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Abstract Let X = {X(t), t ∈ R
N } be a Gaussian random field with values in R

d

defined by

X(t) = (X1(t), . . . ,Xd(t)), t ∈ R
N,

where X1, . . . ,Xd are independent copies of a real-valued, centered, anisotropic
Gaussian random field X0 which has stationary increments and the property of strong
local nondeterminism. In this paper we determine the exact Hausdorff measure func-
tion for the range X([0,1]N).

We also provide a sufficient condition for a Gaussian random field with stationary
increments to be strongly locally nondeterministic. This condition is given in terms of
the spectral measures of the Gaussian random fields which may contain either an ab-
solutely continuous or discrete part. This result strengthens and extends significantly
the related theorems of Berman (Indiana Univ. Math. J. 23:69–94, 1973, Stochast.
Process. Appl. 27:73–84, 1988), Pitt (Indiana Univ. Math. J. 27:309–330, 1978) and
Xiao (Asymptotic Theory in Probability and Statistics with Applications, pp. 136–
176, 2007, A Minicourse on Stochastic Partial Differential Equations, Lecture Notes
in Math, vol. 1962, pp. 145–212, 2009), and will have wider applicability beyond the
scope of the present paper.

Communicated by Christian Houdre.

Research partially supported by NSF grant DMS-1006903.

N. Luan
School of Insurance and Economics, University of International Business and Economics,
Beijing 100029, China
e-mail: luannana318@gmail.com

Y. Xiao (�)
Department of Statistics and Probability, Michigan State University, A-413 Wells Hall, East Lansing,
MI 48824, USA
e-mail: xiaoyimi@stt.msu.edu
url: http://www.stt.msu.edu/~xiaoyimi

mailto:luannana318@gmail.com
mailto:xiaoyimi@stt.msu.edu
http://www.stt.msu.edu/~xiaoyimi


J Fourier Anal Appl (2012) 18:118–145 119

Keywords Gaussian random fields · Strong local nondeterminism · Spectral
condition · Anisotropy · Hausdorff dimension · Hausdorff measure

Mathematics Subject Classification (2010) 60G15 · 60G17 · 60G60 · 28A80

1 Introduction

Let X = {X(t), t ∈ R
N } be a Gaussian random field with values in R

d , where

X(t) = (X1(t), . . . ,Xd(t)), t ∈ R
N. (1.1)

For brevity we call X an (N,d)-Gaussian random field. Sample path properties of X

such as the Hausdorff dimensions of the range X([0,1]N) = {X(t) : t ∈ [0,1]N }, the
graph GrX([0,1]N) = {(t,X(t)) : t ∈ [0,1]N } and the level set X−1(x) = {t ∈ R

N :
X(t) = x} (x ∈ R

d ) have been studied by many authors under various assumptions
on the coordinate processes X1, . . . ,Xd . We refer to Adler [1], Kahane [13] and Xiao
[31, 32] for further information.

In the cases when X1, . . . ,Xd are independent copies of an approximately
isotropic Gaussian random field X0 [a typical example is fractional Brownian mo-
tion], the problems for finding the exact Hausdorff measure functions for X([0,1]N),
GrX([0,1]N) and X−1(x) have been investigated by Talagrand [23, 24], Xiao
[28–30], Baraka and Mountford [4, 5].

The main objective of this paper is to study the exact Hausdorff measure of the
range of Gaussian random fields which are anisotropic in the time-variable. More
specifically, we consider an (N,d)-Gaussian random field X = {X(t), t ∈ R

N } whose
coordinate processes X1, . . . ,Xd in (1.1) are independent copies of a centered, real-
valued Gaussian field X0 with stationary increments and X0(0) = 0 almost surely;
and we assume there exists a constant vector H = (H1, . . . ,HN) ∈ (0,1)N such that
the following conditions hold:

(C1) There exists a positive constant c1,1 ≥ 1 such that

c−1
1,1

ρ(s, t)2 ≤ E(X0(s) − X0(t))
2 ≤ c1,1 ρ(s, t)2 for all s, t ∈ [0,1]N,

where ρ(s, t) is the metric on R
N defined by

ρ(s, t) =
N∑

j=1

|sj − tj |Hj , ∀s, t ∈ R
N.

(C2) There exists a positive constant c1,2 such that for all integers n ≥ 1 and all
u, t1, . . . , tn ∈ [0,1]N , we have

Var(X0(u)|X0(t
1), . . . ,X0(t

n)) ≥ c1,2 min
0≤k≤n

ρ(u, tk)2 (t0 = 0).



120 J Fourier Anal Appl (2012) 18:118–145

Section 2 below provides a way to construct a large class of Gaussian random
fields with stationary increments that satisfy (C1) and (C2). Further examples can
be found in Xiao [32] and Luan and Xiao [15]. Under Condition (C1), the (N,d)-
Gaussian random field X has a version which has continuous sample functions on
[0,1]N almost surely. Henceforth we will assume without loss of generality that the
Gaussian random field X has continuous sample paths. When {X0(t), t ∈ R

N } satis-
fies (C2), we say that X0 has the property of strong local nondeterminism in metric
ρ on [0,1]N .

Xiao [32] proved that, if Condition (C1) holds, then with probability 1,

dimH X([0,1]N) = min

{
d;

N∑

j=1

1

Hj

}
, (1.2)

where
∑0

j=1
1

Hj
:= 0. In the above, dimH denotes Hausdorff dimension [cf. Kahane

[13] or Falconer [11]]. Further analytic and fractal properties of Gaussian random
fields which satisfy Conditions (C1) and (C2) have been studied by Xiao [32], Biermé
et al. [10], Luan and Xiao [15], Meerschaert et al. [16] (see also Benassi et al. [6],
Ayache and Xiao [3], Wu and Xiao [26, 27] for related results).

The first objective of this paper is to refine (1.2) by determining the exact Haus-
dorff measure function for the range X([0,1]N).

Theorem 1.1 Let X = {X(t), t ∈ R
N } be an (N,d)-Gaussian random field with sta-

tionary increments defined by (1.1), where X1, . . . ,Xd are independent copies of a
centered, real-valued Gaussian field X0 with stationary increments and X0(0) = 0.
We assume that X0 satisfies Conditions (C1) and (C2). If d >

∑N
j=1 H−1

j , then we
have

0 < ϕ1-m(X([0,1]N)) < ∞ a.s.,

where ϕ1 is the function

ϕ1(r) = r
∑N

j=1 H−1
j log log

1

r

and ϕ1-m is the corresponding Hausdorff measure.

The following remark is concerned with the cases not covered by Theorem 1.1.

Remark 1.2

• If d <
∑N

j=1 H−1
j , then Theorem 8.2 in [32] implies that X([0,1]N) a.s. has inte-

rior points and hence has positive d-dimensional Lebesgue measure. In this case,
Wu and Xiao [27] showed that X has a jointly continuous local time and provides
a lower bound for the exact Hausdorff measure (in the metric ρ) of the level set
X−1(x). For fractional Brownian motion and some other isotropic Gaussian ran-
dom fields, the exact Hausdorff measure function for X−1(x) has been determined
by Xiao [30] and Baraka and Mountford [5]. However, no such result has been
established for anisotropic Gaussian random fields.
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• If d = ∑N
j=1 H−1

j , then dimX([0,1]N) = d a.s. The problem to determine the

exact Hausdorff measure function for X([0,1]N) in this “critical case” is open and
is certainly a deeper question.

It will become clear that the proof of Theorem 1.1 relies crucially on Condi-
tion (C2)—the property of strong local nondeterminism, which is useful for study-
ing many other sample path and statistical properties of Gaussian random fields (cf.
[32, 33]). The second objective of this paper is to provide a rather general condition
for a Gaussian random field with stationary increments to satisfy both Conditions
(C1) and (C2). This condition is given in terms of the spectral measures of the Gaus-
sian random fields which may contain either an absolutely continuous or a discrete
part. Theorem 2.4 extends the related theorems of Berman [8, 9], Pitt [20] and Xiao
[31, 32], which will have wider applicability beyond the scope of the present paper.
For example, we can apply this theorem to prove that the solution of a fractional
stochastic heat equation on the circle S1 (see [18, 25]) has the property of strong
local nondeterminism in the space variable (at fixed time t). Hence fine properties
of the sample functions of the solution can be obtained by using the results in [15,
17, 32], and [16]. Similarly, we can show that the spherical fractional Brownian mo-
tion on S1 introduced by Istas [12] is also strongly locally nondeterministic. Both of
these processes share local properties with ordinary fractional Brownian motion with
appropriate Hurst indices. Details of these results will be given elsewhere.

The rest of this paper is organized as follows. Section 2 gives a sufficient con-
dition for a Gaussian random field with stationary increments to be strongly locally
nondeterministic. Section 3 is concerned with the exact Hausdorff measure function
for the range of X. After recalling the definition of Hausdorff measure and its basic
properties, and establishing some estimates, we prove Theorem 1.1.

We end the Introduction with some notation. The inner product of s, t ∈ R
N is

denoted by 〈s, t〉 and the Euclidean norm of t ∈ R
N is denoted ‖t‖. Given two

points s = (s1, . . . , sN ) ∈ R
N and t = (t1, . . . , tN ) ∈ R

N , s ≤ t (resp. s < t) means
that si ≤ ti (resp. si < ti ) for all 1 ≤ i ≤ N . When s ≤ t , we use [s, t] to denote
the N -dimensional interval (or rectangle) [s, t] = ∏N

i=1[si , ti]. For any T ⊆ R
N ,

f (s) � g(s) means the ratio f (s)/g(s) is bounded from below and above by pos-
itive and finite constants which are independent of s ∈ T .

Throughout this paper we will use c to denote an unspecified positive and finite
constant which may not be the same in each occurrence. More specific constants in
Section i are numbered as c

i,1, ci,2, . . . .

2 Spectral Condition for Strong Local Nondeterminism of Gaussian Fields
with Stationary Increments

One of the major difficulties in studying the probabilistic, analytic or statistical prop-
erties of Gaussian random fields is the complexity of their dependence structures. In
many circumstances, the properties of local nondeterminism can help us to overcome
this difficulty so that many elegant and deep results for Brownian motion can be ex-
tended to Gaussian random fields; see [8, 9, 20] and [31, 32] for further information.
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Hence, for a given Gaussian random field, it is an interesting question to determine
whether it satisfies certain forms of local nondeterminism. In this section we provide
a general sufficient condition for a Gaussian random field with stationary increments
to satisfy Conditions (C1) and (C2).

Let X0 = {X0(t), t ∈ R
N } be a real-valued, centered Gaussian random field with

stationary increments and X0(0) = 0. We assume that X0 has continuous covariance
function R(s, t) = E[X(s)X(t)]. According to Yaglom [34], R(s, t) can be repre-
sented as

R(s, t) =
∫

RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)F (dλ) + 〈s,Mt〉, (2.1)

where M is an N × N non-negative definite matrix and F(dλ) is a nonnegative sym-
metric measure on R

N\{0} satisfying

∫

RN

‖λ‖2

1 + ‖λ‖2
F(dλ) < ∞. (2.2)

In analogy to the stationary case, the measure F is called the spectral measure of X0.
If F is absolutely continuous with respect to the Lebesgue measure in R

N , its density
f will be called the spectral density of X0.

It follows from (2.1) that X0 has the following stochastic integral representation:

X0(t)
d=

∫

RN

(ei〈t,λ〉 − 1)W(dλ) + 〈Y, t〉, (2.3)

where
d= means equality of all finite dimensional distributions, Y is an N -dimensional

Gaussian random vector with mean 0 and covariance matrix M , W(dλ) is a centered
complex-valued Gaussian random measure which is independent of Y and satisfies

E(W(A)W(B)) = F(A ∩ B) and W(−A) = W(A)

for all Borel sets A,B ⊆ R
N with finite F -measure. The above properties of W(dλ)

ensures that the stochastic integral in (2.3) is real-valued. The spectral measure F is
called the control measure of W . Since the linear term 〈Y, t〉 in (2.3) will not have
any effect on the problems considered in this paper, we will from now on assume
Y = 0. This is equivalent to assuming M = 0 in (2.1). Consequently, for any h ∈ R

N

we have

σ 2(h) � E(X0(t + h) − X0(t))
2 = 2

∫

RN

(1 − cos〈h,λ〉)F (dλ). (2.4)

It is important to note that σ 2(h) is a negative definite function in the sense of I.J.
Schoenberg, which is determined by the spectral measure F . See Berg and Forst [7]
for more information on negative definite functions. If the function σ 2(h) depends
only on ‖h‖, then X0 is called an isotropic random field. More generally, if σ 2(h) �
φ(‖h‖) in a neighborhood of h = 0 for some nonnegative function φ, then X0 is
called approximately isotropic.
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Various centered Gaussian random fields with stationary increments can be con-
structed by choosing appropriate spectral measures F . For the well known fractional
Brownian motion BH = {BH (t), t ∈ R

N } of Hurst index H ∈ (0,1), its spectral mea-
sure has a density function

fH (λ) = c(H,N)
1

‖λ‖2H+N
, (2.5)

where c(H,N) > 0 is a normalizing constant such that σ 2(h) = ‖h‖2H . Since σ 2(h)

depends on ‖h‖ only, the increments of BH are isotropic and stationary. Examples
of approximately isotropic Gaussian fields with stationary increments can be found
in [31].

A typical example of anisotropic Gaussian random field with stationary incre-
ments can be constructed by choosing the spectral density

f (λ) = 1

(
∑N

j=1 |λj |Hj )2+Q
, ∀λ ∈ R

N\{0}, (2.6)

where the constants Hj ∈ (0,1) for j = 1, . . . ,N and Q = ∑N
j=1 H−1

j . This notation
will be fixed throughout the rest of the paper.

It can be verified that f (λ) in (2.6) satisfies (2.2) and the corresponding Gaussian
random field X0 has stationary increments. In the special case when H1 = · · · =
HN = H , (2.6) is very similar to (2.5). Consequently, X0 shares many properties
with fractional Brownian motion.

In general, X0 with spectral density (2.6) is anisotropic in the sense that the sample
function X0(t) has different geometric and probabilistic characteristics along differ-
ent directions. This gives more flexibility from modeling point of view. Moreover,
X0 is operator-self-similar with exponent A = (a

ij
), where a

ii
= H−1

i and a
ij

= 0 if
i = j . The latter means that for any constant c > 0,

{X0(c
A t), t ∈ R

N } d= {cX0(t), t ∈ R
N }, (2.7)

where cA is the linear operator defined by cA = ∑∞
n=0

(ln c)nAn

n! . Xiao [32] proved that
the Gaussian random field X0 satisfies Conditions (C1) and (C2), and characterized
many sample path properties of the corresponding (N,d)-Gaussian field X in terms
of (H1, . . . ,HN) explicitly.

We remark that all centered stationary Gaussian random fields can also be treated
using the above framework. In fact, if Y = {Y(t), t ∈ R

N } is a centered, real-valued
stationary Gaussian random field, it can be represented as Y(t) = ∫

RN ei〈t,λ〉 W(dλ).
Thus the random field X0 defined by

X0(t) = Y(t) − Y(0) =
∫

RN

(ei〈t,λ〉 − 1)W(dλ), ∀t ∈ R
N

is Gaussian with stationary increments and X0(0) = 0. Note that the spectral measure
F of X0 in the sense of (2.4) is the same as the spectral measure [in the ordinary
sense] of the stationary random field Y .
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The main purpose of this section is to prove a sufficient condition for a general
Gaussian random field X0 with stationary increments to satisfy Conditions (C1) and
(C2). In particular, this condition implies that X0 is strongly locally nondeterministic
in metric ρ.

To this end we first introduce some notation and state several lemmas. For any
λ ∈ R

N and h > 0, we denote by C(λ,h) the cube with side-length 2h and center λ,
i.e.,

C(λ,h) = {x ∈ R
N : |xj − λj | ≤ h, j = 1, . . . ,N}.

For any g ∈ L2(RN), let ĝ(λ) = ∫
RN ei〈λ,x〉g(x)dx be the Fourier transform of g and

let L2(C(0, T )) denote the subspace of g ∈ L2(RN) whose support is contained in
C(0, T ). In the following, Lemma 2.1 is Proposition 4 of [19]. Lemma 2.2 is taken
from [31], which is an extension of a result of [20, p. 326].

Lemma 2.1 Let �̃(dλ) be a positive measure on R
N . If, for some constant h > 0,

�̃(dλ) satisfies

0 < lim inf‖λ‖→∞ �̃(C(λ,h)) ≤ lim sup
‖λ‖→∞

�̃(C(λ,h)) < ∞, (2.8)

then, for every T > 0 satisfying T hN < log 2, there exist positive and finite constants
c2,2 and c2,3 such that

c2,2

∫

RN

|ψ̂(λ)|2dλ ≤
∫

RN

|ψ̂(λ)|2�̃(dλ) ≤ c2,3

∫

RN

|ψ̂(λ)|2dλ (2.9)

for all ψ ∈ L2(C(0, T )).

Lemma 2.2 Let �1(dλ) be a positive measure on R
N with density function �1(λ).

If there exist constants c2,4 > 0 and η > 0 such that

�1(λ) ≥ c2,4

‖λ‖η
for all λ ∈ R

N with ‖λ‖ large. (2.10)

Then for any constants T > 0 and c2,5 , there exists a positive and finite constant c2,6

such that for all functions g of the form

g(λ) =
n∑

j=1

aj (e
i〈sj ,λ〉 − 1), (2.11)

where aj ∈ R and sj ∈ C(0, T ), we have

|g(λ)| ≤ c2,6‖λ‖ ·
(∫

RN

|g(ξ)|2 �1(ξ)dξ

)1/2

for all λ ∈ R
N with ‖λ‖ ≤ c2,5 .
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Lemma 2.3 below is an extension of Proposition 8.4 of [20]. It allows us to connect
the property of strong local nondeterminism of a Gaussian random field with a general
spectral measure to that of a Gaussian random field with an absolutely continuous
spectral measure, which has been studied in [31, 32].

Lemma 2.3 Let �2(dλ) be a positive measure on R
N and suppose that for some

h > 0,

0 < lim inf‖λ‖→∞ρ(0, λ)Q+2�2(C(λ,h)) ≤ lim sup
‖λ‖→∞

ρ(0, λ)Q+2�2(C(λ,h)) < ∞.

(2.12)
Then for any constant T > 0 with T hN < log 2, there exist positive and finite con-
stants c2,7 and c2,8 such that

c2,7

∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ ≤

∫

RN

|g(λ)|2�2(dλ)

≤ c2,8

∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ (2.13)

for all g(λ) of the form (2.11).

Proof First we claim that there is a positive constant c ≤ 1 such that

c

∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ ≤

∫

RN

|g(λ)|2
(1 + ∑N

j=1 |λj |Hj )Q+2
dλ

≤
∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ (2.14)

for all functions g of the form (2.11).
Clearly only the first inequality in (2.14) needs a proof. For this purpose, we split

the first integral in (2.14) over {λ : ‖λ‖ ≤ c2,5} and {λ : ‖λ‖ > c2,5} and apply Lemma
2.2 with

�1(dλ) = dλ

(1 + ∑N
j=1 |λj |Hj )Q+2

[which satisfies (2.10)] to derive

∫

{‖λ‖≤c2,5 }
|g(λ)|2

(
∑N

j=1 |λj |Hj )Q+2
dλ

≤ c2
2,6

∫

{‖λ‖≤c2,5 }
‖λ‖2

(
∑N

j=1 |λj |Hj )Q+2
dλ ·

∫

RN

|g(ξ)|2 �1(dξ)

= c2,9

∫

RN

|g(ξ)|2 �1(dξ),
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because the first integral in the second line is convergent. It follows from the above
that

∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ ≤ c2,9

∫

RN

|g(λ)|2
(1 + ∑N

j=1 |λj |Hj )Q+2
dλ

+
∫

{λ:‖λ‖>c2,5 }
|g(λ)|2

(
∑N

j=1 |λj |Hj )Q+2
dλ

≤ c2,10

∫

RN

|g(λ)|2
(1 + ∑N

j=1 |λj |Hj )Q+2
dλ.

This verifies the first inequality in (2.14).
Next we take a constant s > 0 such that (T + s)hN < log 2 and denote T1 = T + s.

Let ϕ ∈ L2(C(0, s)) be a function with the following property

c2,11 ≤ |ϕ̂(λ)|2 · (1 + ρ(0, λ))Q+2 ≤ c2,12 (2.15)

for all λ ∈ R
N, where c2,11 and c2,12 are positive and finite constants. Such a function

ϕ can be constructed as follows. Observe that the function λ �→ (1+ρ(0, λ))−(Q+2)/2

is in L2(RN). Hence it is the Fourier transform of a function κ ∈ L2(RN). For the
constant s > 0 chosen above we consider the function

Ps(t) =
N∏

j=1

(
1 − |tj |

s

)+
for all t ∈ R

N ,

where a+ := max(a ,0) for all real numbers a. Then the support of Ps is C(0, s).
Recall that the Fourier transform of Ps is

P̂s(ξ) := 2N

N∏

j=1

1 − cos(sξj )

sξ2
j

for all ξ ∈ R
N.

Define ϕ(t) = κ(t)Ps(t). Then ϕ ∈ L1(C(0, s)) ∩ L2(C(0, s)) and its Fourier
transform is given by

ϕ̂(λ) = κ̂ � P̂s(λ)

=
∫

RN

2N

(1 + ρ(0, λ − ξ))(Q+2)/2

N∏

j=1

1 − cos(sξj )

sξ2
j

dξ.

It is clear that ϕ̂(λ) > 0 for all λ ∈ R
N . Writing

ϕ̂(λ) · (1 + ρ(0, λ))(Q+2)/2 =
∫

RN

2N(1 + ρ(0, λ))(Q+2)/2

(1 + ρ(0, λ − ξ))(Q+2)/2

N∏

j=1

1 − cos(sξj )

sξ2
j

dξ



J Fourier Anal Appl (2012) 18:118–145 127

and using the dominated convergence theorem, we see that

lim‖λ‖→∞ ϕ̂(λ) · (1 + ρ(0, λ))(Q+2)/2 = 2N

∫

RN

N∏

j=1

1 − cos(sξj )

sξ2
j

dξ.

Hence (2.15) follows.
Now we continue with the proof of (2.13). Let

ψ̂(λ) := g(λ)ϕ̂(λ) =
n∑

j=1

aj (e
i〈sj ,λ〉 − 1)ϕ̂(λ),

where sj ∈ C(0, T ) for j = 1, . . . , n. Since ϕ ∈ L1(C(0, s)) ∩ L2(C(0, s)), we use
the Fourier inversion formula to verify that ψ ∈ L2(C(0, T1)). Moreover, by (2.14)
and (2.15), there is a constant c ≥ 1 such that

c−1
∫

RN

|g(λ)ϕ̂(λ)|2dλ ≤
∫

RN

|g(λ)|2
(
∑N

j=1 |λj |Hj )Q+2
dλ ≤ c

∫

RN

|g(λ)ϕ̂(λ)|2dλ

(2.16)

for all functions g of the form (2.11).
Consider the new positive measure �̃(dλ) on R

N defined by �̃(dλ) = |ϕ̂(λ)|−2 ×
�2(dλ). It follows from (2.12) and (2.15) that

lim inf‖λ‖→∞ �̃(C(λ,h)) ≥ c lim inf‖λ‖→∞ρ(0, λ)Q+2�2(C(λ,h)) > 0

and

lim sup
‖λ‖→∞

�̃(C(λ,h)) ≤ c lim sup
‖λ‖→∞

ρ(0, λ)Q+2�2(C(λ,h)) < ∞.

Hence the measure �̃(dλ) satisfies (2.8). We apply Lemma 2.1 to derive that

c2,2

∫

RN

|g(λ)ϕ̂(λ)|2dλ ≤
∫

RN

|g(λ)ϕ̂(λ)|2�̃(dλ)

=
∫

RN

|g(λ)|2�2(λ) ≤ c2,3

∫

RN

|g(λ)ϕ̂(λ)|2dλ.

for all functions g of the form (2.11) provided sj ∈ C(0, T ) for j = 1, . . . , n. This
and (2.16) yield (2.13). �

We are ready to prove the main result of this section.

Theorem 2.4 Let {X0(t), t ∈ R
N } be a real-valued centered Gaussian random field

with stationary increments and X0(0) = 0. If for some constant h > 0 the spectral
measure F of X0 satisfies

0 < lim inf‖λ‖→∞ρ(0, λ)Q+2F(C(λ,h)) ≤ lim sup
‖λ‖→∞

ρ(0, λ)Q+2F(C(λ,h)) < ∞, (2.17)
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then for any T > 0 such that T hN < log 2, X0 satisfies Conditions (C1) and (C2) on
C(0, T ).

Proof First we verify X0 satisfies Condition (C1). For any s, t ∈ C(0, T ), we apply
the stochastic representation of X0 and Lemma 2.3 to write

E(|X0(s) − X0(t)|2) =
∫

RN

|ei〈s,λ〉 − ei〈t,λ〉|2 F(dλ)

�
∫

RN

|ei〈s,λ〉 − ei〈t,λ〉|2
(
∑N

j=1 |λj |Hj )Q+2
dλ. (2.18)

Since it has been proved in Xiao [32] that

∫

RN

|ei〈s,λ〉 − ei〈t,λ〉|2
(
∑N

j=1 |λj |Hj )Q+2
dλ � ρ(s, t)2, ∀s, t ∈ C(0, T ),

we conclude that X0 satisfies (C1) on C(0, T ).
Now we prove that X0 satisfies Condition (C2) on C(0, T ). Denote r =

min0≤j≤n ρ(u, tj ). It is sufficient to prove that for all aj ∈ R (1 ≤ j ≤ n) we have

E(|X0(u) −
n∑

j=1

ajX0(t
j )|2) ≥ c2,10r

2 (2.19)

and c2,10 is a positive constant which is independent of n, aj and the choice of {tj }
and u. Again by using the stochastic representation of X0, the left hand side of (2.19)
can be written as

E

(∣∣∣∣X0(u) −
n∑

j=1

ajX0(t
j )

∣∣∣∣
2)

=
∫

RN

∣∣∣∣e
i〈u,λ〉 − 1 −

n∑

j=1

aj (e
i〈tj ,λ〉 − 1)

∣∣∣∣
2

F(dλ).

Note that the function inside the integral is of the form (2.11). We apply Lemma 2.3
to get

∫

RN

∣∣∣∣e
i〈u,λ〉 − 1 −

n∑

j=1

aj (e
i〈tj ,λ〉 − 1)

∣∣∣∣
2

F(dλ)

≥ c2,7

∫

RN

∣∣∣∣e
i〈u,λ〉 − 1 −

n∑

j=1

aj (e
i〈tj ,λ〉 − 1)

∣∣∣∣
2

dλ

(
∑N

j=1 |λj |Hj )
Q+2

.

However, it has been proved in Theorem 3.2 of [32] that the last integral is bounded
from below by c2,11r

2, and c2,11 is a positive constant which is independent of n, aj

and the choice of {tj } and u. This proves (2.19) and Theorem 2.4. �
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Theorem 2.4 can be applied directly to Gaussian random fields with stationary
increments and with discrete spectral measure (or of mixed form F = Fac + F

dis
).

It is useful for analyzing many space-time Gaussian random fields in the literature;
see [33] and the references therein for some examples. In the following we give an
example of Gaussian random field with discrete spectral measure F .

Let {ξn, n ∈ Z
N } and {ηn,n ∈ Z

N } be two independent sequences of i.i.d. N(0,1)

random variables, where Z is the set of integers. Let {an,n ∈ Z
N } be a sequence of

real numbers such that
∑

n∈ZN

a2
n < ∞.

Then

Y(t) =
∑

n∈ZN

an(ξn cos〈n, t〉 + ηn sin〈n, t〉), t ∈ R
N

is a centered stationary Gaussian random field with covariance function

E(Y (t)Y (s)) =
∑

n∈ZN

a2
n cos〈n, t − s〉.

Hence the spectral measure F of Y is supported on Z
N with F({n}) = a2

n. If we
choose {an} such that as ‖n‖ → ∞,

a2
n � 1

(
∑N

j=1 n
Hj

j )Q+2
,

then for any fixed constant h > 1, F satisfies (2.17). Consider the Gaussian random
field {X0(t), t ∈ R

N } defined by X0(t) = Y(t) − Y(0). Theorem 2.4 implies that, for
any constant T > 0 with T hN < log 2, {X0(t), t ∈ R

N } satisfies Conditions (C1) and
(C2) on C(0, T ).

Consequently, many sample path properties of Y such as uniform and local moduli
of continuity, Chung’s law of the iterated logarithm, existence and joint continuity of
the local times can be derived from the results in [15, 32], and [16].

Finally we mention that, as special cases of this example, we can show that the
solution of a fractional stochastic heat equation on the circle S1 (see [18, 25]) has the
property of strong local nondeterminism in the space variable (at fixed time t). Hence
we can apply the results in [16, 17, 32] to obtain fine properties of the solution which
improve significantly those in [18, 25]. Similarly, we can prove that the spherical
fractional Brownian motion on S1 introduced by Istas [12] is also strongly locally
nondeterministic. Details of these results will be given elsewhere.

3 Exact Hausdorff Measure Function for the Range X([0,1]N)

In this section, we determine the exact Hausdorff measure function for the range
of an (N,d)-Gaussian random field X = {X(t), t ∈ R

N } defined in (1.1), where
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X1, . . . ,Xd are independent copies of a real-valued, centered Gaussian random field
X0 with stationary increments, which satisfies Conditions (C1) and (C2).

First we recall briefly the definition of Hausdorff measure, an upper density theo-
rem due to [21] and two useful inequalities for large and small tails of the supremum
of Gaussian processes. Then we extend a result of [23] to anisotropic Gaussian ran-
dom fields, which is applied to derive an upper bound for the ϕ1-Hausdorff measure
of X([0,1]N). Finally we prove a law of the iterated logarithm for the sojourn time
of X and derive a lower bound for the ϕ1-Hausdorff measure of X([0,1]N).

3.1 Hausdorff Measure

Let  be the class of functions φ : (0, δ) → (0,1) which are right continuous, mono-
tone increasing with φ(0+) = 0 and such that there exists a finite constant c3,1 > 0
for which

φ(2s)

φ(s)
≤ c3,1, for 0 < s <

1

2
δ.

For φ ∈ , the φ-Hausdorff measure of E ⊆ R
d is defined by

φ-m(E) = lim
ε→0

inf

{∑

i

φ(2ri) : E ⊆
∞⋃

i=1

B(xi, ri), ri < ε

}
,

where B(x, r) denotes the Euclidean open ball of radius r centered at x. It is known
that φ-m is a metric outer measure and every Borel set in R

d is φ-m measur-
able. We say that a function φ is an exact Hausdorff measure function for E if
0 < φ-m(E) < ∞. The Hausdorff dimension of E is defined by

dimE = inf{α > 0; sα-m(E) = 0}
= sup{α > 0; sα-m(E) = ∞}.

We refer to Falconer [11] for more properties of Hausdorff measure and Hausdorff
dimension.

The following lemma can be easily derived from the results in Rogers and Taylor
[21], which gives a way to get a lower bound for φ-m(E). For any Borel measure μ

on R
d and φ ∈ , the upper φ-density of μ at x ∈ R

d is defined by

D
φ

μ(x) = lim sup
r→0

μ(B(x, r))

φ(2r)
.

Lemma 3.1 For a given φ ∈  there exists a positive constant c3,2 such that for any
Borel measure μ on R

d and every Borel set E ⊆ R
d , we have

φ-m(E) ≥ c3,2μ(E) inf
x∈E

{Dφ

μ(x)}−1.

Now we recall some basic facts about Gaussian processes. Consider a set S and a
centered Gaussian process {Y(t), t ∈ S}. We provide S with the following canonical
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pseudo-metric

d(s, t) = ‖Y(s) − Y(t)‖2,

where ‖Y‖2 = (E(Y 2))1/2. Denote by Nd(S, ε) the smallest number of open d-balls
of radius ε needed to cover S and let D = sup{d(s, t) : s, t ∈ S} be the d-diameter
of S.

The following lemma is well known. It is a consequence of the Gaussian isoperi-
metric inequality and Dudley’s entropy bound (see [23]).

Lemma 3.2 There exists a positive constant c3,3 such that for all u > 0, we have

P

{
sup
s,t∈S

|Y(s) − Y(t)| ≥ c3,3

(
u +

∫ D

0

√
logNd(S, ε)dε

)}
≤ exp

(
− u2

D2

)
.

Lemma 3.3 Consider a function � such that Nd(S, ε) ≤ �(ε) for all ε > 0. Assume
that for some constant c3,4 ≥ 1 and all ε > 0 we have

�(ε)/c3,4 ≤ �

(
ε

2

)
≤ c3,4�(ε).

Then

P

{
sup
s,t∈S

|Y(s) − Y(t)| ≤ u
}

≥ exp ( − c3,5�(u)),

where c3,5 > 0 is a constant depending only on c3,4 .

This was proved in Talagrand [22]. It gives a general lower bound for the small
ball probability of Gaussian processes.

3.2 Some Basic Estimates

Let X0 = {X0(t), t ∈ R
N } be a centered Gaussian random field with stationary incre-

ments and satisfying Conditions (C1) and (C2). Without loss of generality, we assume
that H1, . . . ,HN are ordered as

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1. (3.1)

In order to solve some dependence problems that are a major obstacle, we consider
for any given 0 < a < b < ∞ the random field

X0(a, b, t) =
∫

a<ρ(0,λ)≤b

(ei〈t,λ〉 − 1)W(dλ), t ∈ R
N.

An essential fact is that if 0 < a < b < a′ < b′ < ∞, then the Gaussian random fields
{X0(a, b, t), t ∈ R

N } and {X0(a
′, b′, t), t ∈ R

N } are independent.
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Let X1(a, b, t), . . . ,Xd(a, b, t) be independent copies of X0(a, b, t) and let

X(a,b, t) = (X1(a, b, t), . . . ,Xd(a, b, t)), t ∈ R
N.

Then we have the following lemma. For convenience, we write I = [0,1]N .

Lemma 3.4 Given any 0 < a < b and 0 < ε < r , we have

P

{
sup

t∈I :ρ(0,t)≤r

‖X(a,b, t)‖ ≤ ε
}

≥ exp

(
−c

(
r

ε

)Q)
, (3.2)

where 0 < c < ∞ is an absolute constant.

Proof It is sufficient to prove (3.2) for X0(a, b, t). Let S = {t ∈ I : ρ(0, t) ≤ r} and
define a distance d on S by

d(s, t) = ‖X0(a, b, s) − X0(a, b, t)‖2.

Then (C1) implies d(s, t) ≤ c1,1

∑N
i=1 |si − ti |Hi for all s, t ∈ I , independent of the

choices of 0 < a < b. It follows that

Nd(S, ε) ≤ c
( r

ε

)Q

.

By Lemma 3.3 we have

P

{
sup

t∈I :ρ(0,t)≤r

|X0(a, b, t)| ≤ ε
}

≥ exp

(
−c

(
r

ε

)Q)
.

This proves Lemma 3.4. �

The following truncation inequalities are extensions of those in [14, p. 209] for
N = 1 and (3.4) and (3.5) in [28] for N > 1 and ρ being replaced by the Euclidean
metric.

Lemma 3.5 There exist positive finite constants c3,6 and c3,7 such that the following
hold.

(i) For any a > 0 and any t ∈ R
N with ρ(0, t)a ≤ 1/N we have

∫

{λ:ρ(0,λ)≤a}
〈t, λ〉2F(dλ) ≤ c3,6

∫

RN

(1 − cos〈t, λ〉)F (dλ). (3.3)

(ii) For all a > 0
∫

{λ:ρ(0,λ)>a}
F(dλ) ≤ c3,7a

−2. (3.4)
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Proof Notice that when ρ(0, λ) ≤ a, the condition ρ(0, t)a ≤ 1/N implies that
|〈t, λ〉| < 1. It follows that

1 − cos〈t, λ〉 ≥ 〈t, λ〉2

2

(
1 − 〈t, λ〉2

12

)
≥ 11

24
〈t, λ〉2.

Then for any t ∈ R
N with ρ(0, t)a ≤ 1/N we have

∫

RN

(1 − cos〈t, λ〉)F (dλ) ≥ 11

24

∫

{λ:|〈t,λ〉|≤1}
〈t, λ〉2F(dλ)

≥ 11

24

∫

{λ:ρ(0,λ)≤a}
〈t, λ〉2F(dλ).

That is
∫

{λ:ρ(0,λ)≤a}
〈t, λ〉2F(dλ) ≤ 24

11

∫

RN

(1 − cos〈t, λ〉)F (dλ).

To prove (3.4), we make the following two claims:

(a) For any u > 0, if λi = 0 for i = 1, . . . ,N , then

1

2NuQ

∫
∏N

i=1[−u
1

Hi ,u
1

Hi ]
cos〈t, λ〉dt =

N∏

i=1

sin(u
1

Hi λi)

u
1

Hi λi

.

(b) For any u > 0,

∫

{λ:ρ(0,λ)> 1
u
}
F(dλ) ≤ c

2NuQ

∫
∏N

i=1[−u
1

Hi ,u
1

Hi ]
dt

∫

RN

(1 − cos〈t, λ〉)F (dλ).

Claim (a) is obviously true when N = 1. Suppose it is true for N = k, then for N =
k + 1, we have

1

2k+1u
1

H1
+···+ 1

H
k+1

∫
∏k

i=1[−u
1

Hi ,u
1

Hi ]
dt1 · · ·dtk

×
∫

[−u

1
H

k+1 ,u

1
H

k+1 ]
cos(t1λ1 + · · · + t

k+1λk+1)dt
k+1

= 1

2ku
1

H1
+···+ 1

H
k

∫
∏k

i=1[−u
1

Hi ,u
1

Hi ]
dt1 · · ·dtk

× sin(t1λ1 + · · · + tkλk + u
1

H
k+1 λ

k+1) − sin(t1λ1 + · · · + tkλk − u
1

H
k+1 λ

k+1)

2u
1

H
k+1 λ

k+1
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= 1

2ku
1

H1
+···+ 1

H
k

∫
∏k

i=1[−u
1

Hi ,u
1

Hi ]
cos(t1λ1 + · · · + tkλk)dt1 · · ·dtk

sinu
1

H
k+1 λ

k+1

u
1

H
k+1 λ

k+1

= sinu
1

H1 λ1

u
1

H1 λ1

· · · sinu
1

H
k+1 λ

k+1

u
1

H
k+1 λ

k+1

.

Hence claim (a) is true for all N ≥ 1.
By Fubini’s theorem and claim (a), we have

1

2NuQ

∫
∏N

i=1[−u
1

Hi ,u
1

Hi ]
dt

∫

RN

(1 − cos〈t, λ〉)F (dλ)

=
∫

RN

[
1

2NuQ

∫
∏N

i=1[−u
1

Hi ,u
1

Hi ]
(1 − cos〈t, λ〉)dt

]
F(dλ)

=
∫

RN

(
1 −

N∏

i=1

sinu
1

Hi λi

u
1

Hi λi

)
F(dλ)

≥
∫

RN\{λ:|λi |≤(Nu)
− 1

Hi ,∀i}

(
1 −

N∏

i=1

sinu
1

Hi λi

u
1

Hi λi

)
F(dλ)

≥ c

∫

RN\{λ:|λi |≤(Nu)
− 1

Hi ,∀i}
F(dλ)

≥ c

∫

{λ:ρ(0,λ)> 1
u
}
F(dλ).

Hence claim (b) is verified.
Now we turn to the proof of (3.4). With claim (b), (2.4) and Condition (C1) in

hand, we have for a > 0,

∫

{λ:ρ(0,λ)>a}
F(dλ) ≤ caQ

2N

∫
∏N

i=1[−a
− 1

Hi ,a
− 1

Hi ]
dt

∫

RN

(1 − cos〈t, λ〉)F (dλ)

≤ caQ

2N

∫
∏N

i=1[−a
− 1

Hi ,a
− 1

Hi ]

N∑

i=1

|ti |2Hi dt

≤ ca−2.

This finishes the proof of Lemma 3.5. �

Lemma 3.6 gives estimates on the small ball probability of the (N,d)-Gaussian
random field X in (1.1).
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Lemma 3.6 There exist constants c3,8 and c3,9 such that for all 0 < ε < r ,

exp

(
−c3,8

(
r

ε

)Q)
≤ P

{
sup

t∈I :ρ(0,t)≤r

‖X(t)‖ ≤ ε
}

≤ exp

(
−c3,9

(
r

ε

)Q)
. (3.5)

Proof Let S = {t ∈ I : ρ(0, t) ≤ r}. It follows from (C1) that for all ε ∈ (0, r),

Nρ(S, ε) ≤ c

N∏

i=1

(
r

ε

) 1
Hi = c

(
r

ε

)Q

:= ψ(ε).

Clearly ψ(ε) satisfies the condition in Lemma 3.3. Hence the lower bound in (3.5)
follows from Lemma 3.3.

The proof of the upper bound in (3.5) is based on Condition (C2) and a condition-
ing argument and is similar to the proof of Theorem 5.1 in [32] (see also [17]). We

include it for the sake of completeness. Let T = ∏N
i=1[0, ( r

N
)

1
Hi ]. Then T ⊆ S. We

divide T into

� :=
N∏

i=1

(⌊(
r

Nε

) 1
Hi

⌋
+ 1

)
≥

(
r

Nε

)Q

sub-rectangles of side-lengths ε1/Hi (i = 1, . . . ,N), where �x� is the largest integer
no more than x. And denote the lower-left vertices of these rectangles (in any order)
by t

k
(k = 1, . . . , �). Then

P

{
sup
t∈S

‖X(t)‖ ≤ ε
}

≤ P

{
sup

1≤k≤�

‖X(t
k
)‖ ≤ ε

}
. (3.6)

It follows from Condition (C2) that for every 1 ≤ k ≤ �

Var(X0(tk )|X0(ti ) : 1 ≤ i ≤ k − 1) ≥ c1,2 ε2.

By this and Anderson’s inequality for Gaussian measures (see [2]), we have the fol-
lowing upper bound for the conditional probabilities

P{‖X(t
k
)‖ ≤ ε|X(t

i
) : 1 ≤ i ≤ k − 1} ≤ 

(
1√
c1,2

)d

, (3.7)

where (x) is the distribution function of a standard normal random variable. It
follows from (3.6) and (3.7) that

P

{
sup
t∈S

‖X(t)‖ ≤ ε
}

≤ 

(
1√
c1,2

)�d

≤ exp

(
−c3,9

(
r

ε

)Q)
.

Thus we obtain the upper bound in (3.5). �

The main estimate is given in the following proposition.



136 J Fourier Anal Appl (2012) 18:118–145

Proposition 3.7 There exist positive constants δ1 and c3,10 such that for any 0 < r0 ≤
δ1, we have

P

{
∃ r ∈ [r2

0 , r0], sup
t∈I :ρ(0,t)≤r

‖X(t)‖ ≤ c3,10r

(
log log

1

r

)−1/Q}

≥ 1 − exp

(
−

(
log

1

r0

)1/2)
. (3.8)

Proof Though the main idea of the proof is similar to the proof of Proposition 4.1 in
Talagrand [23], some modifications are needed to characterize the anisotropic nature
of X. Let U > 1 be a number whose value will be determined later. For k ≥ 0, let
rk = r0U

−2k . Consider the largest integer k0 such that

k0 ≤ log(1/r0)

2 logU
. (3.9)

Thus, for k ≤ k0 we have r2
0 ≤ rk ≤ r0. It thereby suffices to prove that

P

{
∃k ≤ k0, sup

t∈I :ρ(0,t)≤rk

‖X(t)‖ ≤ c rk

(
log log

1

rk

)−1/Q}

≥ 1 − exp

(
−

(
log

1

r0

)1/2)
.

Let ak = r−1
0 U2k−1 and we define for k = 0,1, . . .

X0,k
(t) = X0(ak, ak+1, t)

and

X̂k(t) = (X1,k
(t), . . . ,X

d,k
(t)),

where X1,k
(t), . . . ,X

d,k
(t) are independent copies of X0,k

(t). Furthermore, we as-
sume X1 − X1,k

, . . . ,X
d

− X
d,k

are independent copies of X0 − X0,k
. We note that

the Gaussian random fields X̂0, X̂1, . . . are independent. By Lemma 3.4 we can find
a constant c3,11 > 0 such that, if r0 is small enough, then for each k ≥ 0

P

{
sup

t∈I :ρ(0,t)≤rk

‖X̂k(t)‖ ≤ c3,11 rk

(
log log

1

rk

)−1/Q}

≥ exp

(
−1

4
log log

1

rk

)
= 1

(log 1/rk)
1
4

≥ 1

(2 log 1/r0)
1
4

. (3.10)
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By independence,

P

{
∃k ≤ k0, sup

t∈I :ρ(0,t)≤rk

‖X̂k(t)‖ ≤ c3,11rk

(
log log

1

rk

)−1/Q}

≥ 1 −
(

1 − 1

(2 log 1/r0)1/4

)k0

≥ 1 − exp

(
− k0

(2 log 1/r0)1/4

)
, (3.11)

where the last inequality follows from the elementary inequality 1 − x ≤ e−x for all
x ≥ 0.

Let β = min{ 1
HN

− 1,2}. We claim that for any u ≥ crkU
− β

2
√

logU ,

P

{
sup

t∈I :ρ(0,t)≤rk

‖X(t) − X̂k(t)‖ ≥ u
}

≤ exp

(
− u2

cr2
k U−β

)
. (3.12)

To see this, it’s enough to prove that (3.12) holds for X0 − X0,k
. Consider S = {t ∈

I : ρ(0, t) ≤ rk} and on S the distance

d(s, t) = ‖(X0(s) − X0,k
(s)) − (X0(t) − X0,k

(t))‖2.

Then d(s, t) ≤ c
∑N

i=1 |si − ti |Hi and Nd(S, ε) ≤ c(
rk
ε
)Q. Now we estimate the diam-

eter D of S. For any t ∈ S,

E[(X0(t) − X0,k
(t))2] = 2

∫

{λ:ρ(0,λ)≤ak}∪{λ:ρ(0,λ)>a
k+1 }

(1 − cos〈t, λ〉)F (dλ)

≤ 2
∫

{λ:ρ(0,λ)≤ak}
(1 − cos〈t, λ〉)F (dλ)

+ 4
∫

{λ:ρ(0,λ)>a
k+1 }

F(dλ)

=: I1 + I2. (3.13)

The second term is easy to estimate: By Lemma 3.5,

I2 ≤ ca−2
k+1

. (3.14)
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For the first term I1, we use the elementary inequality 1 − cos〈t, λ〉 ≤ 1
2 〈t, λ〉2 to

derive that for all t ∈ S

I1 ≤
∫

{λ:ρ(0,λ)≤ak}
〈t, λ〉2F(dλ)

= N
2

H1 U
− 1

HN

∫

{λ:ρ(0,λ)≤ak}

〈
U

1
2HN

N
1

H1

t, λ

〉2

F(dλ)

= cU
− 1

HN

∫

{λ:ρ(0,λ)≤ak}
〈t ′, λ〉2F(dλ),

where t ′ = U
1

2HN N
− 1

H1 t. Since ρ(0, t ′) ≤ 1
N

U
1
2 ρ(0, t) ≤ 1

N
U

1
2 rk < 1

Nak
, it follows

from Lemma 3.5 and (C1) that

I1 ≤ cU
− 1

HN ρ(0, t ′)2 ≤ cU
1− 1

HN ρ(0, t)2 ≤ cr2
k U

−( 1
HN

−1)
. (3.15)

With (3.13), (3.14) and (3.15) in hand, the diameter of S satisfies

D2 ≤ c[r2
k U

−( 1
HN

−1) + a−2
k+1

]

≤ cr2
k [U−( 1

HN
−1) + U−2]

≤ cr2
k U−β, (3.16)

where β = min{ 1
HN

− 1,2}. Some simple calculations yield

∫ D

0

√
logNd(S, ε)dε ≤ c

∫ crkU
− β

2

0

√
log

rk

ε
dε

≤ crkU
− β

2
√

logU. (3.17)

Hence we use Lemma 3.2 and (3.17) to derive that for any u ≥ crkU
− β

2
√

logU ,

P

{
sup

ρ(0,t)≤rk

|X0(t) − X0,k
(t)| ≥ u

}
≤ exp

(
− u2

cr2
k U−β

)
. (3.18)

Thus we have proved (3.12).
Now we continue our proof of (3.8). Let U = (log 1/r0)

1/β . We see that for r0 > 0
small

Uβ/2(logU)−1/2 ≥
(

log log
1

r0

)1/Q

.
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Take u = c3,11rk(log log 1/r0)
−1/Q. It follows from (3.12) that

P

{
sup

t∈I :ρ(0,t)≤rk

‖X(t) − X̂k(t)‖ ≥ c3,11rk

(
log log

1

r0

)−1/Q}

≤ exp

(
− Uβ

c3,12(log log 1/r0)2/Q

)
.

Combining this with (3.11), we get

P

{
∃k ≤ k0, sup

ρ(0,t)≤rk

‖X(t)‖ ≤ 2c3,11rk

(
log log

1

rk

)−1/Q}

≥ 1 − exp

(
− k0

(2 log 1/r0)1/4

)

− k0 exp

(
− Uβ

c3,12(log log 1/r0)2/Q

)
. (3.19)

We recall that

log(1/r0)

4 logU
≤ k0 ≤ log

1

r0
.

Then the right-hand side of (3.19) is at least 1 − exp(−(log 1/r0)
1/2) when r0 > 0 is

small enough. This completes the proof. �

3.3 Upper Bound for the Hausdorff Measure of the Range

We start with the following result on the uniform modulus of continuity of X0. See,
e.g., Xiao [32]. More precise result can be found in Meerschaert et al. [16].

Lemma 3.8 Let X0 = {X0(t), t ∈ R
N } be a centered Gaussian random field with val-

ues in R. If Condition (C1) is satisfied, then there exists a positive and finite constant
c3,13 such that

lim sup
‖ε‖→0

supt∈[0,1]N , s∈[0,ε] |X0(t + s) − X0(t)|
ρ(0, ε)

√
log(1 + ρ(0, ε)−1)

≤ c3,13, a.s. (3.20)

Now we derive an upper bound for the Hausdorff measure of X([0,1]N).

Theorem 3.9 If d > Q, then there exists a constant c3,14 > 0 such that

ϕ1-m(X([0,1]N)) ≤ c3,14 a.s., (3.21)

where ϕ1(r) = rQ log log 1/r .
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Proof For k ≥ 1, consider the set

Rk =
{
t ∈ [0,1]N : ∃ r ∈ [2−2k,2−k] such that

sup
s∈I :ρ(s,t)≤r

‖X(s) − X(t)‖ ≤ c3,10 r

(
log log

1

r

)−1/Q}
. (3.22)

By Proposition 3.7 we have

P{t ∈ Rk} ≥ 1 − exp(−√
k/2).

Denote by LN the Lebesgue measure on R
N . It follows from Fubini’s theorem that

P(�0) = 1, where

�0 = {ω : LN(Rk) ≥ 1 − exp(−√
k/4) infinitely often}.

On the other hand, by Lemma 3.8, there exists an event �1 such that P(�1) = 1 and
for all ω ∈ �1, there exists n1 = n1(ω) large enough such that for all n ≥ n1 and any
rectangle In of side-lengths 2−n/Hi (i = 1, . . . ,N ) that meets [0,1]N , we have

sup
s,t∈In

‖X(t) − X(s)‖ ≤ c2−n
√

log[1 + (N2−n)−1] ≤ c2−n
√

n. (3.23)

Now for a fixed ω ∈ �0 ∩ �1, we show that ϕ1-m(X([0,1]N)) ≤ c3,14 < ∞. Con-
sider k ≥ 1 such that

LN(Rk) ≥ 1 − exp(−√
k/4).

For any n ≥ 1, we divide [0,1]N into 2nQ disjoint (half-open and half closed) rect-
angles of side-lengths 2−n/Hi (i = 1, . . . ,N ). Denote by In(x) the rectangle of side-
lengths 2−n/Hi (i = 1, . . . ,N ) containing x. For any x ∈ Rk we can find the smallest
integer n with k ≤ n ≤ 2k + �0 (where �0 depends on N only) such that

sup
s,t∈In(x)

‖X(t) − X(s)‖ ≤ c2−n(log log 2n)−1/Q. (3.24)

Thus we have

Rk ⊆ V =
2k+�0⋃

n=k

Vn

and each Vn is a union of rectangles In(x) satisfying (3.24). Clearly X(In(x)) can be
covered by a ball of radius

ρn = c2−n(log log 2n)−1/Q.

Since ϕ1(2ρn) ≤ c2−nQ = cLN(In), we obtain

k+�0∑

n=k

∑

In∈Vn

ϕ1(2ρn) ≤
∑

n

∑

In∈Vn

cLN(In) = cLN(V ) ≤ c. (3.25)
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Thus X(V ) is contained in the union of a family of balls Bn of radius ρn with∑
n ϕ1(2ρn) ≤ c.

On the other hand, [0,1]N\V is contained in a union of rectangles of side-lengths
2−q/Hi (i = 1, . . . ,N ) where q = 2k + �0, none of which meets Rk . There can be at
most

2QqLN([0,1]N\V ) ≤ c2Qq exp(−√
k/4)

such rectangles. Since ω ∈ �1, (3.23) implies that, for each of these rectangles Iq ,
X(Iq) is contained in a ball of radius c2−q√

q . Thus X([0,1]N\V ) can be covered
by a family Bn of balls of radius ρn = c2−q√

q such that

∑

n

ϕ1(2ρn) ≤ (c2Qq exp(−√
k/4)) · (c2−qQqQ/2 log log(c2qq−1/2)) ≤ 1 (3.26)

for k large enough. Since k can be arbitrarily large, Theorem 3.9 follows from (3.25)
and (3.26). �

3.4 Lower Bound for the Hausdorff Measure of the Range

Theorem 3.10 If d > Q, then there exists a constant c3,15 > 0 such that

ϕ1-m(X([0,1]N)) ≥ c3,15 a.s., (3.27)

where ϕ1(r) = rQ log log 1/r .

In order to prove Theorem 3.10, we first study the asymptotic behavior of the
sojourn measure of X. For any r > 0 and y ∈ R

d , define

Ty (r) =
∫

I

1{‖X(t)−y‖≤r} dt,

the sojourn time of X in the ball B(y, r). If y = 0, we write T (r) for T0(r).

Lemma 3.11 If d > Q, then there is a finite constant c3,16 such that

E(T (r)n) ≤ cn
3,16

n! rQn (3.28)

for all for all integers n ≥ 1 and 0 < r < 1.
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Proof For n = 1, by Fubini’s theorem and (C1) we have

E(T (r)) =
∫

I

P{‖X(t)‖ < r}dt

≤
∫

I

min{1, c

(
r

ρ(0, t)

)d

}dt

=
∫

{t∈I :ρ(0,t)≤cr}
dt + c

∫

{t∈I :ρ(0,t)>cr}

(
r

ρ(0, t)

)d

dt

=: J1 + J2.

The first term is easy to estimate:

J1 ≤ c

N∏

i=1

r
1

Hi = crQ. (3.29)

For the second term, we use the following elementary fact: Given positive constants
β and γ , there exists a finite constant c3,17 such that for all a > 0,

∫ ∞

0

dx

(a + xβ)γ
=

{
c3,17a

−(γ− 1
β
) if βγ > 1,

+∞ if βγ ≤ 1.
(3.30)

Since ρ(0, t) > cr implies that t
j0

≥ cr
1/H

j0 for some j0 ∈ {1, . . . ,N}, without loss
of generality we assume j0 = 1. Then using (3.30) (N − 1) times, we obtain

J2 ≤ crd

∫ 1

cr
1

H1
dt1

∫

[0,1]N−1

dt2, . . . , dtN

(
∑N

i=1 t
Hi

i )d

≤ crd

∫ 1

cr
1

H1
dt1

∫

[0,1]N−2

dt2, . . . , dt
N−1

(
∑N−1

i=1 t
Hi

i )
d− 1

HN

≤ crd

∫ 1

cr
1

H1

dt1

(t
H1
1 )

d−∑N
i=2

1
Hi

≤ c rQ, (3.31)

where the last step follows from the assumption that d > Q. It follows from (3.29)
and (3.31) that

E(T (r)) ≤ crQ. (3.32)

For n ≥ 2,

E(T (r)n) =
∫

In

P{‖X(tj )‖ < r,1 ≤ j ≤ n}dt1 · · ·dtn. (3.33)
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Consider t1, . . . , tn ∈ I satisfying

tj = 0, for j = 1, . . . , n and tj = tk for j = k.

By Condition (C2), we have

Var(X0(t
n)|X0(t

1), . . . ,X0(t
n−1)) ≥ c1,2 min

0≤k≤n−1
ρ(tn, tk)2, (3.34)

where t0 = 0. Since conditional distributions in Gaussian processes are still Gaussian,
(3.34) and Anderson’s inequality yield that for all x1, . . . , xn−1 ∈ R

d ,

P{‖X(tn)‖ < r|X(t1) = x1, . . . ,X(tn−1) = xn−1}

≤ c min

{
1,

(
r

min
0≤k≤n−1

ρ(tn, tk)

)d}
. (3.35)

It follows from (3.35) and an argument similar to the proof of (3.32) that
∫

I

P{‖X(tn)‖ < r|X(t1) = x1, . . . ,X(tn−1) = xn−1}dtn

≤ c

∫

I

n−1∑

k=0

min

{
1, c

(
r

ρ(tn, tk)

)d}
dtn

≤ c n

∫

I

min

{
1, c

(
r

ρ(0, tn)

)d}
dtn

≤ c nrQ. (3.36)

Combining (3.33) and (3.36), we obtain

E(T (r)n) ≤ cnrQ

∫

In−1
P{‖X(t1)‖ < r, . . . ,‖X(tn−1)‖ < r}dt1 · · ·dtn−1

= cnrQ
E(T (r)n−1).

Hence the inequality (3.28) follows from this and induction. �

Let 0 < b < 1/c3,16 . Then by (3.28) we have

E(exp(br−QT (r))) ≤
∞∑

n=0

(c3,16b)n < ∞. (3.37)

This and the exponential Chebychev’s inequality imply that for any constant 0 < b <

1/c3,16 ,

P{T (r) ≥ rQu} ≤ e−bu

1 − c3,16b
(3.38)

for all u > 0.
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The following is a law of the iterated logarithm for the sojourn measure of X.

Proposition 3.12 For every τ ∈ I , we have

lim sup
r→0

TX(τ)(r)

ϕ1(r)
≤ c3,16, a.s. (3.39)

Proof Since {X(t), t ∈ R
N } has stationary increments, it is sufficient to consider

τ = 0. Then (3.39) follows from (3.38), the Borel-Cantelli lemma and a monotonicity
argument in a standard way. �

Proof of Theorem 3.10 We can prove this theorem by using Lemma 3.1 and Propo-
sition 3.12, in the same way as that of Theorem 4.1 in [28]. �

Proof of Theorem 1.1 It follows immediately from Theorems 3.9 and 3.10. �
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