labor intensive and 
essentially depends on trial and error. The recent success of Google’s AlphaFold in winning the 
Critical Assessment of Structure Prediction competition ushered in a new era of scientific 
discovery. It holds great promise to discover new drugs significantly faster and cheaper, which 
could be particularly beneficial to patients with rare medical ailments, for whom drug discovery 
is currently not profitable or for those whose medical ailments currently cannot be effectively 
treated with drugs, such as Alzheimer’s disease. However, drug discovery is much more complex 
and challenging than predicting protein folds. The structural complexity of protein-drug 
complexes and their intricate interactions is one of the major obstacles in AI-based high-
throughput screening, hit to lead, and lead optimization. This lecture reviews the concepts and 
challenges for drug discovery. Emphasis is given to the development of mathematical methods, 
including differential geometry, persistent homology, algebraic and geometric graphs, and 
multiscale partial differential equations, for reducing biomolecular structural complexity and for 
extracting protein-drug interactions. These mathematical approaches have been integrated with 
advanced machine learning algorithms, such generative adversarial network (GAN), to win many 
contests in D3R Grand Challenges, a worldwide competition series in computer-aided drug 
design. Mathematical methods are devised for quantitative systems pharmacology (QSP) 
modeling of drug pharmacokinetics, pharmacodynamics, and efficacy.      


