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Abstract

This paper is concerned with the existence of multiple points of Gaussian random
fields. Under the framework of Dalang et al. (2017), we prove that, for a wide class of
Gaussian random fields, multiple points do not exist in critical dimensions. The result
is applicable to fractional Brownian sheets and the solutions of systems of stochastic
heat and wave equations.
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1 Introduction

Let v = {v(x), x ∈ Rk} be a centered continuous Rd-valued Gaussian random
field defined on a probability space (Ω,F ,P) with i.i.d. components. Write v(x) =

(v1(x), . . . , vd(x)) for x ∈ Rk. For a set T ⊂ Rk (e.g., T = (0,∞)k, or T = [0, 1]k) and an
integer m ≥ 2, we say that z ∈ Rd is an m-multiple point of v(x) on T if, with positive
probability, there are m distinct points x1, . . . , xm ∈ T such that z = v(x1) = · · · = v(xm).

Several authors have studied the existence of multiple points of Gaussian random
fields. Sufficient conditions or necessary conditions for the case of a fractional Brownian
motion BH = {BH(t), t ∈ Rk} in Rd were proved by Kôno [8], Goldman [6], Rosen [12].
Their results show that if km > (m−1)Hd then BH has m-multiple points on any interval

*The research of R.C. Dalang is partially supported by the Swiss National Foundation for Scientific Research,
the research of C. Mueller is partially supported by a Simons grant, and Y. Xiao is partially supported by NSF
grants DMS-1607089 and DMS-1855185.

†Institut de mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne,
Switzerland. E-mail: robert.dalang@epfl.ch

‡Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States.
Current address: Institut de mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015
Lausanne, Switzerland. E-mail: cheuk.lee@epfl.ch

§Department of Mathematics, University of Rochester, Rochester, NY 14627, United States.
E-mail: carl.e.mueller@rochester.edu

¶Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States.
E-mail: xiao@stt.msu.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP589
https://ams.org/mathscinet/msc/msc2020.html
mailto:robert.dalang@epfl.ch
mailto:cheuk.lee@epfl.ch
mailto:carl.e.mueller@rochester.edu
mailto:xiao@stt.msu.edu


Multiple points of Gaussian random fields

T ⊆ Rk; and if km < (m − 1)Hd then BH has no m-multiple points on Rk\{0}. Rosen
[12] also considered the existence of multiple points of the Brownian sheet by studying
its self-intersection local times.

In the critical dimensions (i.e., km = (m− 1)Hd for BH ), the problem for proving the
non-existence of multiple points is more difficult. For fractional Brownian motion and
the Brownian sheet, the problem was resolved by Talagrand [13] and by Dalang et al. [3]
and Dalang and Mueller [4], respectively. The methods in [13] and [3, 4] are different.

Our research in this paper is motivated by the interest in studying the intersection
problems for the solutions of systems of stochastic heat and wave equations with constant
coefficients, where the method in [3, 4] fails in general. Our main purpose is to continue
the work of [5] and extend Talagrand’s approach in [13] to a large class of Gaussian
random fields which include fractional Brownian sheets and the solutions of systems
of stochastic heat and wave equations with constant coefficients. As a byproduct, our
theorem provides an alternative proof for the results in [3, 4] by using general Gaussian
principles and the harmonizable representation of the Brownian sheet.

The result of this paper relies on a covering argument originated by Talagrand [13],
and later further developed by Dalang et al. [5]. In this paper, the main ingredient
for the covering argument is Proposition 3.6, which states that for any distinct points
s1, . . . , sm ∈ T , with high probability, there are small neighbourhoods of si in which the
maximum of the increments v(xi)− v(si) (1 ≤ i ≤ m) could be smaller than one would
expect from the Hölder regularity. This observation allows us to use balls of different
radii to construct an efficient random cover for the set of multiple points, which is
essential for proving the non-existence of multiple points in the critical dimension.

The paper is organized as follows. In Section 2, we state our assumptions and the
main result of this paper, Theorem 2.5. In Section 3, we establish some necessary
ingredients for proving Theorem 2.5 and, in Section 4, we prove the main theorem. In
Section 5, we provide several examples of Gaussian random fields to which the theorem
can be applied. These examples include the Brownian sheet, fractional Brownian sheets,
and the solutions of systems of stochastic heat and wave equations.

Throughout the article, we use K or c to denote a constant that may vary at each
occurrence. Specific constants will be denoted by K1,K2, c1, etc.

2 Assumptions and the main result

By a compact interval (or rectangle) in Rk we mean a set I of the form
∏k
j=1[cj , dj ],

where cj < dj . Throughout this paper, we assume that T ⊂ Rk is a fixed index set
that can be written as a countable union of compact intervals. To avoid triviality in
studying the multiple points of {v(x), x ∈ Rk}, one may take, for example, T = Rk\{0}
or T = (0,∞)k.

In the following, Assumption 2.1 is a slightly simplified reformulation of Assumption
2.1 in [5] and Assumption 2.2 below is a reinforced version of Assumption 2.4 in [5].

Assumption 2.1. There exists a centered Gaussian random field {v(A, x), A ∈ B(R+), x ∈
T}, where B(R+) is the Borel σ-algebra on R+ = [0,∞), such that the following hold:

(a) For all x ∈ T , A 7→ v(A, x) is an Rd-valued white noise (or, more generally, an
independently scattered Gaussian noise with a control measure µ) with i.i.d. components,
v(R+, x) = v(x), and v(A, ·) and v(B, ·) are independent whenever A and B are disjoint.

(b) There exist constants γj > 0, j = 1, . . . , k with the following properties: For
every compact interval F ⊂ T , there exist constants c0 > 0 and a0 ≥ 0 such that for all
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a0 ≤ a < b ≤ ∞ and x, y ∈ F ,

‖v([a, b), x)− v(x)− v([a, b), y) + v(y)‖L2 ≤ c0
( k∑
j=1

aγj |xj − yj |+ b−1

)
, (2.1)

and

‖v([0, a0), x)− v([0, a0), y)‖L2 ≤ c0
k∑
j=1

|xj − yj |. (2.2)

In the above, ‖X‖L2 =
(
E|X|2

)1/2
for a random vector X, where |X| is the Euclidean

norm of X.

Notice that in Assumption 2.1 the constants a0 and c0 may depend on F , but γj
(j = 1, . . . , k) do not. As shown by Dalang et al. [5], the parameters γj (j = 1, . . . , k)
play important roles in characterizing sample path properties (e.g., regularity, fractal
properties, hitting probabilities) of the random field {v(x), x ∈ T}.

Let αj = (γj + 1)−1 and Q =
∑k
j=1 α

−1
j . Define the metric ∆ on Rk by

∆(x, y) =

k∑
j=1

|xj − yj |αj . (2.3)

For x ∈ T and r > 0, denote by S(x, r) = {y ∈ Rk : ∆(x, y) ≤ r} the closed ball with
center x and radius r in the metric ∆ in (2.3) and let Br(x) =

∏k
j=1[xj − r1/αj , xj + r1/αj ].

Notice that S(x, r) ⊆ Br(x) and Br/k(x) ⊆ S(x, r).

Assumption 2.2. For every compact interval F ⊂ T , there exist constants 0 < ε0 ≤ 1,
c ≥ 3, c′ ≥ 2c and δj ∈ (αj , 1], j = 1, . . . , k, such that for every 0 < ρ ≤ ε0 there is a finite
constant C (which may depend on F , ρ and δj) and the following property holds:

For every x ∈ F with Bcρ(x) ⊂ F , there is x′ ∈ Bcρ(x) such that for every i = 1, . . . , d

the condition

∣∣E((vi(y)− vi(ȳ))vi(x
′))
∣∣ ≤ C k∑

j=1

|yj − ȳj |δj (2.4)

holds for all y, ȳ in each of the following cases:

(i) y, ȳ ∈ B2ρ(x);

(ii) y, ȳ ∈ B2ρ(x̃), for any x̃ such that B2ρ(x̃) ⊂ F and ∆(x, x̃) ≥ c′ρ.

Assumption 2.2 states that for every fixed point x ∈ T , one can find a reference point x′

(which may depend on x) such that for all y, ȳ that are either in a small neighborhood of x,
or are sufficiently away from a neighborhood of x (hence away from x′), the covariances
in (2.4) are smoother than what one gets from the Cauchy–Schwarz inequality and
Lemma 3.1 below, which lead to αj instead of δj in the exponents.

As an illustration example, let {v(x), x ∈ Rk} be a real-valued fractional Brownian
motion with index H ∈ (0, 1) and let F ⊂ Rk\{0} be a compact interval. Then for any
ρ > 0 and x′, y, ȳ ∈ F that satisfy min{|y|, |ȳ|, |y − x′|, |ȳ − x′|} ≥ ρ, where | · | is the
Euclidean norm in Rk, we use the mean value theorem to derive∣∣E((v(y)− v(ȳ))vi(x

′))
∣∣ =

1

2

(
|y|2H − |ȳ|2H − |y − x′|2H + |ȳ − x′|2H

)
≤ C |y − ȳ|,
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where C is a constant depending on H, ρ (if H ≤ 1/2) and the compactness of F (if
H > 1/2). Hence Assumption 2.2 holds with c = 3, c′ = 6 and δj = 1 for j = 1, . . . , k. This
was observed in Lemma 3.2 of Talagrand [13]. As we will see in Section 5, verifications
of Assumption 2.2 for fractional Brownian sheets and the solutions to stochastic heat
and wave equations are more involved.

Now we introduce an additional non-degeneracy assumption.

Assumption 2.3. For any m distinct points x1, . . . , xm ∈ T , v1(x1), . . . , v1(xm) are lin-
early independent random variables, or equivalently, the Gaussian distribution of the
vector (v1(x1), . . . , v1(xm)) is non-degenerate.

Remark 2.4. Assumption 2.3 is also equivalent to Var(v1(x1)) > 0 and, for every ` =

2, . . . ,m, the conditional variance of v1(x`) given v1(xj), j ≤ `− 1, is positive.

The main result of this paper is the following.

Theorem 2.5. Let m ≥ 2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. If mQ ≤
(m− 1)d, then {v(x), x ∈ T} has no m-multiple points almost surely.

3 Preliminaries

In this section, we provide some preliminaries that will be used for proving Theorem
2.5. Clearly it suffices to prove that if mQ ≤ (m− 1)d then, for every compact interval
F ⊂ T , {v(x), x ∈ F} has no m-multiple points almost surely. Hence, without loss of
generality, we assume in Sections 3 and 4 that T is a compact interval.

Fix an integer m ≥ 2. For an integer n ≥ 1, let An be the countable subset of Tm

defined by
An = {(t1, . . . , tm) : ti ∈ T ∩Qk,∆(ti, tj) ≥ 1/n for i 6= j}. (3.1)

Since T is compact, we see that the closure An is compact. Moreover,
⋃∞
n=1An is dense

in Tm.
For any constant ρ > 0, let Biρ = Bρ(t

i) (i = 1, . . . ,m). It is clear that if (t1, . . . , tm) ∈
An and ρ ∈ (0, 1/n) is small enough, then the intervals Biρ (i = 1, . . . ,m) are disjoint.

Consider the random set

Mt1,...,tm;ρ =
{
z ∈ Rd : ∃ (x1, . . . , xm) ∈

m∏
i=1

Biρ

such that z = v(x1) = · · · = v(xm)
}
,

(3.2)

which is the intersection of the images v(Biρ) for i = 1, . . . ,m and is contained in the
set of m-multiple points. On the other hand, let z ∈ Rd be an m-multiple point, i.e.,
there are m distinct points x1, . . . , xm ∈ T such that z = v(x1) = · · · = v(xm). Then for n
large enough we have ∆(xi, xj) > 3/n for i 6= j. It follows from the triangle inequality
that, for any constant ρ ∈ (0, 1/n), there is (t1, . . . , tm) ∈ An such that ∆(xi, ti) < ρ. This
implies that z ∈ Mt1,...,tm;ρ. Thus we have verified that the set of m-multiple points of
{v(x) : x ∈ T} can be written as a countable union⋃

n≥1

⋂
ρ∈(0,1/n)∩Q

⋃
(t1,...,tm)∈An

Mt1,...,tm;ρ. (3.3)

We will use this observation in Section 4 to complete the proof of Theorem 2.5.
For the rest of this section, we fix an integer n ≥ 1. Let ρ0 ∈ (0, 1/n) be the small

constant given in Lemma 3.8 below. Notice that the constant ρ0 is independent of
(t1, . . . , tm) ∈ An. For simplicity of notation, we assume that Bρ0(ti) ⊆ T for i = 1, . . . ,m

(otherwise we take the intersection with T ), and we omit the subscripts t1, . . . , tm in (3.2)
and write Mt1,...,tm;ρ, as Mρ.
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Recall from [5] that, under Assumption 2.1, ∆ provides an upper bound for the
L2-norm of the increments of {v(x), x ∈ T} and in particular v(x) is continuous in
L2(Ω,F ,P).

Lemma 3.1. [5, Proposition 2.2] Under Assumption 2.1, for all x, y ∈ T with ∆(x, y) ≤
min{a−1

0 , 1}, we have ‖v(x)− v(y)‖L2 ≤ 4c0∆(x, y).

Assumption 2.1 suggests that for any s ∈ T and x that is close to s, the increment
v(x) − v(s) can be approximated well by v([a, b), x) − v([a, b), s) if we choose a and b

carefully. The following lemma from [5] quantifies the approximation error on S(s, cr).

Lemma 3.2. Let c > 0 be a constant. Consider b > a > 1, ε1 > r > 0, where ε1 > 0 is a
small constant. Set

A =

k∑
j=1

aα
−1
j −1 rα

−1
j + b−1.

There are constants A0, K̃ and c̃ (depending on c0 in Assumption 2.1 and c) such that if
A ≤ A0r and

u ≥ K̃A log1/2
( r
A

)
, (3.4)

then for any s ∈ T ,

P

{
sup

x∈S(s, cr)

|v(x)− v(s)− (v([a, b), x)− v([a, b), s))| ≥ u
}
≤ exp

(
− u2

c̃A2

)
.

Remark 3.3. The constant c in Lemma 3.2 and Proposition 3.6 below is not important.
It merely helps to simplify the presentation in Section 4, where sometimes we switch
back and forth between a ball S(s, r) and an interval Br(x).

For describing the contribution of the main part v([a, b), x)− v([a, b), s), we will apply
the small ball probability estimate given in Lemma 3.5 below. We refer to Lemma 2.2
of [14] for a general lower bound on the small ball probability of Gaussian processes.
However, it was pointed out by Slobodan Krstic (personal communication) that the
condition of that lemma is not correctly stated. Indeed, the lemma fails if we consider S
consisting of two points, and independent standard normal random variables indexed by
the two points. We will make use of the following reformulation of the presentation of
Talagrand’s lower bound given by Ledoux [9, (7.11)-(7.13) on p. 257].

Lemma 3.4. Let {X(t), t ∈ S} be a separable, Rd-valued, centered Gaussian process
indexed by a bounded set S with the canonical metric dX(s, t) = (E|X(s) −X(t)|2)1/2.
Let Nε(S) denote the smallest number of dX -balls of radius ε needed to cover S. If there
is a decreasing function ψ : (0, δ] → (0,∞) such that Nε(S) ≤ ψ(ε) for all ε ∈ (0, δ] and
there are constants c2 ≥ c1 > 1 such that

c1ψ(ε) ≤ ψ(ε/2) ≤ c2ψ(ε) (3.5)

for all ε ∈ (0, δ], then there is a constant K depending only on c1, c2 and d such that for
all u ∈ (0, δ),

P

(
sup
s,t∈S

|X(s)−X(t)| ≤ u
)
≥ exp

(
−Kψ(u)

)
. (3.6)

Let ρ ∈ (0, ρ0/3) be a constant and let (t1, . . . , tm) ∈ An. Recall that B1
2ρ, . . . , B

m
2ρ are

the rectangles centered at t1, . . . , tm. By applying Assumption 2.1 and Lemma 3.4, we
derive the following lemma.

Lemma 3.5. Suppose that Assumption 2.1 holds and ρ ∈ (0, ρ0/3) is a constant. Then
there exist constants K and 0 < η0 < ρ0/3, depending on c0 in Assumption 2.1, such that
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for all (s1, . . . , sm) ∈ B1
2ρ × · · · ×Bm2ρ, for all 0 < a < b and 0 < u < r < η0, we have

P

(
sup

1≤i≤m
sup

xi∈S(si,r)

|v([a, b), xi)− v([a, b), si)| ≤ u
)
≥ exp

(
−K rQ

uQ

)
, (3.7)

where Q =
∑k
j=1 α

−1
j .

Proof. As suggested by the proof of (3.3) in Talagrand [13], (3.7) can be derived from
Lemma 3.4. However, there was a typo in the exponent in (3.3) in [13] (the ratio r

u1/α

there should be raised to the power N ) and the suggested proof by introducing the
auxiliary process Z does not give the correct power for r

u1/α in (3.3) in [13], which is
needed for proving Proposition 3.4 in [13]. Hence we give a proof of (3.7).

For (s1, . . . , sm) ∈ B1
2ρ × · · · × Bm2ρ and r < ρ0/3, define S =

⋃m
i=1 S(si, r). Under

our assumption, we have S(si, r) ⊆ T for i = 1, . . . ,m. Thus, S ⊆ T . It follows from
Assumption 2.1 that for all x, y ∈ S,

‖v([a, b), x)− v([a, b), y)‖2L2 = ‖v(x)− v(y)‖2L2 − ‖v(R+ \ [a, b), x)− v(R+ \ [a, b), y)‖2L2

≤ ‖v(x)− v(y)‖2L2 .

By Lemma 3.1, we have that the canonical metric for {v([a, b), x), x ∈ S} satisfies

dv(s, t) := ‖v([a, b), x)− v([a, b), y)‖L2 ≤ 4c0∆(x, y)

for all x, y ∈ S with ∆(x, y) small. Hence there is a constant η0 ∈ (0, ρ0/3) such that for
all r ∈ (0, η0) and ε ≤ r, the minimal number of dv-balls of radius ε needed to cover S is

Nε(S) ≤ ψ(ε) := CN,Q

(r
ε

)Q
.

Note that this function ψ(ε) satisfies (3.5) with the constants c1 = c2 = 2Q which are
greater than 1. It follows from Lemma 3.4 that there is a constant K such that (3.7)
holds. This proves Lemma 3.5.

The following is the main estimate, which is an extension of Proposition 3.4 in
Talagrand [13].

Proposition 3.6. Let c > 0 be a constant and suppose that Assumption 2.1 holds. Then
there are constants K1 and 0 < η1 < 1 such that for all 0 < r0 < η1, ρ ∈ (0, ρ0/3),
(t1, . . . , tm) ∈ An and (s1, . . . , sm) ∈ B1

2ρ × · · · ×Bm2ρ, we have

P

(
∃ r ∈ [r2

0, r0], sup
1≤i≤m

sup
xi∈S(si, cr)

|v(xi)− v(si)| ≤ K1r

(
log log

1

r

)−1/Q
)

≥ 1− exp

(
−
(

log
1

r0

)1/2
)
.

Proof. The method of proof is similar to that of Proposition 3.4 in Talagrand [13]. For
reader’s convenience we provide a complete proof of Proposition 3.6 here. The main
ingredients are the small ball probability estimate in Lemma 3.5 and the estimate of the
approximation error in Lemma 3.2.

As in [14, 13] and [5], let U > 1 be fixed for now and its value will be chosen later.
Set r` = r0U

−2` and a` = U2`−1/r0. Consider the largest integer `0 such that

`0 ≤
log(1/r0)

2 logU
. (3.8)
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Then for ` ≤ `0, we have r` ≥ r2
0. It suffices to show that, for some large constant K1,

P

(
∃1 ≤ ` ≤ `0, sup

1≤i≤m
sup

xi∈S(si, cr`)

|v(xi)− v(si)| ≤ K1
r`

(log log 1
r`

)1/Q

)

≥ 1− exp

(
−
(

log
1

r0

)1/2
)
.

It follows from Lemma 3.5 that, for K1 large enough so that K/KQ
1 ≤ 1/4,

P

(
sup

1≤i≤m
sup

xi∈S(si, cr`)

|v([a`, a`+1), xi)− v([a`, a`+1), si)| ≤ K1
r`

(log log 1
r`

)1/Q

)

≥ exp

(
− K

KQ
1

log log
1

r`

)

≥
(

log
1

r`

)−1/4

.

(3.9)

Thus, by the independence of the Gaussian processes v([a`, a`+1), ·) (` = 1, . . . , `0), we
have

P

(
∃` ≤ `0, sup

1≤i≤m
sup

xi∈S(si, cr`)

|v([a`, a`+1), xi)− v([a`, a`+1), si)| ≤ K1r`

(log log 1
r`

)1/Q

)

= 1−
`0∏
`=1

{
1− P

(
sup

1≤i≤m
sup

xi∈S(si, cr`)

|v([a`, a`+1), xi)− v([a`, a`+1), si)| ≤ K1r`

(log log 1
r`

)1/Q

)}
.

By (3.9), we see that the last expression is greater than or equal to

1−
`0∏
`=1

{
1−

(
log

1

r`

)−1/4
}
≥ 1−

{
1−

(
log

1

r2
0

)−1/4
}`0

≥ 1− exp

(
−`0

(
log

1

r2
0

)−1/4
)
.

(3.10)

Set

A` =

k∑
j=1

a
α−1
j −1

` r
α−1
j

` + a−1
`+1.

Notice that r`a` = U−1 and r`a`+1 = U . Then

A`r
−1
` =

k∑
j=1

(a`r`)
α−1
j −1 + (a`+1r`)

−1 =

k∑
j=1

U−(α−1
j −1) + U−1 ≤ (k + 1)U−β , (3.11)

with β = min{1,minj=1,...,k(α−1
j − 1)} > 0 since αj < 1 for j = 1, . . . , k. Therefore, for

U large enough, A` ≤ A0r`, and for u ≥ K̃r`U
−β√logU , (3.4) is satisfied. Hence, by

Lemma 3.2 and (3.11),

P

(
sup

1≤i≤m
sup

xi∈S(si, cr`)

∣∣v(xi)− v(si)− v([a`, a`+1), xi) + v([a`, a`+1), si)
∣∣ ≥ u)

≤ exp

(
− u2

c̃A2
`

)
≤ exp

(
− u2

c̃(k + 1)2r2
`

U2β

)
.
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Now we take u = K1r`(log log 1
r0

)−1/Q, which is allowed provided

K1r`

(
log log

1

r0

)−1/Q

≥ K̃r`U−β
√

logU.

This is equivalent to

Uβ(logU)−1/2 ≥ K̃

K1

(
log log

1

r0

)1/Q

, (3.12)

which holds if U is large enough. It follows from the above that

P

(
sup

1≤i≤m
sup

xi∈S(si, cr`)

∣∣v(xi)− v(si)− v([a`, a`+1), xi) + v([a`, a`+1), si)
∣∣ ≥ K1r`

(log log 1
r0

)1/Q

)

≤ exp

(
− U2β

c̃(k + 1)2(log log 1
r0

)2/Q

)
. (3.13)

Let

F` =

{
sup

1≤i≤m
sup

xi∈S(si, cr`)

|v([a`, a`+1), x
i)− v([a`, a`+1), s

i)| ≤ K1r`

2(log log 1
r`
)1/Q

}
,

G` =

{
sup

1≤i≤m
sup

xi∈S(si, cr`)

|v(xi)− v(si)− v([a`, a`+1), x
i) + v([a`, a`+1), s

i)| ≥ K1r`

2(log log 1
r`
)1/Q

}
.

Then

P

(
∃1 ≤ ` ≤ `0, sup

1≤i≤m
sup

xi∈S(si, cr`)

|v(xi)− v(si)| ≤ K1 r`

(log log 1
r`

)1/Q

)

≥ P

(
`0⋃
`=1

(F` ∩Gc`)

)

≥ P

(( `0⋃
`=1

F`

)
∩
( `0⋃
`=1

G`

)c)

≥ P

(
`0⋃
`=1

F`

)
− P

(
`0⋃
`=1

G`

)
.

(3.14)

By (3.10), we have

P

(
`0⋃
`=1

F`

)
≥ 1− exp

(
−`0

(
log

1

r2
0

)−1/4
)
,

and by (3.13),

P

(
`0⋃
`=1

G`

)
≤ `0 exp

(
− U2β

c̃(k + 1)2(log log 1
r0

)2/Q

)
.

Combining this with (3.14), we get

P

(
∃1 ≤ ` ≤ `0, sup

1≤i≤m
sup

xi∈S(si, cr`)

|v(xi)− v(si)| ≤ K1 r`

(log log 1
r`

)1/Q

)

≥ 1− exp

(
−`0

(
log

1

r2
0

)−1/4
)
− `0 exp

(
− U2β

c̃(k + 1)2(log log 1
r0

)2/Q

)
.
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Multiple points of Gaussian random fields

Therefore, the proof will be completed provided

exp

(
−`0

(
log

1

r2
0

)−1/4
)

+ `0 exp

(
− U2β

c̃(k + 1)2(log log 1
r0

)2/Q

)

≤ exp

(
−
(

log
1

r0

)1/2
)
.

(3.15)

Recall the condition (3.12), and the definition of `0 in (3.8). If we set

U =

(
log

1

r0

)1/(2β)

,

then for r0 small enough, by (3.8),

`0 >
β

2

(
log

1

r0

)(
log log

1

r0

)−1

> 1.

Therefore, the left-hand side of (3.15) is bounded above by

exp

(
−

(log 1
r0

)3/4

c̃(k + 1)2 log log 1
r0

)
+

(
1 + log

1

r0

)
exp

(
−

log 1
r0

c̃(k + 1)2(log log 1
r0

)2/Q

)

≤ exp

(
−
(

log
1

r0

)1/2
)

provided r0 is small enough. This completes the proof of Proposition 3.6.

Let n ≥ 1 be fixed. Notice that if (t1, . . . , tm) ∈ An and 0 < ρ < 1
2c′n , where c′ > 0 is the

constant in Assumption 2.2, then ∆(ti, th) ≥ 2c′ρ for i 6= h. It follows from Assumption 2.2
that for each (t1, . . . , tm) ∈ An and ρ ∈ (0, ε0∧ 1

2c′n ), there are (t̂1, . . . , t̂m) ∈ B1
cρ×· · ·×Bmcρ

(recall that Biρ = Bρ(t
i)) such that for all h = 1, . . . ,m and all x, y ∈ Bi2ρ (i = 1, . . . ,m),

we have ∣∣E((v(x)− v(y)) · v(t̂h)
)∣∣ ≤ C k∑

j=1

|xj − yj |δj . (3.16)

The points t̂1, . . . , t̂m are determined by t1, . . . , tm, and (t̂1, . . . , t̂m) ∈ A2n provided 0 <

ρ < ε0 ∧ 1
2c′n , where a ∧ b = min{a, b}.

Let Σ2 denote the σ-algebra generated by v(t̂1), . . . , v(t̂m). Define

v2(x) = E
(
v(x)|Σ2

)
, v1(x) = v(x)− v2(x). (3.17)

The Gaussian random fields v1 = {v1(x), x ∈ T} and v2 = {v2(x), x ∈ T} are independent.

Lemma 3.7. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied. For any 0 < ρ <

ε0 ∧ 1
2c′n , there is a constant K2 depending on n and the constants C in Assumption 2.2

(but not on t̂1, . . . , t̂m) such that for all i = 1, . . . ,m and all x, y ∈ Bi2ρ,

∣∣v2(x)− v2(y)
∣∣ ≤ K2

k∑
j=1

|xj − yj |δj max
1≤`≤m

∣∣v(t̂`)
∣∣.

Proof. By Assumption 2.3, the subspace in L2(Ω;Rd) of random vectors Ω→ Rd spanned
by v(t̂1), . . . , v(t̂m), has dimension m ≥ 2. Let

{∑m
h=1 ah,jv(t̂h) : j = 1, . . . ,m

}
be an

orthonormal basis of this subspace obtained by the Gram–Schmidt orthogonalization
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Multiple points of Gaussian random fields

procedure, so that the coefficients ai,j are continuous functions of (t̂1, . . . , t̂m) ∈ A2n.
Then

v2(x) =

m∑
j=1

E

[ m∑
h=1

ah,jv(t̂h) · v(x)

]( m∑
`=1

a`,jv(t̂`)

)
.

By (3.16), for all i = 1, . . . ,m and all x, y ∈ Bi2ρ,

∣∣v2(x)− v2(y)
∣∣ =

∣∣∣∣∣
m∑
`=1

( m∑
h=1

m∑
j=1

ah,ja`,jE
[
(v(x)− v(y)) · v(t̂h)

])
v(t̂`)

∣∣∣∣∣
≤ K

k∑
j=1

|xj − yj |δj max
1≤`≤m

∣∣v(t̂`)
∣∣.

By the continuity of ai,j in (t̂1, . . . , t̂m) and the compactness of A2n, we see that the
constant K is independent of t̂1, . . . , t̂m. This completes the proof.

Lemma 3.8. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied. Let n ≥ 1. Then there
exist constants K and ρ0 ∈ (0, 1/n) which may depend on n such that for all ρ ∈ (0, ρ0),
a2, . . . , am ∈ Rd, r > 0, (t1, . . . , tm) ∈ An and all (x1, . . . , xm) ∈ Bρ(t1)× · · · ×Bρ(tm),

P

(
sup

2≤i≤m
|v2(x1)− v2(xi)− ai| ≤ r

)
≤ Kr(m−1)d.

Proof. We first assume d = 1. We claim that if ρ0 is small then v2(x1), . . . , v2(xm) are
linearly independent for all ρ ∈ (0, ρ0), (t1, . . . , tm) ∈ An and (x1, . . . , xm) ∈ Bρ(t

1) ×
· · · ×Bρ(tm). Indeed, by Assumption 2.3 and the compactness of An, we can find C > 0

depending on n such that Var(
∑m
i=1 biv(ti)) ≥ C for all (t1, . . . , tm) ∈ An and b ∈ Rm with

|b| = 1. Then by the Cauchy–Schwarz inequality, we have[
E

( m∑
i=1

bi(v(ti)− v2(xi))

)2
]1/2

≤ |b|

[
E

(
m∑
i=1

(
v(ti)− v2(xi)

)2)]1/2

≤ |b|
m∑
i=1

([
E
(
v(ti)− v(t̂i)

)2]1/2
+
[
E
(
E(v(t̂i)− v(xi)|Σ2)

)2]1/2)

≤ |b|
m∑
i=1

(
‖v(ti)− v(t̂i)‖L2 + ‖v(t̂i)− v(xi)‖L2

)
.

It follows that[
E

( m∑
i=1

biv
2(xi)

)]1/2

≥

[
E

( m∑
i=1

biv(ti)

)2
]1/2

−

[
E

( m∑
i=1

bi(v(ti)− v2(xi))

)2
]1/2

≥

(
C1/2 −

m∑
i=1

(
‖v(ti)− v(t̂i)‖L2 + ‖v(t̂i)− v(xi)‖L2

))
|b|.

Notice that, Assumption 2.1 implies the L2(P)-continuity of v(x) [cf. Lemma 3.1], we
can find a small constant ρ0 ∈ (0, 1/n) depending on C so that the above is ≥ C ′|b|
for all ρ ∈ (0, ρ0), (t1, . . . , tm) ∈ An and (x1, . . . , xm) ∈ Bρ(t

1) × · · · × Bρ(t
m), where

C ′ > 0. It follows that v2(x1), . . . , v2(xm) are linearly independent, and so are v2(x1)−
v2(x2), v2(x1)− v2(x3), . . . , v2(x1)− v2(xm).

Denote the determinant of the covariance matrix of the last random vector by

det Cov(v2(x1)− v2(x2), v2(x1)− v2(x3), . . . , v2(x1)− v2(xm)).
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Multiple points of Gaussian random fields

If ρ ∈ (0, ρ0), (t1, . . . , tm) ∈ An and (x1, . . . , xm) ∈ Bρ(t1)×· · ·×Bρ(tm), then (x1, . . . , xm) ∈
A2n provided that ρ0 is small. Since the function

(x1, . . . , xm) 7→ det Cov(v2(x1)− v2(x2), v2(x1)− v2(x3), . . . , v2(x1)− v2(xm))

is continuous and positive on the compact set A2n, it is bounded from below by a positive
constant depending on n. This and Anderson’s theorem [1] imply that

P

(
sup

2≤i≤m
|v2(x1)− v2(xi)− ai| ≤ r

)
≤ P

(
sup

2≤i≤m
|v2(x1)− v2(xi)| ≤ r

)
≤ Krm−1.

Since v(x) has i.i.d. components, the case d > 1 follows readily.

We end this section with the following lemma which is obtained by applying Theorem
2.1 and Remark 2.2 of [7] to the metric space (T,∆). It provides nested families of
“cubes” sharing most of the good properties of dyadic cubes in the Euclidean spaces. For
this reason, we call the sets in Qq generalized dyadic cubes of order q. Their nesting
property will help us to construct an economic covering for Mρ.

Lemma 3.9. There exist constants c1, c2, and a family Q of Borel subsets of T , where
Q =

⋃∞
q=1 Qq, Qq = {Iq,` : ` = 1, . . . , nq}, such that the following hold.

(i) T =
⋃nq
`=1 Iq,` for each q ≥ 1.

(ii) Either Iq,` ∩ Iq′,`′ = ∅ or Iq,` ⊂ Iq′,`′ whenever q ≥ q′, 1 ≤ ` ≤ nq, 1 ≤ `′ ≤ nq′ .
(iii) For each q, `, there exists xq,` ∈ T such that S(xq,`, c12−q) ⊂ Iq,` ⊂ S(xq,`, c22−q)

and {xq,` : 1, . . . , nq} ⊂ {xq+1,` : ` = 1, . . . , nq+1} for all q ≥ 1.

4 Proof of Theorem 2.5

Recall that, by (3.3), it suffices to show that for all integers n, we can find a small
ρ0 > 0 such that for all ρ ∈ (0, ρ0) and all points (t1, . . . , tm) ∈ An, Mρ is empty with
probability 1. When mQ < (m− 1)d (we refer to this as the sub-critical case), the last
statement can be proved easily by using a standard covering argument based on the
uniform modulus of continuity of v = {v(x), x ∈ T} on compact intervals. In the following
we provide a unified proof for both the critical and sub-critical cases.

For any n ≥ 1 fixed, we choose a constant ρ0 > 0 such that Assumption 2.2, Lemma 3.7
and Lemma 3.8 hold for all ρ ≤ ρ0 (e.g., we take ρ0 ≤ ε0 ∧ 1

2c′n ). Let (t1, . . . , tm) ∈ An be
fixed in the rest of the proof. By Assumption 2.2, we can find (t̂1, . . . , t̂m) ∈ B1

cρ×· · ·×Bmcρ
such that (3.16) holds. Furthermore, we assume that Bjcρ0 ⊂ T for all 1 ≤ j ≤ m

(otherwise we take the intersection with T ).

Fix ρ ∈ (0, ρ0). For each integer p ≥ 1, consider the random set

Rp =

{
(s1, . . . , sm) ∈ B1

2ρ × · · · ×Bm2ρ : ∃ r ∈ [2−2p, 2−p] such that

sup
1≤i≤m

sup
xi∈S(si,4c2r)

|v(xi)− v(si)| ≤ K1r

(
log log

1

r

)−1/Q
}
,

(4.1)

where c2 is the constant given by Lemma 3.9. Let λ denote the Lebesgue measure on
Rmk. Consider the event

Ωp,1 =
{
λ(Rp) ≥ λ(B1

2ρ × · · · ×Bm2ρ)(1− exp(−√p/4))
}
.
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This event states that a very large portion of B1
2ρ×· · ·×Bm2ρ is taken by the random set Rp,

which is the collection of points at which the sample function v(x) has small oscillations.
The points in Rp are referred to as “good points” for v. By Markov’s inequality,

P(Ωcp,1) = P
{
λ(B1

2ρ × · · · ×Bm2ρ \Rp) > λ(B1
2ρ × · · · ×Bm2ρ) exp(−√p/4)

}
≤

E
[
λ(B1

2ρ × · · · ×Bm2ρ \Rp)
]

λ(B1
2ρ × · · · ×Bm2ρ) exp(−√p/4)

.

Then by Fubini’s theorem, the numerator is equal to

E
[
λ(B1

2ρ×· · ·×Bm2ρ \Rp)
]

=

∫
B1

2ρ×···×Bm2ρ
P
(

(s1, . . . , sm) ∈ B1
2ρ×· · ·×Bm2ρ \Rp

)
ds1 · · · dsm.

By applying Proposition 3.6 with c = 4c2, we derive that for p sufficiently large,

P
(

(s1, . . . , sm) ∈ Rp
)
≥ 1− exp(−√p/2)

for all (s1, . . . , sm) ∈ B1
2ρ×· · ·×Bm2ρ. Hence P(Ωcp,1) ≤ exp(−√p/4) and

∑∞
p=1 P(Ωcp,1) <∞.

Fix β ∈ (0, β∗ ∧ 1), where β∗ = min
1≤j≤k

{ δj
αj
− 1
}

. Consider the event

Ωp,2 =

{
max

1≤i≤m
|v(t̂i)| ≤ 2βp

}
.

By Lemma 3.7, we can control the oscillation of v2(x) on Ωp,2. It is clear that
∑∞
p=1 P(Ωcp,2)

<∞.
For the points which are not in the random set Rp, the sample function v(x) may have

large oscillations in their neighborhoods. These points are referred to as “bad points”
for v. In order to quantify their effect we introduce the following event Ωp,3:

Ωp,3 =

{
∀ I ∈ Q2p, sup

x,y∈I
|v(x)− v(y)| ≤ K32−2pp1/2

}
. (4.2)

Recall that Q =
⋃∞
q=1 Qq is the family of generalized dyadic cubes given by Lemma 3.9

for the compact interval T .
For every I ∈ Q2p, Lemma 3.1 implies that the diameter of I under the canonical

metric dv(x, y) = ‖v(x)− v(y)‖L2 is at most c3 2−2p. By applying Lemma 2.1 in Talagrand
[14] (see also Lemma 3.1 in [5]) we see that for any positive constant K3 and p large,

P

(
sup
x,y∈I

|v(x)− v(y)| ≥ K32−2pp1/2

)
≤ exp

(
−
(K3

c3

)2

p

)
.

Notice that the cardinality of the family Q2p of generalized dyadic cubes of order 2p is
at most K22pQ. We can verify directly that

∑∞
p=1 P(Ωcp,3) <∞ provided K3 is chosen to

satisfy K3 > 2c3Q ln 2.
Let Ωp = Ωp,1 ∩ Ωp,2 ∩ Ωp,3 and

Ω∗ =
⋃
`≥1

⋂
p≥`

Ωp.

It follows from the above that the event Ω∗ occurs with probability 1. Hence, almost
surely Ωp occurs for all p large enough. Notice that on the event Ωp, the oscillations of
v near the good and bad points can be explicitly controlled by the inequalities in (4.1)
and (4.2), respectively. Moreover, because of Lemma 3.7 and Ωp,2, it can be verified that
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similar inequalities (with constants larger than K1 and K3) hold for v1. In the following,
we will use these observations to show that, for every ω ∈ Ω∗, we can construct families
of balls in Rd that cover Mρ.

For each p ≥ 1, we first construct a family Gp of subsets in Rmk (depending on ω).
Denote by Cp the family of subsets of Tm of the form C = Iq,`1 × · · · × Iq,`m for some
integer q ∈ [p, 2p], where Iq,`i ∈ Qq are the generalized dyadic cubes of order q in Lemma
3.9.

We say that a dyadic cube C = I1 × · · · × Im of order q is good if it has the property
that

sup
1≤i≤m

sup
x,y∈Ii

|v1(x)− v1(y)| ≤ dq, (4.3)

where

dq = 2

(
K1 +K2

k∑
j=1

(2c2)δj/αj
)

2−q(log log 2q)−1/Q. (4.4)

For each x ∈ B1
2ρ × · · · ×Bm2ρ, consider the good dyadic cube C containing x (if any) of

smallest order q, where p ≤ q ≤ 2p. By property (ii) of Lemma 3.9, we obtain in this way
a family of disjoint good dyadic cubes of order q ∈ [p, 2p] that meet the set B1

2ρ×· · ·×Bm2ρ.
We denote this family by G 1

p .
Let G 2

p be the family of dyadic cubes in Tm of order 2p that meet B1
ρ × · · · ×Bmρ but

are not contained in any cube of G 1
p . Let Gp = G 1

p ∪ G 2
p . Notice that for each C ∈ Cp, the

events {C ∈ G 1
p } and {C ∈ G 2

p } are in the σ-algebra Σ1 := σ{v1(x) : x ∈ T}.
Next we construct a family of balls inRd (depending on ω) as follows. For each C ∈ Cp,

we choose a distinguished (non-random) point xC = (x1
C , . . . , x

m
C ) in C ∩ (B1

2ρ× · · · ×Bm2ρ).
If C is a cube of order q, then we define the ball Bp,C as follows.

(i) If C ∈ G 1
p , take Bp,C as the Euclidean ball in Rd of center v(x1

C) of radius rp,C = 4dq.
Recall that dq is defined in (4.4).

(ii) If C ∈ G 2
p , take Bp,C as the Euclidean ball in Rd of center v(x1

C) of radius rp,C =

2K32−2p p1/2.

(iii) Otherwise, take Bp,C = ∅ and rp,C = 0.

Note that for each p ≥ 1 and C ∈ Cp, the random variable rp,C is Σ1-measurable.
Intuitively, if a ball Bp,C in Rd defined above contains a multiple point of v from

C ∩ (B1
2ρ × · · · × Bm2ρ) (i.e., there exists (y1, . . . , ym) ∈ C ∩ (B1

2ρ × · · · × Bm2ρ) such that
v(y1) = · · · = v(ym) ∈ Bp,C), then v(x1

C), v(x2
C), . . . , v(xmC ) should be close to each other

because |v(xi) − v(yi)| is small for 1 ≤ i ≤ k. Hence, in order to construct a covering
Fp(ω) of the set Mρ of multiple points, we consider the event

Ωp,C =

{
ω ∈ Ω : sup

2≤i≤m

∣∣v(x1
C , ω)− v(xiC , ω)

∣∣ ≤ rp,C(ω)

}
.

This is the event that v(x2
C), . . . , v(xmC ) are all within the ball of radius rp,C centered at

v(x1
C).
If ω ∈ Ωp ∩ Ωp,C , define Fp(ω) = {Bp,C : C ∈ Gp(ω)}. Otherwise, define Fp(ω) = ∅.
Choose an integer p0 such that

2c22−p ≤ ρ and exp(−√p/4)pmQ(log p)m ≤ ρmQ, (4.5)

and Ωp occurs for all p ≥ p0. We now show that Fp(ω) covers Mρ(ω) whenever p ≥ p0

and ω ∈ Ωp.
Let ω ∈ Ωp and z ∈Mρ(ω). By definition, we can find a point (y1, . . . , ym) ∈ B1

ρ × · · · ×
Bmρ such that z = v(y1, ω) = · · · = v(ym, ω). By the definitions of G 1

p and G 2
p , the family
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Gp(ω) of dyadic cubes covers B1
ρ × · · · ×Bmρ , thus the point (y1, . . . , ym) is contained in

some C = I1 × · · · × Im ∈ Gp(ω). We will show that z ∈ Bp,C and ω ∈ Ωp,C . To this end,
we distinguish two cases.

Case 1. If C ∈ G 1
p (ω), then it is a good dyadic cube of order q ∈ [p, 2p] such that

sup
1≤i≤m

|v1(xiC , ω)− v1(yi, ω)| ≤ dq.

By Lemma 3.9, xiC , y
i ∈ Ii ⊂ S(x∗, c22−q) for some x∗ ∈ T , so we have

k∑
j=1

|xiC,j − yij |δj ≤
k∑
j=1

(2c2)δj/αj2−q(1+β∗), (4.6)

recall that β∗ = min
1≤j≤k

{ δj
αj
− 1
}

. Since ω ∈ Ωp,2, Lemma 3.7 and (4.6) imply that

sup
1≤i≤m

∣∣v2(xiC)− v2(yi)
∣∣ ≤ K2

k∑
j=1

(2c2)δj/αj2−q(1+β∗−β) ≤ dq (4.7)

since β < β∗. It follows that

sup
1≤i≤m

∣∣v(xiC , ω)− z
∣∣ = sup

1≤i≤m

∣∣v(xiC , ω)− v(yi, ω)
∣∣ ≤ 2dq,

which implies that z ∈ Bp,C and ω ∈ Ωp,C .
Case 2. Now we assume C ∈ G 2

p (ω). Since ω ∈ Ωp,3, we have

sup
i
|v(xiC , ω)− z| = sup

i
|v(xiC , ω)− v(yi, ω)| ≤ K32−2pp1/2,

hence z ∈ Bp,C and ω ∈ Ωp,C .
Therefore, for every ω ∈ Ω∗, Fp(ω) covers Mρ(ω) for all p large enough. We claim

that, with probability 1, the family Fp is empty for infinitely many p. This will imply that
Mρ is empty with probability 1 and the proof will then be complete.

We prove the aforementioned claim by contradiction. Suppose the claim is not true.
Then the event Ω′ that Fp is nonempty for all large p has positive probability and the
event Ω′ ∩ Ω∗ =

⋃
`≥1

⋂
p≥`(Ω

′ ∩ Ωp) also has positive probability. Denote

φ(r) = rmQ−(m−1)d(log log(1/r))m, f(r) = rmQ(log log(1/r))m,

and consider the random variables Xp defined by

Xp := 1Ω′∩Ωp

∑
Bp,C∈Fp

φ(rp,C) = 1Ω′∩Ωp

∑
C∈Cp

f(rp,C)r
−(m−1)d
p,C 1{C∈Gp}1Ωp,C . (4.8)

Let X := lim infpXp. Since mQ ≤ (m− 1)d, we have φ(r) → ∞ as r → 0+. Also, for
every ω ∈ Ω′ ∩ Ω∗, Fp(ω) is not empty for all large p. Hence, by the definition of Xp in
(4.8), X(ω) =∞ on Ω′ ∩ Ω∗. In particular, E(X) =∞.

On the other hand, notice that G 1
p covers Rp on the event Ωp for all p ≥ p0. Indeed,

if ω ∈ Ωp, s = (s1, . . . , sm) ∈ Rp(ω), and C = I1 × · · · × Im is the dyadic cube of order
q in G 1

p containing s, then there exists r ∈ [2−2p, 2−p] that satisfies the condition in the
definition of Rp and we can find q such that 2−q−1 < r ≤ 2−q, p ≤ q ≤ 2p, and

sup
1≤i≤m

sup
xi∈S(si,2c22−q)

|v(xi)− v(si)| ≤ K12−q(log log 2q)−1/Q. (4.9)
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By the property that Ii ⊂ S(x′, c22−q) for some x′ and by Lemma 3.7, it follows from (4.7)
and (4.9) that (4.3) holds. Thus C is a good dyadic cube. This proves that G 1

p (ω) covers
Rp(ω).

By the choice of p0 in (4.5), the cubes in G 2
p are contained in B1

2ρ× · · · ×Bm2ρ, and thus
in B1

2ρ× · · · ×Bm2ρ \Rp, the Lebesgue measure of which is at most exp(−√p/4) on Ωp. For
any C = I1 × · · · × Im ∈ G 2

p of order 2p, each Ii contains a set S(xi, c12−2p) for some xi

and the set has Lebesgue measure K2−2pQ, so Ωp is contained in the event Ω̃p that the
cardinality of G 2

p is at most K22pmQ exp(−√p/4).

Recall that both G 1
p and G 2

p depend on Σ1. We see that Ω̃p belongs to the σ-algebra
Σ1. Hence for p ≥ p0,

E(Xp) ≤ E

(
1Ω̃p

∑
C∈Cp

f(rp,C)r
−(m−1)d
p,C 1{C∈Gp}1Ωp,C

)

= E

(
1Ω̃p

∑
C∈Cp

f(rp,C)r
−(m−1)d
p,C 1{C∈Gp}P(Ωp,C |Σ1)

)

≤ KE

(
1Ω̃p

∑
C∈Cp

f(rp,C)1{C∈Gp}

)
,

(4.10)

where the last inequality follows from Lemma 3.8 and independence of v1 and v2.
Now consider any dyadic cube C ∈ Cp of order q. If C ∈ G 1

p , then f(rp,C) ≤
K2−qmQ ≤ Kλ(C) (where λ(·) denotes Lebesgue measure); if C ∈ G 2

p , then f(rp,C) ≤
K2−2pmQpmQ/2(log p)m. Moreover, for p ≥ p0 the dyadic cubes in G 1

p are disjoint and
contained in B1

3ρ × · · · ×Bm3ρ. These observations, together with (4.10) and (4.5), imply

E(Xp) ≤ K E

( ∑
C∈Cp

λ(C)1{C∈G 1
p } + pmQ/2(log p)m exp(−√p/4)

)
≤ KρmQ.

By Fatou’s lemma, we derive E(X) ≤ KρmQ <∞. This is a contradiction. The proof of
Theorem 2.5 is complete.

5 Examples

In this section we provide some examples where Theorem 2.5 is applicable. These
include fractional Brownian sheets, and the solutions to systems of stochastic heat and
wave equations.

5.1 Fractional Brownian sheets

The (N, d)-fractional Brownian sheet with Hurst parameter H = (H1, . . . ,HN ) ∈
(0, 1)N is an Rd-valued continuous Gaussian random field {v(x), x ∈ RN+} with mean zero
and covariance

E(vj(x)v`(y)) = δj,`

N∏
i=1

1

2

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
.

When N = 1, it is the fractional Brownian motion and the non-existence of multiple
points in the critical dimension was proved by Talagrand [13]. So we focus on the case
N ≥ 2.

Let α ∈ (0, 1) be a constant. We start with the identity that any x ∈ R,

|x|2α = c2α

∫
R

1− cosxξ

|ξ|2α+1
dξ, where cα =

(∫
R

1− cos ξ

|ξ|2α+1
dξ

)−1/2

,
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which can be obtained by a change of variable in the integral. It implies that for any
x, y ∈ R,

1

2

(
|x|2α + |y|2α − |x− y|2α

)
= c2α

∫
R

[
(1− cosxξ)(1− cos yξ)

|ξ|2α+1
+

sinxξ sin yξ

|ξ|2α+1

]
dξ.

It follows that for H ∈ (0, 1)N and x, y ∈ RN+ , we can write

N∏
i=1

1

2

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
= c2H

∑
p∈{0,1}N

∫
RN

N∏
i=1

fpi(xiξi)fpi(yiξi)

|ξi|2Hi+1
dξ, (5.1)

where f0(t) = 1 − cos t and f1(t) = sin t. It gives a representation for the fractional
Brownian sheet: If Wp, p ∈ {0, 1}N , are independent Rd-valued Gaussian white noises on
RN and

v(x) := cH
∑

p∈{0,1}N

∫
RN

N∏
i=1

fpi(xiξi)

|ξi|Hi+1/2
Wp(dξ), (5.2)

then (a continuous modification of) {v(x), x ∈ RN+} is an (N, d)-fractional Brownian sheet
with Hurst index H. In particular, when Hi = 1

2 for i = 1, . . . , k, the Gaussian random field
{v(x), x ∈ RN} is the Brownian sheet and (5.2) provides a harmonizable representation
for it.

It is known [15] that for any compact interval I in (0,∞)N , there exist positive finite
constants c1 and c2 such that for all x, y ∈ I,

c1

N∑
j=1

|xj − yj |2Hj ≤ E(|v(x)− v(y)|2) ≤ c2
N∑
j=1

|xj − yj |2Hj . (5.3)

We take T = (0,∞)N [since v(x) = 0 for all x ∈ ∂RN+ a.s., the existence of multiple
points is trivial on ∂RN+ ]. In Lemmas 5.1 – 5.3 below, we use the representation (5.2) to
show that the fractional Brownian sheet satisfies the assumptions of Theorem 2.5 on T .

Define the random field {v(A, x), A ∈ B(R+), x ∈ T} by

v(A, x) = cH
∑

p∈{0,1}N

∫
{maxi |ξi|Hi∈A}

N∏
i=1

fpi(xiξi)

|ξi|Hi+1/2
Wp(dξ).

Lemma 5.1. For any n > 1, let Fn = [1/n, n]N , a0 = 0 and γi = H−1
i − 1. There is a

constant c0 > 0 depending on n such that for all 0 ≤ a < b ≤ ∞ and x, y ∈ Fn,

∥∥(v(x)− v([a, b), x))− (v(y)− v([a, b), y))
∥∥
L2 ≤ c0

( N∑
i=1

aγi |xi − yi|+ b−1

)
. (5.4)

Proof. Without loss of generality, we may assume d = 1. For any 0 ≤ a < b ≤ ∞, let
B = {ξ ∈ RN : maxi |ξi|Hi ∈ [a, b)}. Then we can express its complement as

RN \B =
{
|ξk| < ak,∀1 ≤ k ≤ N

}
∪

N⋃
k=1

{
|ξk| ≥ bk

}
,

where ai = a1/Hi and bi = b1/Hi .
Note that

N∏
i=1

fpi(xiξi)

|ξi|Hi+1/2
−

N∏
i=1

fpi(yiξi)

|ξi|Hi+1/2

=

N∑
i=1

(
fpi(xiξi)− fpi(yiξi)

|ξi|Hi+1/2

∏
1≤j<i

fpj (yjξj)

|ξj |Hj+1/2

∏
i<j≤N

fpj (xjξj)

|ξj |Hj+1/2

)
.
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It follows that

‖(v(x)− v([a, b), x))− (v(y)− v([a, b), y))‖L2

≤ cH
∑

p∈{0,1}N

[∫
{|ξk|<ak,∀k}

( N∏
i=1

fpi(xiξi)

|ξi|Hi+1/2
−

N∏
i=1

fpi(yiξi)

|ξi|Hi+1/2

)2

dξ

]1/2

+ cH
∑

p∈{0,1}N

N∑
k=1

[∫
{|ξk|≥bk}

( N∏
i=1

fpi(xiξi)

|ξi|Hi+1/2
−

N∏
i=1

fpi(yiξi)

|ξi|Hi+1/2

)2

dξ

]1/2

≤ cH
∑
p

N∑
i=1

[∫
{|ξk|<ak,∀k}

(
fpi(xiξi)− fpi(yiξi)

|ξi|Hi+1/2

∏
1≤j<i

fpj (yjξj)

|ξj |Hj+1/2

∏
i<j≤N

fpj (xjξj)

|ξj |Hj+1/2

)2

dξ

]1/2

+ cH
∑
p

N∑
i=1

N∑
k=1

[∫
{|ξk|≥bk}

(
fpi(xiξi)− fpi(yiξi)

|ξi|Hi+1/2

∏
1≤j<i

fpj (yjξj)

|ξj |Hj+1/2

∏
i<j≤N

fpj (xjξj)

|ξj |Hj+1/2

)2

dξ

]1/2

.

Using the bounds |fpi(xξ) − fpi(yξ)| ≤ |x − y||ξ| and |fpi(xξ) − fpi(yξ)| ≤ 2 for pi = 0, 1,
we see that the above is at most

cH
∑
p

N∑
i=1

[∫
{|ξi|<ai}

|xi − yi|2

|ξi|2Hi−1

( ∏
1≤j<i

fpj (yjξj)

|ξj |Hj+1/2

∏
i<j≤N

fpj (xjξj)

|ξj |Hj+1/2

)2

dξ

]1/2

+ cH
∑
p

N∑
i=1

[∫
{|ξi|≥bi}

4

|ξi|2Hi+1

( ∏
1≤j<i

fpj (yjξj)

|ξj |Hj+1/2

∏
i<j≤N

fpj (xjξj)

|ξj |Hj+1/2

)2

dξ

]1/2

+ cH
∑
p

N∑
i=1

∑
k 6=i

[∫
{|ξk|≥bk}

1

|ξk|2Hk+1

×
(
fpi(xiξi)− fpi(yiξi)

|ξi|Hi+1/2

∏
j<i,j 6=k

fpj (yjξj)

|ξj |Hj+1/2

∏
j>i,j 6=k

fpj (xjξj)

|ξj |Hj+1/2

)2

dξ

]1/2

.

Then by (5.1) and (5.3) applied on RN−1
+ , the above sum is bounded from above by

K
∑
p

N∑
i=1

[
a2−2Hi
i |xi − yi|2

∏
1≤j<i

|yj |2Hj
∏

i<j≤N

|xj |2Hj
]1/2

+K
∑
p

N∑
i=1

[
b−2Hi
i

∏
1≤j<i

|yj |2Hj
∏

i<j≤N

|xj |2Hj
]1/2

+K
∑
p

N∑
i=1

∑
k 6=i

[
b−2Hk
k |xi − yi|2Hi

]1/2

.

Since |xj |, |yj | ≤ n, we obtain (5.4) for some c0 depending on n.

Lemma 5.2. Let Fn = [1/n, n]N , n > 1. Take ε0 = 1/(2n), c = 3 and c′ = 6. Consider
x ∈ Fn, 0 < ρ ≤ ε0 and a compact interval B3ρ(x) ⊂ Fn. Let x′ = x. There is a finite
constant C such that for all y, ȳ ∈ B2ρ(x), and also for all y, ȳ ∈ B2ρ(x̃) ⊂ Fn with
∆(x, x̃) ≥ 6ρ, ∣∣E((vj(y)− vj(ȳ))vj(x

′))
∣∣ ≤ C N∑

i=1

∣∣yi − ȳi∣∣δi
for all j ∈ {1, . . . , d}, where δi = min{2Hi, 1}.
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Proof. Let 0 < ρ < ε0. It suffices to show that there is a finite constant C such that for
all y, ȳ ∈ Fn,∣∣∣∣ N∏
i=1

(|xi|2Hi + |yi|2Hi − |xi− yi|2Hi)−
N∏
i=1

(|xi|2Hi + |ȳi|2Hi − |xi− ȳi|2Hi)
∣∣∣∣ ≤ C N∑

i=1

∣∣yi− ȳi∣∣δi .
For 1 ≤ ` ≤ N , let A` = U` − V`, where

U` =
∏̀
i=1

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
, V` =

∏̀
i=1

(
|xi|2Hi + |ȳi|2Hi − |xi − ȳi|2Hi

)
.

When ` = 1, we have |A1| ≤
∣∣|y1|2H1 − |ȳ1|2H1

∣∣+
∣∣|x1 − y1|2H1 − |x1 − ȳ1|2H1

∣∣. If 2H1 ≤ 1,
then by the triangle inequality and the inequality (a+ b)2H ≤ a2H + b2H for a, b ≥ 0, we
have |A1| ≤ 2|y1 − ȳ1|2H1 ; if 2H1 > 1, then we can use the mean value theorem to get
|A1| ≤ 2H1n

2H1−1|y1 − ȳ1|. Thus |A1| ≤ K|y1 − ȳ1|δ1 for either case. For 2 ≤ ` ≤ N ,

A` = U`−1(|x`|2H` + |y`|2H` − |x` − y`|2H`)− V`−1(|x`|2H` + |ȳ`|2H` − |x` − ȳ`|2H`)
= A`−1(|x`|2H` + |y`|2H` − |x` − y`|2H`)

+ V`−1(|y`|2H` − |ȳ`|2H` + |x` − ȳ`|2H` − |x` − y`|2H`).

Then |A`| ≤ K(|A`−1|+ |y` − ȳ`|δ`). By induction, |AN | ≤ C
∑N
`=1 |y` − ȳ`|δ` .

The following lemma verifies Assumption 2.3 for fractional Brownian sheets. The sec-
torial local nondeterminism in Theorem 1 of Wu and Xiao [15] provides more information
on the conditional variances among v(x1), . . . , v(xm).

Lemma 5.3. If x1, . . . , xm ∈ (0,∞)N are distinct points, then the random variables
v(x1), . . . , v(xm) are linearly independent.

Proof. Suppose that a1, . . . , am are real numbers such that
∑m
`=1 a`v(x`) = 0 a.s. Recall-

ing the representation (5.2) for v(x), we have

0 = E

( m∑
`=1

a`v(x`)

)2

= c2H
∑

p∈{0,1}N

∫
RN

(
m∑
`=1

a`

N∏
j=1

fpj (x
`
jξj)

|ξj |Hj+1/2

)2

dξ.

Then for each p ∈ {0, 1}N ,
∑m
`=1 a`

∏N
j=1 fpj (x

`
jξj) = 0 and hence

∑m
`=1 a`

∏N
j=1 f̃pj (x

`
jξj) =

0 for all ξ ∈ RN , where f̃0(t) = 1− cos t and f̃1(t) = −i sin t. It follows that

m∑
`=1

a`

N∏
j=1

(
1− exp(ix`jξj)

)
=

∑
p∈{0,1}N

m∑
`=1

a`

N∏
j=1

f̃pj (x
`
jξj) = 0 (5.5)

for all ξ ∈ RN . We claim that a1 = 0. Let L1,1, . . . , L1,k1 be partitions of {1, . . . ,m}
obtained from the equivalence classes of the equivalence relation ∼1 defined by ` ∼1 k if
and only if x`1 = xk1 . We may assume 1 ∈ L1,1. Let x̂1

1, . . . , x̂
m1
1 be such that x`1 = x̂k1 for all

` ∈ L1,k, k = 1, . . . ,m1. Let ξ2, . . . , ξN ∈ R be arbitrary and define c1,1, c1,2, . . . , c1,m1 by

c1,k =
∑
`∈L1,k

a`

N∏
j=2

(
1− exp(ix`jξj)

)
.

Then by (5.5), we have

c1,1 exp(ix̂1
1ξ1) + · · ·+ c1,m1

exp(ix̂m1
1 ξ1) + (c1,1 + · · ·+ c1,m1

) = 0
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for all ξ1 ∈ R. Since x̂1
1, . . . , x̂

m1
1 are non-zero and distinct, the functions exp(ix̂1

1ξ), . . . ,

exp(ix̂m1
1 ξ) and 1 are linearly independent over C, we have c1,1 = · · · = c1,m1

= 0. In
particular, we have ∑

`∈L1,1

a`

N∏
j=2

(
1− exp(ix`jξj)

)
= 0

for all ξ2, . . . , ξN ∈ R. Next we consider the partitions L2,1, . . . , L2,m2
of {1, . . . ,m}

obtained from equivalence classes of ∼2 defined by ` ∼2 k iff x`2 = xk2 (with 1 ∈ L2,1).
Then the argument above yields

∑
`∈L1,1∩L2,1

a`

N∏
j=3

(
1− exp(ix`jξj)

)
= 0.

By induction, we obtain ∑
`∈L1,1∩···∩LN,1

a` = 0.

Note that L1,1 ∩ · · · ∩LN,1 = {1} because x1, . . . , xm are distinct. Hence a1 = 0. Similarly,
we can show that a` = 0 for ` = 2, . . . ,m.

Theorem 5.4. Let v = {v(x), x ∈ RN+} be an (N, d)-fractional Brownian sheet with Hurst

parameter H ∈ (0, 1)N . If mQ ≤ (m−1)d where Q =
∑N
i=1H

−1
i , then v has no m-multiple

points on (0,∞)N almost surely.

Proof. By the three lemmas above, {v(x), x ∈ [1/n, n]N} satisfies the assumptions of
Theorem 2.5 with Q =

∑N
i=1H

−1
i for every n ≥ 1. Hence the result follows immediately

from the theorem.

We remark that for the case of Brownian sheet, i.e., Hi = 1/2 for all i, the above
result provides an alternative proof for the main results in [3, 4].

5.2 System of stochastic heat equations

Let k ≥ 1 and β ∈ (0, k ∧ 2), or k = 1 = β. Consider the Rd-valued random field
{v(t, x), (t, x) ∈ R+ ×Rk} defined by

v(t, x) =

∫
R

∫
Rk
e−iξ·x

e−iτt − e−t|ξ|2

|ξ|2 − iτ
|ξ|−(k−β)/2W (dτ, dξ),

where W is a Cd-valued space-time Gaussian white noise onR1+k, i.e., W = W1+iW2 and
W1,W2 are independent Rd-valued space-time Gaussian white noises on R1+k. According
to Proposition 7.2 of [5], the process v̂(t, x) := Re v(t, x), (t, x) ∈ R+ ×Rk, has the same
law as the mild solution to the system of stochastic heat equations on R+ ×Rk:

∂

∂t
v̂j(t, x) = ∆v̂j(t, x) +

˙̂
Wj(t, x), j = 1, . . . , d,

v̂(0, x) = 0,
(5.6)

where Ŵ is an Rd-valued spatially homogeneous Gaussian noise that is white in time
with spatial covariance |x− y|−β if k ≥ 1 and β ∈ (0, k ∧ 2); it is an Rd-valued space-time
Gaussian white noise when k = 1 = β. We take T = (0,∞)×Rk.

By Lemma 7.3 of [5], Assumption 2.1 is satisfied with

γ1 =
2 + β

2− β
, γ2 = · · · = γk+1 =

β

2− β
,
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and

α1 =
2− β

4
, α2 = · · · = αk+1 =

2− β
2

.

In this case,
∆((t, x), (s, y)) = |t− s|

2−β
4 + |x− y|

2−β
2 .

In the following lemma, we verify Assumption 2.2 for the Gaussian random field v̂.

Lemma 5.5. Let k ≥ 1, β ∈ (0, k ∧ 2), or k = 1 = β. Let F ⊂ (0,∞) ×Rk be a compact
interval. Let c = 3, c′ = 6 and 0 < ε0 < 1 be any small number. For any (t, x) ∈ F and
0 < ρ ≤ ε0 with B3ρ(t, x) ⊂ F , let (t′, x′) = (t, x). Take any δ ∈ ( 2−β

2 , (2 − β) ∧ 1). Then
there exists a finite constant C such that for all (s1, y1), (s2, y2) ∈ B2ρ(t, x), and also for
all (s1, y1), (s2, y2) ∈ B2ρ(t̃, x̃) ⊂ F with ∆((t, x), (t̃, x̃)) ≥ 6ρ, for all j ∈ {1, . . . , d},

|E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]| ≤ C(|s1 − s2|

2−β
2 + |y1 − y2|δ). (5.7)

Proof. Suppose that (s1, y1), (s2, y2) ∈ B2ρ(t, x) or (s1, y1), (s2, y2) ∈ B2ρ(t̃, x̃) ⊂ F with
∆((t, x), (t̃, x̃)) ≥ 6ρ. Recall that

v̂(t, x) = Re

∫
R

∫
Rk
e−iξ·x

e−iτt − e−t|ξ|2

|ξ|2 − iτ
|ξ|−(k−β)/2W (dτ, dξ).

Then for any j ∈ {1, . . . , d},

E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]

= Re

∫
R

∫
Rk

(
e−iξ·y1

e−iτs1 − e−s1|ξ|2

|ξ|2 − iτ
− e−iξ·y2 e

−iτs2 − e−s2|ξ|2

|ξ|2 − iτ

)
×
(
e−iξ·x′

e−iτt′ − e−t′|ξ|2

|ξ|2 − iτ

)
dτ dξ

|ξ|k−β

= I1 + I2,

where

I1 = Re

∫
R

∫
Rk

(
e−iξ·(y1−x

′) − e−iξ·(y2−x
′)
) (e−iτs1 − e−s1|ξ|2)(eiτt

′ − e−t′|ξ|2)

(|ξ|4 + τ2)|ξ|k−β
dτ dξ

and

I2 = Re

∫
R

∫
Rk
e−iξ·(y2−x

′) (e−iτs1 − e−iτs2 − e−s1|ξ|2 + e−s2|ξ|
2

)(eiτt
′ − e−t′|ξ|2)

(|ξ|4 + τ2)|ξ|k−β
dτ dξ.

Let us first consider I1. We can write

eiτt
′
− e−t

′|ξ|2 = (eiτt
′
− 1) + (1− e−t

′|ξ|2).

It follows that |I1| ≤ J1 + J ′1, where

J1 =

∫
R

∫
Rk
|e−iξ·(y1−x

′) − e−iξ·(y2−x
′)| 2|eiτt′ − 1|

(|ξ|4 + τ2)|ξ|k−β
dτ dξ

and

J ′1 =

∫
R

∫
Rk
|e−iξ·(y1−x

′) − e−iξ·(y2−x
′)| 2(1− e−t′|ξ|2)

(|ξ|4 + τ2)|ξ|k−β
dτ dξ.

Choose and fix any δ ∈ ( 2−β
2 , (2− β) ∧ 1). We have the following elementary inequalities:

|eiz − 1| ≤ 2 ∧ |z| ≤ 21−δ|z|δ for all z ∈ R, (5.8)
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and |e−x − e−y| ≤ 1 ∧ |x− y| for all x, y ≥ 0. (5.9)

For J1, using these inequalities and passing to polar coordinates r = |ξ|, we get that

J1 =

∫
R

dτ

∫ ∞
0

dr 21−δrδ|y1 − y2|δ
C(1 ∧ |τ |)

(r4 + τ2)|r1−β ,

where C is a constant depending on k and F . For fixed τ , we use the change of variable
r = |τ |1/2r̃ to deduce that

J1 ≤ C|y1 − y2|δ
∫
R

dτ
1 ∧ |τ |

τ1+ 2−β−δ
2

∫ ∞
0

dr̃

(r̃4 + 1)r̃1−β−δ .

Since the integrals in τ and r̃ are both finite, we have J1 ≤ C|y1−y2|δ, where the constant
C depends on k, F, β and δ.

For J ′1, we use (5.8) and (5.9), pass to polar coordinates r = |ξ|, and then for fixed r,
use the change of variable τ = r2τ̃ to get

J ′1 ≤ C|y1 − y2|δ
∫ ∞

0

(1 ∧ r2)dr

r3−β−δ

∫
R

dτ̃

1 + τ̃2
.

Note that the integrals in r and τ̃ are both finite. Hence, we deduce that |I1| ≤ C|y1−y2|δ.
For the other integral I2, we have |I2| ≤ J2 + J ′2, where

J2 =

∫
R

∫
Rk

2|e−iτs1 − e−iτs2 |
(|ξ|4 + τ2)|ξ|k−β

dτ dξ and J ′2 =

∫
R

∫
Rk

2|e−s1|ξ|2 − e−s2|ξ|2 |
(|ξ|4 + τ2)|ξ|k−β

dτ dξ.

For J2, use the first inequality in (5.8) and use polar coordinates to get that

J2 ≤ C
∫
R

dτ

∫ ∞
0

dr
2 ∧ |τ ||s1 − s2|
(r4 + τ2)r1−β .

For τ fixed, by changing variable r = |τ |1/2r̃ in the second integral,

J2 ≤ C
∫
R

dτ
2 ∧ |τ ||s1 − s2|
|τ |2− β2

∫ ∞
0

dr̃

r̃4 + 1
.

The integral in r̃ is finite. Then splitting the integral in τ into two parts where |τ | ≤ 2
|s1−s2|

and |τ | > 2
|s1−s2| leads to

J2 ≤ C
∫
|τ |≤ 2

|s1−s2|

|τ ||s1 − s2|
|τ |2− β2

dτ + C

∫
|τ |> 2

|s1−s2|

2

|τ |2− β2
dτ,

which implies J2 ≤ C|s1 − s2|
2−β
2 .

For J ′2, by using (5.9) and polar coordinates, we have

J ′2 ≤ C
∫
R

dτ

∫ ∞
0

dr
1 ∧ r2|s1 − s2|
(r4 + τ2)r1−β .

Then we can permute the integrals, use (for r fixed) the change of variable τ = r2τ̃ and
then split the integral in r into two parts where r ≤ 1

|s1−s2|1/2
and r > 1

|s1−s2|1/2
to derive

that J ′2 ≤ C|s1 − s2|
2−β
2 . This completes the proof of (5.7).

The next lemma verifies Assumption 2.3 and it can also be found in [11, Lemma
A.5.3].
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Lemma 5.6. Let (t1, x1), . . . , (tm, xm) be distinct points in (0,∞)×Rk. Then the random
variables v̂1(t1, x1), . . . , v̂1(tm, xm) are linearly independent.

Proof. Suppose that a1, . . . , am are real numbers such that
∑m
j=1 aj v̂1(tj , xj) = 0 a.s.

Then

0 = E

( m∑
j=1

aj v̂1(tj , xj)

)2

=

∫
R

∫
Rk

∣∣∣∣ m∑
j=1

aje
−iξ·xj (e−iτt

j

− e−t
j |ξ|2)

∣∣∣∣2 dτ dξ

(|ξ|4 + τ2)|ξ|k−β

and thus
∑m
j=1 aje

−iξ·xj (e−iτt
j − e−tj |ξ|2) = 0 for all τ ∈ R and ξ ∈ Rk. We claim that

aj = 0 for all j = 1, . . . ,m. Let t̂1, . . . , t̂p be all distinct values of the tj ’s. Fix an arbitrary
ξ ∈ Rk. Then for all τ ∈ R, we have

p∑
`=1

( ∑
j:tj=t̂`

aje
−iξ·xj

)
e−iτ t̂

`

−
m∑
j=1

aje
−iξ·xj−tj |ξ|2 = 0.

Since the functions e−iτ t̂
1

, . . . , e−iτ t̂
p

, 1 are linearly independent over C, it follows that
for all ξ ∈ Rk, for all ` = 1, . . . , p, ∑

j:tj=t̂`

aje
−iξ·xj = 0. (5.10)

Since (t1, x1), . . . , (tn, xn) are distinct, the xj ’s that appear in the sum in (5.10) are
distinct for any fixed `. By linear independence of the functions e−iξ·x

j

, we conclude that
aj = 0 for all j.

The following result solves the existence problem of m-multiple points for (5.6).

Theorem 5.7. If m(4 + 2k)/(2− β) ≤ (m− 1)d, then {v̂(t, x), t ∈ (0,∞), x ∈ Rk} has no
m-multiple points a.s.

Proof. Assumption 2.1 is satisfied with Q = (4 + 2k)/(2− β) by Lemma 7.3 of [5]. Also,
Assumptions 2.2 and 2.3 are satisfied by Lemmas 5.5 and 5.6 above. The result follows
from Theorem 2.5.

5.3 System of stochastic wave equations

Let k ≥ 1 and β ∈ (1, k ∧ 2) or k = 1 = β. Consider the Rd-valued random field
{v(t, x), (t, x) ∈ R+ ×Rk} defined by

v(t, x) =

∫
R

∫
Rk
F (t, x, τ, ξ)|ξ|−(k−β)/2W (dτ, dξ),

where W is a Cd-valued space-time Gaussian white noise on R1+k and

F (t, x, τ, ξ) =
e−iξ·x−iτt

2|ξ|

[
1− eit(τ+|ξ|)

τ + |ξ|
− 1− eit(τ−|ξ|)

τ − |ξ|

]
.

By Proposition 9.2 of [5], the process v̂(t, x) = Re v(t, x), (t, x) ∈ R+ ×Rk, has the same
law as the mild solution to the system of stochastic wave equations on R+ ×Rk:

∂2

∂t2
v̂j(t, x) = ∆v̂j(t, x) +

˙̂
Wj(t, x), j = 1, . . . , d,

v̂(0, x) = 0,
∂

∂t
v̂(0, x) = 0,

where Ŵ is the spatially homogeneous Rd-valued Gaussian noise as in (5.6).
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By Lemma 9.6 of [5], Assumption 2.1 is satisfied with γj = β
2−β and αj = 2−β

2 for all j.
In this case,

∆((t, x), (s, y)) = |t− s|
2−β
2 + |x− y|

2−β
2 .

In the following lemma, we check Assumption 2.2 for the Gaussian random field v̂.

Lemma 5.8. Assume that k = 1 = β or 1 < β < k ∧ 2. Let F ⊂ (0,∞)×Rk be a compact

interval. Let c = 4, c′ = 8 and 0 < ε0 < 1 be small enough such that t−(4ε0)α
−1
1 > 0 for all

(t, x) ∈ F . For any (t, x) ∈ I and 0 < ρ ≤ ε0 with B4ρ(t, x) ⊂ F , let (t′, x′) = (t−(4ρ)α
−1
1 , x).

Then there is a finite constant C such that for all (s1, y1), (s2, y2) ∈ B2ρ(t, x), and also for
all (s1, y1), (s2, y2) ∈ B2ρ(t̃, x̃) ⊂ F with ∆((t, x), (t̃, x̃)) ≥ 8ρ, for all j ∈ {1, . . . , d},

|E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]| ≤ C(|s1 − s2|2−β + |y1 − y2|2−β). (5.11)

Proof. Let G be the fundamental solution of the wave equation.

First, consider the case k = 1 = β (spatial dimension one with space-time white noise).
In this case, G(s, y) = 1

21{|y|≤s}. Consider (s1, y1), (s2, y2) ∈ B2ρ(t, x) or (s1, y1), (s2, y2) ∈
B2ρ(t̃, x̃) ⊂ F with ∆((t, x), (t̃, x̃)) ≥ 8ρ. Without loss of generality, assume s1 ≤ s2.

Suppose t′ ≤ s1. Then

E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]

=
1

4

∫ t′

0

dr

∫
R

dȳ
(
1{|ȳ−y1|≤s1−r} − 1{|ȳ−y2|≤s2−r}

)
1{|ȳ−x′|≤t′−r}

and

|E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]|

≤ 1

4

∫ s1

0

dr

∫
R

dȳ
∣∣1{|ȳ−y1|≤s1−r} − 1{|ȳ−y2|≤s2−r}

∣∣.
Since the value of the integrand is either 0 or 1, it follows that

|E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]|

≤ 1

4

∫ s1

0

dr

∫
R

dȳ
∣∣1{|ȳ−y1|≤s1−r} − 1{|ȳ−y2|≤s2−r}

∣∣2
≤ E|v̂j(s1, y2)− v̂j(s2, y2)|2

≤ C(|s1 − s2|+ |y1 − y2|).

The last inequality follows from Lemma 3.1 since Assumption 2.1 is satisfied.

Suppose s1 < t′. Then

E[(v̂j(s1, y1)− v̂j(s2, y2))v̂j(t
′, x′)]

=
1

4

∫ s1

0

dr

∫
R

dȳ
(
1{|ȳ−y1|≤s1−r} − 1{|ȳ−y2|≤s2−r}

)
1{|ȳ−x′|≤t′−r}

− 1

4

∫ s2∧t′

s1

dr

∫
R

dȳ 1{|ȳ−y2|≤s2−r}1{|ȳ−x′|≤t′−r}.

The first integral is bounded by C(|s1 − s2|+ |y1 − y2|) by the same argument as above,
and the second integral is bounded by C|s1 − s2| since the integrand is bounded by 1
and its support is also bounded over all possible (s2, y2), (t′, x′) ∈ F by the compactness
of F . This proves (5.11).
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For the case 1 < β < k ∧ 2 (colored noise), recall that FG(s, ·)(ξ) = sin(s|ξ|)/|ξ|. If
t′ ≤ s1, (5.11) can be proved in exactly the same way as in Lemma 9.6 of [5]. Now
suppose s1 < t′. For time increments where s1 6= s2 and y1 = y2 = y, we have

E[(v̂j(s1, y)− v̂j(s2, y))v̂j(t
′, x′)]

=

∫ s1

0

dr

∫
Rk
dξ |ξ|β−2−ke−iξ·(y−x

′)
(

sin((s1 − r)|ξ|)− sin((s2 − r)|ξ|)
)

sin((t′ − r)|ξ|)

−
∫ s2∧t′

s1

dr

∫
Rk
dξ |ξ|β−2−ke−iξ·(y−x

′) sin((s2 − r)|ξ|) sin((t′ − r)|ξ|). (5.12)

With slight modifications of the proof of Lemma 9.6 in [5], one can show that the first
integral in (5.12) is equal to

s3−β
1

∫
Rk
dη |η|β−2−ke−iη·(y−x

′)

[(
cos
(s1 − t′

s1
|η|
)
− cos

(s2 − t′

s1
|η|
))

− sin |η|
|η|

(
cos
( t′
s1
|η|
)
− cos

(s2 − s1 + t′

s1
|η|
))]

and that it is bounded by C|s1 − s2|2−β . By | sin(x)| ≤ |x| ∧ 1, one can see that the second
integral in (5.12) is bounded by C|s1 − s2|. Hence (5.11) is satisfied for time increments.
For space increments where s1 = s2 and y1 6= y2, the proof of (5.11) is the same as that
of Lemma 9.6 in [5].

Lemma 5.9. Let (t1, x1), . . . , (tm, xm) be distinct points in T = (0,∞) × Rk. Then the
random variables v̂1(t1, x1), . . . , v̂1(tm, xm) are linearly independent.

Proof. Suppose that a1, . . . , am are real numbers such that
∑m
j=1 aj v̂1(tj , xj) = 0 a.s.

Then

0 = E

( m∑
j=1

aj v̂1(tj , xj)

)2

=

∫
R

∫
Rk

∣∣∣∣ m∑
j=1

ajF (tj , xj , τ, ξ)

∣∣∣∣2 dτ dξ|ξ|k−β
.

It follows that τ ∈ R and ξ ∈ Rk,
∑m
j=1 ajF (tj , xj , τ, ξ) = 0 and thus

m∑
j=1

bje
−iτtj + c1τ + c2 = 0,

where bj = −2aj |ξ|e−iξ·x
j

,

c1 = −
m∑
j=1

aje
−iξ·xj (eit

j |ξ| − e−it
j |ξ|)

and

c2 =

m∑
j=1

aj |ξ|e−iξ·x
j

(eit
j |ξ| + e−it

j |ξ|).

We claim that aj = 0 for all j = 1, . . . ,m. Let t̂1, . . . , t̂p be all distinct values of the tj ’s. If
we take arbitrary ξ ∈ Rk and take derivative with respect to τ , we see that

p∑
`=1

(
− it̂`

∑
j:tj=t̂`

bj

)
e−iτ t̂

`

+ c1 = 0

for all τ ∈ R. Since the functions e−iτ t̂
1

, . . . , e−iτ t̂
p

, 1 are linearly independent over C, we
have

−it̂1
∑

j:tj=t̂`

bj = 0
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for all ` = 1, . . . , p. It implies that for all ξ ∈ Rk, for all ` = 1, . . . , p,∑
j:tj=t̂`

aje
−iξ·xj = 0. (5.13)

Since (t1, x1), . . . , (tm, xm) are distinct, the xj ’s that appear in the sum in (5.13) are
distinct for any fixed `. By linear independence of the functions e−iξ·x

j

, we conclude that
aj = 0 for all j.

Theorem 5.10. Assume k = 1 = β or 1 < β < k ∧ 2. If m(2 + 2k)/(2 − β) ≤ (m − 1)d,
then {v̂(t, x), t ∈ (0,∞), x ∈ Rk} has no m-multiple points a.s.

Proof. Assumption 2.1 is satisfied with Q = (2 + 2k)/(2 − β) by Lemma 9.3 of [5].
Assumptions 2.2 and 2.3 are satisfied by Lemmas 5.8 and 5.9 above. Hence the result
follows from Theorem 2.5.
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