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Introduction to the Lectures

Random fields are stochastic processes indexed by vectors in multidimensional Euclidean

space RN or its subsets such as the N -dimensional integer lattice ZN , the unit sphere SN−1

or more general manifolds. The study of random fields was originated from the work of

Kolmogorov (1941) in statistical theory of turbulence and Lévy’s work on multiparameter

Brownian motion [cf. Lévy (1948, 1963)].

In Mathematics, random fields form an important class of stochastic processes. They play

significant roles in studying stochastic partial differential equations (their solutions, when exist,

are random fields).

The studies of random fields and stochastic partial differential equations have recently en-

tered a period of rapid growth. The enormous amount of current, as well as past, interest in

random fields has been motivated in part by the vast number of their applications to sciences

outside mathematics ranging from astronomy to fluid mechanics, and to finance. These connec-

tions have, in turn, motivated and generated a large number of exciting and novel mathematical

questions. The list of references further information.

The lectures will put the latest developments on random fields from the subjects of prob-

ability theory, stochastic partial differential equations, fractal geometry, and extreme value

theory in a nutshell and present to young researchers and graduate students in Probability

and related areas. We will identify open problems in the theory of random fields that are

motivated by statistics, mathematical physics, among other disciplines.

The following are the main topics that will be covered by the lectures.

1 Gaussian random fields and their regularity properties

Random fields arise naturally in probability theory, stochastic partial differential equations

and in studies of Markov processes. In recent years, there has been an increased interest in

investigating various properties of random fields. However, compared with the rich theory of
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Brownian motion and Markov processes, many aspects of the theory on random fields are still

under development. One of the main difficulties is the lack of powerful technical tools such as

the Markov property and stopping times.

The theory on Gaussian processes and random fields has played one of the leading roles in

modern Probability. The books by Ibragimov and Rozanov (1978), Adler (1981), Ledoux and

Talagrand (1991), Khoshnevisan (2002), Marcus and Rosen (2006), Adler and Taylor (2007),

Talagrand (2005, 2014) provide systematic accounts on fundamental methods for studying

Gaussian processes and their applications to other areas of mathematics and statistics. We

also refer to Yaglom (1987), Guyon (1995) for more applications of Gaussian random fields

to statistical physics, to Rasmussen and Williams (2006) for applications in machine learning,

and to van der Vaart and van Zanten (2008, 2009, 2011) for applications in Bayesian statistics.

Let X = {X(t), t ∈ RN} be a Gaussian random field, which takes values in Rd, defined on

a probability space (Ω,F ,P). For every ω ∈ Ω, the function t 7→ X(t, ω) is called a sample

path or a sample function of X. Following the convention, we usually suppress ω from the

notation.

Regularity properties such as continuity and differentiability of the sample functions of

Gaussian processes have been studied by many authors. The seminal works of Dudley (1967),

Fernique (1975), and Talagrand (1987) are not only of fundamental importance in probability

theory, but also in statistical applications [cf. e.g., Cressie (1993), Stein (1999), van der

Vaart and Wellner (1996), Banerjee and Gelfand (2003), Kosorok (2008)]. The methods based

on metric entropy or majorizing measures are very powerful for determining the continuity,

differentiability, as well as upper bounds for the uniform modulus of continuity of Gaussian

random fields. See Marcus and Rosen (2006), Talagrand (2005, 2014), Adler and Taylor (2007).

More recently, many fine properties of the sample functions of Gaussian random fields have

been proved. These include small ball probabilities, Chung’s laws of the iterated logarithm, and

small deviations [Keulbs and Li (1993), Keulbs, Li and Talagrand (1994), Li and Linde (1999),

Li and Shao (2001, 2005)]; exact Hausdorff and packing measure functions [Talagrand (1995,

1998), Xiao (1996, 1997, 2003), Luan and Xiao (2012)]; exact uniform modulus of continuity

[Meerschaert, Wang and Xiao (2013), Li, Wang and Xiao (2015)]; local times [Berman (1972,

1973), Geman and Horowitz (1980), Xiao (1997, 2007), Baraka and Mountford (2008, 2011),

Baraka, et al (2009), Lee (2021)], multiple points and self-intersection local times [Rosen (1984),

Wu and Xiao (2010), Chen, et al (2011), Dalang, et al (2012), Dalang and Mueller (2015),

Dalang, Lee, Mueller and Xiao (2021)]. These results have revealed deep and subtle structures

of Gaussian random fields, and the developed methods based on general Gaussian principles

are important for further investigating Gaussian and other random fields.

In this part of the lectures, we will present general methods for establishing exact uniform

and local modulus of continuity results for Gaussian random fields. In particular, we prove

four types of limit theorems: the law of the iterated logarithm, uniform modulus of continuity,

Chung’s law of the iterated logarithm, and the modulus of nondifferentiability, under a general

framework that will be convenient for studying the solutions of stochastic partial differential

equations. An important tool is the properties of strong local nondeterminism.
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2 Geometry of random fields

The sample functions of a random field X = {X(t), t ∈ RN} generate various interesting

geometric objects such as the image set X (E) = {X(t) : t ∈ E}, the graph set GrX (E) =

{(t,X(t)) : t ∈ E}, where E ⊆ RN is a Borel set; the level set X−1(x) =
{
t ∈ RN : X(t) = x

}
,

where x ∈ Rd; and the excursion set X−1(F ) =
{
t ∈ RN : X(t) ∈ F

}
, where F ⊆ Rd; the set

of multiple points; just to mention a few. The geometric and topological properties of these

random sets contain a lot of information about the random field X and are intrinsically related

to potential theoretical properties and extreme value properties of X.

If the sample function t 7→ X(t) is non-smooth (i.e., not differentiable), then tools from

fractal geometry will be needed and there has been a lot of research in this direction. If the

sample function t 7→ X(t) is smooth (i.e., continuously differentiable), one can apply tools from

integral/differential geometry to characterize the geometric and topological structures of the

random sets generated by X. It is important to remark that there is a deep connection between

the mean Euler characteristic of the excursion set and the tail probability of the supremum of

the Gaussian random field. See the books by Adler and Taylor (2007), Azäıs and Wschebor

(2009).

At this CBMS conference, we will focus mostly on fractal properties of Gaussian random

fields and the solutions of stochastic partial differential equations.

For Gaussian random fields with non-differentiable sample functions, fractal dimensions

(e.g., Hausdorff dimension, box dimension, packing dimension, etc) are important measures

of their roughness and have been studied extensively. We refer to Falconer (1990), Mattila

(1995), Bishop and Peres (2016) for general information on fractal geometry, and to Taylor

(1986), Lawler (1999), Xiao (2004, 2009, 2013) for overviews on random fractals generated by

Markov processes and random fields.

In recent years many authors have studied fractal properties of anisotropic Gaussian random

fields, which arise naturally as scaling limits of discrete stochastic systems or as solutions of

stochastic differential equations, or as stochastic models in spatial statistics and hydrology.

See e.g., Bonami and Estrade (2003), Ayache and Xiao (2005), Khoshnevisan, Wu and Xiao

(2006), Biermé, Meerschaet and Scheffler (2007), Wu and Xiao (2007, 2011), Xiao (2009), Xue

and Xiao (2011), Luan and Xiao (2012), Lee (2021). These works show that, compared with

isotropic Gaussian fields such as fractional Brownian motion, the probabilistic and geometric

properties of anisotropic Gaussian random fields are much richer and more difficult to study.

As pointed out in Xiao (2013), analogous problems on exact Hausdorff measure functions for

the trajectory and multiple points in Talagrand (1995, 1998), and on local times and level sets

in Xiao (1997), Baraka and Mountford (2011), remain open for anisotropic Gaussian fields.

2.1 Fractal dimension and exact Hausdorff measure functions

Hausdorff and packing dimensions of the range X
(
[0, 1]N

)
, graph GrX

(
[0, 1]N

)
and level sets

are obtained for time-anisotropic Gaussian random fields by Ayache and Xiao (2005) and Xiao

(2009). It is a natural question to determine exact Hausdorff and packing measure functions
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for these random sets. Recall that a measure function ϕ : (0, 1) → R+ is called an exact

Hausdorff measure function for a set F ⊆ Rd if 0 < ϕ-m(F ) < ∞. Here ϕ-m denotes the

ϕ-Hausdorff measure. We will also consider ϕ-packing measure for some random sets such as

the range X
(
[0, 1]N

)
. A measure function ϕ is called an exact packing measure function for F

if 0 < ϕ-p(F ) <∞.

Investigating exact Hausdorff and packing measure functions for the random sets generated

by a random field X not only provides more precise information about the fractal properties of

the sample functions of X, but also stimulates deep understanding of the probability properties

such as small ball probabilities, large deviations and dependence structures of X. These latter

questions have proved to be significant and sometimes challenging.

The problems on finding exact Hausdorff measure functions for the range and graph of

the Brownian sheet and fractional Brownian motion have been considered by Ehm (1981),

Talagrand (1995, 1998), Xiao (1997a, 1997b), Luan and Xiao (2012), and Lee (2021). Most of

these references either consider special Gaussian random fields or assume stationarity on the

increments. We will investigate these problems under a more general setting that is convenient

for applications to the solutions of SPDEs.

2.2 Local times of Gaussian random fields

The roughness or irregularity of sample functions of X can be reflected in the regularity

(or smoothness) of the local times of X. This was first observed by Berman (1972) who

developed Fourier analytic method for studying the existence and continuity of local times

of Gaussian processes. Berman (1973) introduced the notion of “local nondeterminism” for

Gaussian processes to overcome many difficulties caused by the lack of Markov property and to

unify his methods for studying local times. Berman’s work has been extended and strengthened

in various ways. See Geman and Horowitz (1980) and Xiao (2007, 2009) for more information.

The existence and joint continuity of local times of a fractional Brownian sheet W
~H with

values in Rd and index ~H = (H1, . . . ,HN ) ∈ (0, 1)N were studied by Xiao and Zhang (2002).

Ayache, Wu and Xiao (2008) proved that the optimal condition for the joint continuity of

the local times of W
~H is

∑N
j=1H

−1
j > d. Xiao (2009) proved similar results for a class

of Gaussian random fields with stationary increments under certain general conditions.Wu

and Xiao (2011) provided a unified treatment by applying sectorial local nondeterminism to

estimate high moments of local times and improved significantly the results in Ayache, Wu

and Xiao (2008) and Xiao (2009). Their results have been improved recently by Lee (2021b).

In the lecture on local times, we establish optimal regularity results on the local times by

applying the properties of strong local nondeterminism.

2.3 Hitting probabilities of Gaussian random fields

Fractal properties (e.g., Hausdorff dimension) of random fields are closely related to potential

theory, which is a topic of independent interest. While potential theory for Markov processes is
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a mature subject, it is still at a developing stage for Gaussian random fields. The most signifi-

cant result in this aspect is Khoshnevisan and Shi (1999), who studied the hitting probabilities

of the range of the Brownian sheet. More specifically, they proved that if X = {X(t), t ∈ RN+}
is the Brownian sheet with values in Rd, then for any closed interval I ⊂ (0,∞)N and any

compact set F ⊂ Rd,

P
{
X(I) ∩ F 6= ∅

}
> 0⇐⇒ Capd−2N (F ) > 0, (1)

where Capβ denotes the Riesz-Bessel capacity of order β ≥ 0 [cf. e.g., Khoshnevisan (2002)].

An analogous necessary and sufficient condition on E ⊂ (0, ∞)N for P{X−1(x) ∩E 6= ∅} > 0

was proved by Khoshnevisan (1999) for N = 2, Khoshnevisan and Xiao (2007) for N ≥ 3,

provided X is the Brownian sheet. However, it has been an open problem to prove (1) for a

general Gaussian random field such as a fractional Brownian motion.

Various partial extensions of (1) have been proved for several classes of Gaussian random

fields by Xiao (1999), Khoshnevisan (2002), Biermé, Lacaux and Xiao (2009), Xiao (2009),

and Chen and Xiao (2012). In particular, Chen and Xiao (2012) proved necessary conditions

(in terms of Hausdorff measure) and sufficient conditions (in terms of a capacity) on compact

sets E ⊆ RN and F ⊆ Rd for P{X
(
E
)
∩ F 6= ∅} > 0. In the special case when X is Brownian

motion, Watson (1976, 1978) showed that the last statement holds if and only of E × F has

positive “thermal capacity”. See Khoshnevisan and Xiao (2015) for a probabilistic treatment

and results on Hausdorff dimension of the intersection X
(
E
)
∩ F when it is not empty.

Results analogous to (1) on hitting properties have been established for solutions of linear

SPDEs, such as the stochastic heat and wave equations in various spatial dimensions by Mueller

and Tribe (2002), Dalang and Nualart (2004). Extensions of these results to nonlinear SPDEs

have been obtained recently by Dalang, Khoshnevisan, and Nualart (2007, 2009, 2013), Dalang

and Sanz-Solé (2010, 2015). Dalang and Pu (2020, 2021), Hinojosa-Calleja and Sanz-Solé

(2020, 2021). These extensions make extensive use of Malliavin’s calculus [Nualart (2006, 2010)]

in order to establish heat-kernel-type bounds for probability density functions connected to the

solution of SPDEs. Those bounds are nonlinear analogues of covariance-function estimates for

Gaussian random fields.

3 Stochastic partial differential equations

Typically, solutions to linear SPDEs driven by Gaussian noise are Gaussian random fields, or at

least, generalized Gaussian random fields. For instance, the solution to a linear stochastic heat

or wave equation driven by spatially homogeneous Gaussian noise is a generalized Gaussian

random field, and one can determine necessary and sufficient conditions for the solution to

be an ordinary random field [cf. Walsh (1986), Dalang (1999)]. Therefore, well-established

techniques from the theory of Gaussian processes can be used to study many of the analytic

and geometric properties of the solution to linear SPDEs. This gives an indication of what

sort of local result can be expected to hold also for nonlinear SPDEs, though it is often a
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substantial challenge to establish a corresponding result for nonlinear SPDEs.

For the nonlinear stochastic heat or wave equations, this has been addressed in works of

Dalang (1999), Peszat and Zabczyk (2007), Nualart and Viens (2009), Foondun, Khoshnevisan

and Nualart (2011) and Eisenbaum, Foondun, Khoshnevisan (2011). The last two references

also contain an unexpected connection with existence of local times of Markov processes.

An important issue on regularity of the solution concerns Hölder continuity. For a linear

SPDE, the exact uniform and local moduli of the solution can be determined by applying

the methods from the theory of Gaussian fields in Section 1 [see, e.g., Meerschaert, Wang and

Xiao (2013), Tudor and Xiao (2017), Allouba and Xiao (2017), Herrell et al (2020)]. This again

indicates what are likely to be the best possible results for nonlinear SPDEs. Establishing such

Hölder continuity results may still pose many challenges, as can be seen in the AMS Memoir

of Dalang and Sanz-Solé (2009). For nonlinear parabolic SPDEs, this problem has recently

been studied by Khoshnevisan et al (2018). We refer to Dalang et al (2009), Foondun, and

Khoshnevisan (2009), Khoshnevisan (2014), Mijena and Nane (2015), Khoshnevisan, Kim and

Xiao (2017, 2018) for recent advances on other topics of SPDEs such as intermittency and

macroscopic multifractality.

In the lectures, we study fractal properties, level sets, local times, small-ball properties of

the solutions of stochastic heat and wave equations.

We remar that, while the solutions of stochastic heat or wave equations are not differentiable

in the space and time variables, solutions of some higher order SPDEs with Gaussian white

noise may be differentiable in the space variable x. This has been proved by Allouba (2015),

Allouba and Xiao (2017) for the fourth order L-Kuramoto-Sivashinsky (L-KS) SPDEs and

time-fractional stochastic partial integro-differential equations. See Mijena and Nane (2015,

2016) for related work on fractional SPDEs. We expect that the tools from integral/differential

geometry can be employed to study solutions of these higher order and/or fractional SPDEs.

4 Extremes

Excursion probability (or the tail probability of the extreme value) of a real-valued continuous-

time random field has been studied extensively and there is an enormous literature. See the

books of Adler (1981), Piterbarg (1996), Adler and Taylor (2007, 2011), Azäıs and Wschebor

(2009), Yakir (2013), and their combined references.

Let X = {X(t), t ∈ T} be a real-valued Gaussian random field, where T is the index set,

which can be a subset of RN such as the unit cube T = [0, 1]N , or the unit sphere T = SN−1

or, more generally, a manifold.

The study of the excursion probability P{supt∈T X(t) ≥ u} is a very important problem in

probability and has many applications in statistics and other scientific areas. Various methods

for precise approximation of P{supt∈T X(t) ≥ u} have been developed. These include the

double sum method [Pickands (1969), Qualls and Watanabe (1973), Piterbarg (1996), Dȩbicki,

Hashorva and Ji (2016)], the tube method [Knowles and Siegmund (1989), Johansen and

Johnstone (1990), Sun (1993), Siegmund and Worsley (1995), Sun and Loader (1994)], the
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Euler characteristic method [Worsley (1994, 1995), Adler (1981, 2000), Taylor, Takemura and

Adler (2005), Adler and Taylor (2007)] and the Rice method [Azäıs and Wschebor (2009)].

So far, most of the research on excursion probabilities has been focused on real-valued

Gaussian random fields, the development of extreme value theory of multivariate continuous-

time random fields is still in an evolutionary stage [see Ashin (2005), Hashorva and Ji (2014),

Dȩbicki et al (2015)] and the range of its applications is growing.

Zhou and Xiao (2017) considered an R2-valued continuous locally stationary Gaussian

random field {X(t) = (X1(t), X2(t))
T , t ∈ RN} with E[X(t)] = 0 and proved a Pickands-type

approximation for the bivariate excursion probability

P
(

max
s∈T1

X1(s) > u, max
t∈T2

X2(t) > u

)
, as u→∞, (2)

where T1, T2 ⊂ RN are compact sets. Their results show explicitly that the excursion proba-

bilities depend not only on the smoothness parameters of the coordinate fields X1 and X2, but

also on their maximum correlation ρ. More precise approximations for the excursion probabil-

ity in (2) has been obtained by Cheng and Xiao (2021) for smooth bivariate Gaussian random

fields by applying the Euler characteristic method.
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[119] Wang, W. and Xiao, Y., The Csörgő-Révész moduli of non-differentiability of fractional Brownian
motion. Statist. Probab. Lett. 150 (2019), 81–87.

[120] Worsley, K. J., Local maxima and the expected Euler characteristic of excursion sets of χ2, F
and t fields. Adv. Appl. Probab. 26 (1994), 13–42.

12



[121] Worsley, K. J., Estimating the number of peaks in a random field using the Hadwiger charac-
teristic of excursion sets, with applications to medical images. Ann. Statist. 23 (1995), 640–669.

[122] Wu, D. and Xiao, Y., Geometric properties of the images fractional Brownian sheets. J. Fourier
Anal. Appl. 13 (2007), 1–37.

[123] Wu, D. and Xiao, Y., Regularity of intersection local times of fractional Brownian motions. J.
Theoret. Probab. 23 (2010), 972–1001.

[124] Wu, D. and Xiao, Y., On local times of anisotropic Gaussian random fields. Comm. Stoch. Anal.
5 (2011), 15–39.

[125] Xiao, Y., Packing measure of the sample paths of fractional Brownian motion. Trans. Amer.
Math. Soc. 348 (1996), 3193–3213.

[126] Xiao, Y., Hausdorff dimension of the graph of fractional Brownian motion. Math. Proc. Cam-
bridge Philo. Soc. 122 (1997), 565–576.
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