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Summary. Anisotropic Gaussian random fields arise in probability theory and in
various applications. Typical examples are fractional Brownian sheets, operator-
scaling Gaussian fields with stationary increments, and the solution to the stochastic
heat equation.

This paper is concerned with sample path properties of anisotropic Gaussian
random fields in general. Let X = {X(t), t ∈ RN} be a Gaussian random field
with values in Rd and with parameters H1, . . . , HN . Our goal is to characterize the
anisotropic nature of X in terms of its parameters explicitly.

Under some general conditions, we establish results on the modulus of continuity,
small ball probabilities, fractal dimensions, hitting probabilities and local times of
anisotropic Gaussian random fields. An important tool for our study is the various
forms of strong local nondeterminism.

1 Introduction

Gaussian random fields have been extensively studied in probability theory
and applied in a wide range of scientific areas including physics, engineer-
ing, hydrology, biology, economics and finance. Two of the most important
Gaussian random fields are respectively the Brownian sheet and fractional
Brownian motion.

The Brownian sheet W = {W (t), t ∈ RN
+}, which was first introduced by

a statistician J. Kitagawa in 1951, is a centered Gaussian random field with
values in Rd and covariance function given by

E
[
Wi(s)Wj(t)

]
= δij

N∏

k=1

(sk ∧ tk), ∀s, t ∈ RN
+ , (1)
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where δij = 1 if i = j and 0 if i �= j. When N = 1, W is the ordinary
Brownian motion in Rd. For N ≥ 2, W has independent increments over
disjoint intervals in RN

+ and such increments are stationary. We refer to [1; 49]
for systematic accounts on properties of the Brownian sheet and to [94] and the
articles in this volume for its important roles in stochastic partial differential
equations.

For a fixed constant 0 < α < 1, an (N, d)-fractional Brownian motion
with index α is a centered Gaussian random field Xα = {Xα(t), t ∈ RN}
with values in Rd and covariance function given by

E
[
Xα
i (s)Xα

j (t)
]

=
1
2
δij

(
|s|2α + |t|2α − |s− t|2α

)
, ∀s, t ∈ RN , (2)

where |·| denotes the Euclidean norm in RN . The existence ofXα follows from
the positive semi-definiteness of the kernel on the right hand side of (2); see
[82] for a proof. When N = 1 and α = 1/2, Xα is again the Brownian motion
in Rd; when N > 1, α = 1/2 and d = 1, it is the multiparameter Brownian
motion introduced by P. Lévy; see [46; 82] for more historical information,
probabilistic and statistical properties of fractional Brownian motion.

By using (2) one can verify that Xα is self-similar with exponent α, i.e.
for every constant c > 0,

{
Xα(ct), t ∈ RN

} d=
{
cαXα(t), t ∈ RN

}
, (3)

where d= means equality in finite dimensional distributions. Moreover,Xα has
stationary increments in the strong sense; see Section 8.1 of [82]. In particular,
X is isotropic in the sense that the distribution of X(s)−X(t) depends only on
the Euclidean distance |s−t|. Fractional Brownian motion is naturally related
to long range dependence which makes it important for modelling phenomena
with self-similarity and/or long memory properties. In the last decade the lit-
erature on statistical analysis and applications of fractional Brownian motion
has grown rapidly [30].

On the other hand, many data sets from various areas such as image pro-
cessing, hydrology, geostatistics and spatial statistics have anisotropic nature
in the sense that they have different geometric and probabilistic charac-
teristics along different directions, hence fractional Brownian motion is not
adequate for modelling such phenomena. Many people have proposed to apply
anisotropic Gaussian random fields as more realistic models [11; 18; 29].

Several classes of anisotropic Gaussian random fields have been intro-
duced for theoretical and application purposes. For example, Kamont [47]
introduced fractional Brownian sheets [see the definition in Section 2.1] and
studied some of their regularity properties. Benassi et al. [10] and Bonami
and Estrade [18] considered some anisotropic Gaussian random fields with
stationary increments. Biermé et al. [17] constructed a large class of opera-
tor self-similar Gaussian or stable random fields with stationary increments.
Anisotropic Gaussian random fields also arise naturally in stochastic partial
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differential equations [20; 73; 74; 75]; and in studying the most visited sites
of symmetric Markov processes [35]. Hence it is of importance in both theory
and applications to investigate the probabilistic and statistical properties of
anisotropic random fields.

This paper is concerned with sample path properties of anisotropic Gaus-
sian random fields in general. From the recent works on fractional Brownian
sheets [see Section 2.1 for a list of references] it is known that the behavior of
anisotropic Gaussian random fields may differ significantly from those of the
Brownian sheet and fractional Brownian motion. Our objective is to gather
and develop some general methods for studying the analytic and geometric
properties of anisotropic Gaussian fields. In particular our results are appli-
cable to the solutions of stochastic partial differential equations including the
stochastic heat and wave equations. In a similar vein, Pitt and Robeva [78],
Robeva and Pitt [79], Balan and Kim [8] have proposed to study the Markov
properties of (anisotropic) Gaussian random fields and the solutions to the
stochastic heat equations.

The rest of this paper is organized as follows. Section 2 contains definitions
and basic properties of several classes of anisotropic Gaussian random fields
including fractional Brownian sheets, Gaussian random fields with stationary
increments and solutions to stochastic partial differential equations. We also
provide the general conditions [i.e., Conditions (C1), (C2), (C3) and (C3′)]
for the Gaussian random fields that will be studied in this paper.

An important technical tool in this paper is the properties of strong local
nondeterminism for anisotropic Gaussian random fields, extending the con-
cept of local nondeterminism first introduced by Berman [14] for Gaussian
processes. In Section 3, we recall the recent result of Wu and Xiao [97] on
the property of sectorial local nondeterminism for fractional Brownian sheets;
and we prove a sufficient condition for an anisotropic Gaussian field with sta-
tionary increments to be strongly locally nondeterministic (with respect to an
appropriate metric).

Section 4 is concerned with analytic and asymptotic properties of the sam-
ple functions of anisotropic Gaussian fields. We summarize three methods for
deriving a sharp modulus of continuity for any anisotropic Gaussian random
field satisfying Condition (C1). The first method is to use an extension, due
to Arnold and Imkeller [2], Funaki, Kikuchi and Potthoff [39], Dalang, Khosh-
nevisan and Nualart [22], of the powerful Garsia-Rodemich-Rumsey continuity
lemma; the second is the “minorizing metric” method of Kwapień and Risiński
[60]; and the third is based on the Gaussian isoperimetric inequality. While
the first two methods have wider applicability, the third method produces
more precise results for Gaussian random fields.

Section 5 provides an application of strong local nondeterminism in
studying small ball probabilities of anisotropic Gaussian fields.

In Section 6, we consider the Hausdorff and packing dimensions of the
rangeX([0 , 1]N) = {X(t) : t ∈ [0 , 1]N} and graph GrX([0 , 1]N) = {(t,X(t)) :
t ∈ [0 , 1]N} of X . Due to anisotropy, these results are different from the
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corresponding results for fractional Brownian motion and the Brownian sheet.
We also establish an explicit formula for the Hausdorff dimension of the image
X(E) in terms of the generalized Hausdorff dimension of E (with respect to an
appropriate metric) and the Hurst indexH . Moreover, when H = (α, . . . , α) ∈
(0 , 1)N , we prove the following uniform Hausdorff dimension result for the
images of X : If N ≤ αd, then with probability one,

dim
H
X(E) =

1
α

dim
H
E for all Borel sets E ⊆ (0 ,∞)N . (4)

This extends the previous results of [51; 70; 72] for fractional Brownian motion
and the Brownian sheet, respectively, and is another application of the strong
local nondeterminism.

In Section 7, we determine the Hausdorff and packing dimensions of the
level sets, and establish estimates on the hitting probabilities of Gaussian
random fields X satisfying Conditions (C1) and (C2).

In Section 8, we study the existence and joint continuity of local times of
anisotropic Gaussian random fields under Conditions (C3) and (C3′). More-
over, we discuss local and uniform Hölder conditions of the local times in
the set variable and show their applications in evaluating the exact Hausdorff
measure of the level sets of X .

We end the Introduction with some notation. Throughout this paper, the
underlying parameter space is RN or RN

+ = [0,∞)N . We use | · | to denote the
Euclidean norm in RN . The inner product and Lebesgue measure in RN are
denoted by 〈·, ·〉 and λN , respectively. A typical parameter, t ∈ RN is written
as t = (t1, . . . , tN ), or as 〈c〉 if t1 = · · · = tN = c. For any s, t ∈ RN such
that sj < tj (j = 1, . . . , N), [s, t] =

∏N
j=1 [sj , tj] is called a closed interval

(or a rectangle). We will let A denote the class of all closed intervals in RN .
For two functions f and g, the notation f(t) # g(t) for t ∈ T means that
the function f(t)/g(t) is bounded from below and above by positive constants
that do not depend on t ∈ T .

We will use c to denote an unspecified positive and finite constant which
may not be the same in each occurrence. More specific constants in Section i
are numbered as ci,1 , ci,2 , . . . .

2 Examples and General Assumptions

In this section, we give some important examples of anisotropic Gaussian
random fields, among them, fractional Brownian sheets are the most studied.
We will show that the methods for studying fractional Brownian sheets can
be modified to investigate sample path properties of anisotropic Gaussian
random fields in general. In §2.4, we provide the general conditions for the
Gaussian random fields that will be studied in this paper.
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Even though anisotropic random fields generally do not satisfy the ordi-
nary self-similarity (3), they may have certain operator-scaling properties.
Following the terminology of Biermé et al. [17], we say that a random field
X = {X(t), t ∈ RN} is operator-self-similar [or operator-scaling] in the time
variable if there exist a linear operator A on RN with positive real parts of
the eigenvalues and some constant β > 0 such that

{
X(cA t), t ∈ RN

} d=
{
cβ X(t), t ∈ RN

} ∀ c > 0. (5)

In the above, cA is the linear operator defined by cA =
∑∞
n=0(ln c)

nAn/n!.
The linear operator A is called a self-similarity exponent [which may not be
unique].

There is also a notion of operator-self-similarity in the space variable [65;
98]. We will not discuss this topic in this paper.

2.1 Fractional Brownian Sheets

Fractional Brownian sheets were first introduced by Kamont [47], who also
studied some of their regularity properties. For H = (H1, . . . , HN ) ∈ (0 , 1)N ,
an (N , 1)-fractional Brownian sheetBH0 = {BH0 (t), t ∈ RN} with Hurst index
H is a real-valued, centered Gaussian random field with covariance function
given by

E
[
BH0 (s)BH0 (t)

]
=

N∏

j=1

1
2

(
|sj |2Hj + |tj |2Hj −|sj− tj |2Hj

)
, s, t ∈ RN . (6)

It follows from (6) that BH0 (t) = 0 a.s. for every t ∈ RN with at least one
zero coordinate.

Note that if N = 1, then BH0 is a fractional Brownian motion in R with
Hurst index H1 ∈ (0 , 1); if N > 1 and H = 〈1/2〉, then BH is the Brow-
nian sheet in R. Hence BH0 can be regarded as a natural generalization of
one parameter fractional Brownian motion as well as a generalization of the
Brownian sheet.

It follows from (6) that BH0 has the following operator-scaling property:
For all constants c > 0,

{
BH0 (cAt), t ∈ RN

} d=
{
cN BH0 (t), t ∈ RN

}
, (7)

where A = (aij) is the N × N diagonal matrix with aii = 1/Hi for all 1 ≤
i ≤ N and aij = 0 if i �= j. Thus, BH0 is operator-self-similar with exponent
A and β = N .

The covariance structure of BH0 is more complicated than those of frac-
tional Brownian motion and the Brownian sheet. The following stochastic
integral representations are useful. They were established by Ayache et al. [4]
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and Herbin [43], respectively, and can be verified by checking the covariance
functions.

• Moving average representation:

BH0 (t) = κ−1
H

∫ t1

−∞
· · ·

∫ tN

−∞
g(t , s)W (ds), (8)

where W = {W (s), s ∈ RN} is a standard real-valued Brownian sheet and

g(t, s) =
N∏

j=1

[(
(tj − sj)+

)Hj−1/2 − ((−sj)+
)Hj−1/2

]

with s+ = max{s , 0}, and where κ
H
> 0 is a normalization constant.

To give a harmonizable representation for BH0 , let us recall briefly the def-
inition of a complex-valued Gaussian measure. Let (E,E ,Δ) be a measure
space and let A = {A ∈ E : Δ(A) < ∞}. We say that M̃ is a cen-
tered complex-valued Gaussian measure on (E,E ,Δ) if {M̃ (A), A ∈ A } is a
centered complex-valued Gaussian process satisfying

E
(
M̃ (A)M̃ (B)

)
= Δ(A ∩B) and M̃ (−A) = M̃ (A), (9)

for all A, B ∈ A . The measure Δ is called the control measure of M̃ .
For any complex valued function f̃ ∈ L2(E,E ,Δ), the stochastic integral
∫
E f̃(ξ) M̃ (dξ) can be defined; see, e.g., Section 7.2.2 of [82]. With this notion,

we give the following:

• Harmonizable representation:

BH0 (t) = K−1
H

∫

RN

ψt(λ) W̃ (dλ), (10)

where W̃ is a centered complex-valued Gaussian random measure in RN with
Lebesgue control measure and

ψt(λ) =
N∏

j=1

eitjλj − 1
|λj |Hj+ 1

2
, (11)

where K
H
> 0 is a constant. Recently, Wang [95] gives another stochastic

integral representation for BH0 .
Let BH1 , . . . , B

H
d be d independent copies of BH0 . Then the (N, d)-fractional

Brownian sheet with Hurst index H = (H1, . . . , HN ) is the Gaussian random
field BH = {BH(t) : t ∈ RN} with values in Rd defined by

BH(t) =
(
BH1 (t), . . . , BHd (t)

)
, t ∈ RN . (12)
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Several authors have studied various properties of fractional Brownian
sheets. For example, Ayache et al. [4] provided the moving average repre-
sentation (8) for BH0 and studied its sample path continuity as well as its
continuity in H . Dunker [32], Mason and Shi [66], Belinski and Linde [9],
Kühn and Linde [59] studied the small ball probabilities of BH0 . Mason and Shi
[66] also computed the Hausdorff dimension of some exceptional sets related
to the oscillation of the sample paths of BH0 . Ayache and Taqqu [5] derived
an optimal wavelet series expansion for fractional Brownian sheet BH0 ; see
also [33; 59] for other optimal series expansions for BH0 . Øksendal and Zhang
[75], and Hu, Øksendal and Zhang [45] studied stochastic partial differential
equations driven by fractional Brownian sheets.

For fractal properties, Kamont [47] and Ayache [3] studied the box and
Hausdorff dimensions of the graph set of an (N, 1)-fractional Brownian sheet.
Ayache and Xiao [7] investigated the uniform and local asymptotic properties
of BH by using wavelet methods, and determined the Hausdorff dimensions
of the image BH([0 , 1]N), the graph GrBH([0 , 1]N) and the level set Lx =
{t ∈ (0 ,∞)N : BH(t) = x}, where x ∈ Rd. Further results on the geometric
and Fourier analytic properties of the images of BH can be found in Wu and
Xio [97].

Xiao and Zhang [110] studied the existence of local times of an (N, d)-
fractional Brownian sheet BH and proved a sufficient condition for the joint
continuity of the local times. Ayache, Wu and Xiao [6] established the joint
continuity of the local times under the optimal condition and studied the local
and uniform Hölder conditions for the maximum local times. Related to the
above results, we mention that Tudor and Xiao [93] have obtained results
on Hausdorff dimensions of the sample paths, local times and their chaos
expansion for (N, d)-bifractional Brownian sheets.

2.2 Anisotropic Gaussian Random Fields with Stationary
Increments

Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random field
with X(0) = 0. We assume that X has stationary increments and continu-
ous covariance function R(s , t) = E

[
X(s)X(t)

]
. According to Yaglom [111],

R(s, t) can be represented as

R(s, t) =
∫

RN

(ei〈s,ξ〉 − 1)(e−i〈t,ξ〉 − 1)Δ(dξ) + 〈s ,Θt〉, (13)

where 〈x , y〉 is the ordinary inner product in RN , Θ is an N×N non-negative
definite matrix and Δ(dξ) is a nonnegative symmetric measure on RN\{0}
that satisfies ∫

RN

|ξ|2
1 + |ξ|2 Δ(dξ) <∞. (14)

The measure Δ and its density (if it exists) f(ξ) are called the spectral measure
and spectral density of X , respectively.
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It follows from (13) that X has the following stochastic integral represen-
tation:

X(t) =
∫

RN

(
ei〈t,ξ〉 − 1

)
M̃ (dξ) + 〈Y, t〉, (15)

where Y is anN -dimensional Gaussian random vector with mean 0 and covari-
ance matrix Θ, and where M̃ is a centered complex-valued Gaussian random
measure in RN with control measure Δ, which is independent of Y. Since
the linear term 〈Y, t〉 in (15) will not have any effect on the problems consid-
ered in this paper, we will from now on assume Y = 0. This is equivalent to
assuming Θ = 0 in (13). Consequently, we have

σ2(h) = E
[(
X(t+ h)−X(t)

)2] = 2
∫

RN

(
1− cos 〈h , ξ〉)Δ(dξ). (16)

It is important to note that σ2(h) is a negative definite function [12] and, by
the Lévy-Khintchine formula, can be viewed as the characteristic exponent of
a symmetric infinitely divisible distribution.

If the function σ2(h) depends only on |h|, then X is called an isotropic ran-
dom field. We say that a Gaussian random field X is approximately isotropic
if σ2(h) # φ(|h|) in a neighborhood of h = 0 for some nonnegative function
φ. Sample path properties of such Gaussian random fields have been studied
widely. See [83; 102; 108] and the references therein for more information. The
results in [7; 97] on fractional Brownian sheets indicate that the properties
of anisotropic Gaussian random fields can be very different and often more
difficult to be established.

Many Gaussian random fields can be constructed by choosing the spectral
measures appropriately. For example, if we consider the spectral density

f(ξ) =
1

(∑N
j=1 |ξj |Hj

)2+Q
∀ξ ∈ RN\{0}, (17)

where the constants Hj ∈ (0 , 1) for j = 1, . . . , N and Q =
∑N

j=1H
−1
j , then

the corresponding Gaussian random field X has stationary increments and is
operator-self-similar with exponent A = (aij), where aii = H−1

i and aij = 0
if i �= j and β = 1. This Gaussian random field is similar to that in Example
3 of [18].

The following class of Gaussian random fields constructed by Biermé,
Meerschaert and Scheffler [17, Section 4] is more general.

Theorem 2.1. Let A be a real N ×N matrix with the real parts of the eigen-
values 1 < a1 ≤ a2 ≤ · · · ≤ aN and let Q = trace(A). If ψ : RN → [0 ,∞) is a
continuous, A′-homogeneous function [i.e., ψ(cA

′
ξ) = cψ(ξ) for all c > 0 and

ξ ∈ RN . Here A′ denotes the transpose of A] such that ψ(ξ) > 0 for ξ �= 0.
Then the Gaussian random field

Xψ(t) = Re
∫

RN

(
ei〈t,ξ〉 − 1

) W̃ (dξ)
ψ(ξ)1+Q/2

, x ∈ RN , (18)
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where W̃ is a centered complex-valued Gaussian random measure in RN

with Lebesgue control measure, has stationary increments and is operator-
self-similar in the sense of (5) with exponent A and β = 1.

Compared with (15), we see that the spectral measure of Xψ is Δ(dξ) =
ψ(ξ)−(2+Q) dξ. As the results of this paper will suggest, the sample functions
of Xψ share many properties with fractional Brownian sheets and many of
them can be described in terms of the real parts of the eigenvalues of A. See
[15] for more details.

2.3 Solutions to Stochastic Partial Differential Equations

Gaussian random fields arise naturally as solutions to stochastic partial dif-
ferential equations. In the following we list as examples the solutions to the
stochastic heat equation and stochastic wave equation, and discuss possible
ways to study their sample path properties using general methods for Gaus-
sian random fields. We refer to [20; 21; 22; 23; 24; 27; 28; 73; 94], and the
articles in this volume for more information.

2.3.1 The Stochastic Heat Equation

Funaki’s model for random string in R is specified by the following stochastic
heat equation:

∂u(t , x)
∂t

=
∂2u(t , x)
∂x2

+ Ẇ , (19)

where Ẇ (x , t) is an R-valued space-time white noise, which is assumed to be
adapted with respect to a filtered probability space (Ω,F ,Ft,P), where F
is complete and the filtration {Ft, t ≥ 0} is right continuous [38; 73].

Recall from [73] that a solution of (19) is defined as an Ft-adapted, con-
tinuous random field {u(t , x), t ∈ R+, x ∈ R} with values in R satisfying the
following properties:

(i) u(0 , ·) ∈ Eexp almost surely and is adapted to F0, where Eexp = ∪λ>0Eλ
and

Eλ =
{
f ∈ C(R) : |f(x)| e−λ|x| → 0 as |x| → ∞

}
;

(ii) For every t > 0, there exists λ > 0 such that u(s , ·) ∈ Eλ for all s ≤ t,
almost surely;

(iii) For every t > 0 and x ∈ R, the following Green’s function representation
holds

u(t , x) =
∫

R

G(t , x−y)u(0 , y) dy+
∫ t

0

∫

R

G(t−r , x−y)W (dy dr), (20)

where G(t , x) = (4πt)−1/2 exp{−x2/(4t)} is the fundamental solution of
the heat equation.
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We call each solution {u(t , x), t ∈ R+, x ∈ R} of (19) a random string
process with values in R, or simply a random string as in [73]. Note that, in
general, a random string may not be Gaussian, a powerful step in the proofs of
[73] is to reduce the problems about a general random string process to those
of the stationary pinned string U0 = {U0(t , x), t ∈ R+, x ∈ R}, obtained by
taking the initial function u(0, ·) in (20) to be defined by

u(0 , x) =
∫ ∞

0

∫

R

(G(r , x− z)−G(r , z)) Ŵ (dz dr), (21)

where Ŵ is a space-time white noise independent of the white noise Ẇ . Con-
sequently, the stationary pinned string is a continuous version of the following
Gaussian field

U0(t , x) =
∫ ∞

0

∫

R

(
G(t+ r , x− z)−G(t+ r , z)

)
Ŵ (dz dr)

+
∫ t

0

∫

R

G(r , x− z)W (dz dr),
(22)

Mueller and Tribe [73] proved that the Gaussian field U0 = {U0(t , x), t ∈
R+, x ∈ R} has stationary increments and satisfies the Conditions (C1) and
(C2) in Section 2.4. Let U1, . . . , Ud be d independent copies of U0, and consider
the Gaussian random field U = {U(t , x), t ∈ R+, x ∈ R} with values in Rd

defined by U(t , x) = (U1(t , x) , . . . , Ud(t , x)). Mueller and Tribe [73] found
necessary and sufficient conditions [in terms of the dimension d] for U to hit
points or to have double points of various types. They also studied the question
of recurrence and transience for {U(t , x), t ∈ R+, x ∈ R}. Continuing the
work of Mueller and Tribe [73], Wu and Xiao [96] studied the fractal properties
of various random sets generated by the random string processes. Further
results on hitting probabilities of non-linear stochastic heat equations can be
found in [22; 23].

On the other hand, Robeva and Pitt [79, Proposition 3] showed that the
Gaussian random field

u0(t , x) =
1
2π

∫

R2

ei(ξ1t+ξ2x) − 1
iξ1 + ξ22

W̃ (dξ1 dξ2), ∀ t ∈ R+, x ∈ R (23)

is another solution to (19) satisfying u0(0 , 0) = 0. Here, W̃ is a centered
complex Gaussian random measure in R2 with Lebesgue control measure.
This Gaussian random field has stationary increments with spectral density

f(ξ) =
1

ξ21 + ξ42
. (24)

This density function is comparable to (17) with H1 = 1/4, H2 = 1/2
and Q = 6. Hence, it follows from Theorem 3.2 that the Gaussian field
{u0(t , x), t ∈ R+, x ∈ R} satisfies the Conditions (C1) and (C3′) in §2.4.
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If we define a (2 , d)-Gaussian random field {u(t , x), t ∈ R+, x ∈ R} by
u(t , x) = (u1(t , x) , . . . , ud(t , x)), where u1, . . . , ud are independent copies of
u0, then many of its sample path properties follow from the results in later
sections of this paper.

If x ∈ RN and N ≥ 2, the stochastic heat equation (19) has no process
solution [the solution is a random Schwartz distribution]. It might be helpful to
remark that our random field notation is different from that in the references
on s.p.d.e.’s: now the parameter (t , x) ∈ RN+1 and Rd is reserved for the
state space of random fields.

The approach of Dalang [20] is to replace Ẇ by a Gaussian noise Ḟ which
is white in time and has spatial covariance induced by a kernel f [not to be
confused with the spectral density above], which is the Fourier transform of a
tempered measure μ in RN . The covariance of F is of the form

E
(
F (dt dx)F (ds dy)

)
= δ(t− s)f(x− y), (25)

where δ(·) is the Dirac delta function. The case f(r) = δ(r) would correspond
to the case of space-time white noise. More precisely, let D(RN+1) be the
topological space of functions φ ∈ C∞

0 (RN+1) with the topology that cor-
responds to the following notion of convergence: φn → φ if and only if the
following two conditions hold:

(i) There exists a compact set K ⊆ RN+1 such that supp(φn − φ) ⊆ K for
all n ≥ 1, and

(ii) limn→∞Daφn = Daφ uniformly on K for every multi-index a.

Let F = {F (φ), φ ∈ D(RN+1)} be an L2(Ω,F ,P)-valued, centered Gaussian
process with covariance of the form (φ, ψ) �→ E

(
F (φ)F (ψ)

)
= J(φ, ψ), where

J(φ, ψ) =
∫

R+

dt

∫

RN

dx

∫

RN

φ(t , x)f(x − y)ψ(t , y) dy. (26)

As shown by Dalang [20], φ �→ F (φ) can be extended to a worthy mar-
tingale measure (t, A) �→Mt(A) in the sense of Walsh [94, pp. 289–290], with
covariance measure

Q([0, t]×A×B) = 〈M(A);M(B)〉t
= t

∫

RN

dx

∫

RN

1A(x)f(x − y)1B(y) dy,
(27)

and dominating measure K ≡ Q such that

F (φ) =
∫

R+

∫

RN

φ(t , x)M(dt dx), ∀φ ∈ D(RN+1). (28)

Moreover, Dalang [20] constructed generalized stochastic integrals with respect
to the martingale measure M .
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Now we consider the stochastic heat equation with vanishing initial
conditions, written formally as

∂u(t , x)
∂t

= Δu(t , x) + Ḟ , ∀(t , x) ∈ (0 , T )×RN (29)

and u(0, ·) ≡ 0. Here T > 0 is any fixed constant and Ḟ is the Gaussian noise
defined above.

Dalang [20] proved that (29) has a process solution if and only if
∫

RN

1
1 + |ξ|2 μ(dξ) <∞. (30)

Under this condition, the mean zero Gaussian field u = {u(t , x); t ∈ [0, T ], x ∈
RN} defined by

u(t , x) =
∫ T

0

∫

RN

G(t− s , x− y)M(ds dy) (31)

is the process solution of the stochastic heat equation (29) with vanishing
initial condition. In the above, G(r , x) = (4πr)−N/2 exp(−|x|2/(4r)) (r >
0, x ∈ RN ) is the fundamental solution of the heat equation.

Many interesting examples can be constructed by choosing μ(dξ) suitably
[8; 20]. As we mentioned in the Introduction, [8; 79] studied the Markov
property of the solution of stochastic heat equation (29). In view of the results
in this paper, it would be interesting to see when the solutions of (29) satisfy
Conditions (C3) or (C3′) in §2.4.

2.3.2 The Stochastic Wave Equation

The stochastic wave equation in one spatial dimension [i.e., N = 1]

∂2u(t , x)
∂2t

− ∂2u(t , x)
∂x2

= Ẇ (t , x), t > 0, x ∈ R, (32)

driven by the white noise was considered by Walsh [94] and many other
authors [21; 24]. In spatial dimension two or higher, however, the stochas-
tic wave equation driven by the white noise has no solution in the space of
real valued measurable processes [94].

For N = 2, Dalang and Frangos [21] considered the stochastic wave
equation driven by the Gaussian noise Ḟ with covariance (25):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u(t , x)
∂t2

= Δu(t , x) + Ḟ ,

u(0 , x) = 0, ∀(t , x) ∈ (0 ,∞)×R2.

∂u

∂t
(0 , x) = 0,

(33)



Anisotropic Gaussian Random Fields 157

They proved that (33) has a process solution u = {u(t , x) : t ≥ 0, x ∈ R2} if
and only if ∫

0+

f(r) r log
(1
r

)
dr <∞, (34)

where f is the kernel in (25). Under the latter condition, u = {u(t , x) : t ≥
0, x ∈ R2} can be represented as

u(t , x) =
∫ t

0

∫

R2
S(t− s , x− y)M(ds dy), (35)

where S(t , x) = (2π)−1(t2 − |x|2)−1/21{|x|<t}. Sample path regularity of the
solution {u(t , x) : t ≥ 0, x ∈ R2} has been investigated by Dalang and Frangos
[21] and Dalang and Sanz-Solé [27].

For the stochastic wave equation with spatial dimension three, we refer to
[24; 28] for information on the existence of a process solution and its sample
path regularities. It seems that, in all the cases considered so far, the questions
on fractal properties, existence and regularity of the local times of the solutions
remain to be investigated.

2.4 General Assumptions

Let X = {X(t), t ∈ RN} be a Gaussian random field in Rd defined on some
probability space (Ω,F ,P) by

X(t) =
(
X1(t) , . . . , Xd(t)

)
, t ∈ RN , (36)

where X1, . . . , Xd are independent copies of X0. We assume that X0 is a mean
zero Gaussian random field with X0(0) = 0 a.s.

Let (H1, . . . , HN ) ∈ (0 , 1)N be a fixed vector. In order to study anisotropic
Gaussian fields, we have found the following metric ρ on RN is often more
convenient than the Euclidean metric:

ρ(s, t) =
N∑

j=1

|sj − tj |Hj , ∀ s, t ∈ RN . (37)

For any r > 0 and t ∈ RN , we denote by Bρ(t, r) = {s ∈ RN : ρ(s , t) ≤ r}
the closed (or open) ball in the metric ρ.

Let I ∈ A be a fixed closed interval, and we will consider various sample
path properties of X(t) when t ∈ I. For simplicity we will mostly assume
I = [ε , 1]N , where ε ∈ (0 , 1) is fixed. Typically, the assumption for I to be
away from the axis is only needed for Gaussian fields similar to fractional
Brownian sheets. Even in these later cases, many results such as those on
Hausdorff and packing dimensions remain to be true for I = [0 , 1]N .

Many sample path properties of X can be determined by the following
function:

σ2(s , t) = E
(
|X0(s)−X0(t)|2

)
, ∀s, t ∈ RN . (38)

In this paper, we will make use of the following general conditions on X0:
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(C1) There exist positive constants c2,1 , . . . , c2,4 such that

c2,1 ≤ σ2(t) := σ2(0 , T ) ≤ c2,2 ∀ t ∈ I (39)

and

c2,3

N∑

j=1

|sj − tj |2Hj ≤ σ2(s , t) ≤ c2,4

N∑

j=1

|sj − tj |2Hj , (40)

for all s, t ∈ I. It may be helpful to note that (40) is in terms of ρ(s , t)2.
(C2) There exists a constant c2,5 > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣
∣X0(s)

) ≥ c2,5 ρ(s , t)
2.

Here and in the sequel, Var(Y |Z) denotes the conditional variance of
Y given Z.

(C3) There exists a constant c2,6 > 0 such that for all integers n ≥ 1 and all
u, t1, . . . , tn ∈ I,

Var
(
X0(u) | X0(t1), . . . , X0(tn)

) ≥ c2,6

N∑

j=1

min
0≤k≤n

∣
∣uj − tkj

∣
∣2Hj

,

where t0j = 0 for every j = 1, . . . , N .
(C3′) There exists a constant c2,7 > 0 such that for all integers n ≥ 1 and all

u, t1, . . . , tn ∈ I,
Var

(
X0(u) | X0(t1), . . . , X0(tn)

) ≥ c2,7 min
0≤k≤n

ρ(u, tk)2,

where t0 = 0.

Remark 2.2. The following are some remarks about the above conditions.

• Conditions (C1)–(C3) can be significantly weakened and/or modified in
various parts of the paper to obtain more general results. The present for-
mulation of these conditions has the advantage that it is more convenient
and produces cleaner results.

• Condition (39) assumes that X is non-degenerate on I. If (40) holds for
s = 0 as well, then (39) is true automatically.

• Under condition (C1), X has a version which has continuous sample
functions on I almost surely. Henceforth we will assume without loss of
generality that the Gaussian random field X has continuous sample paths.

• Conditions (C1) and (C2) are related. It is easy to see that (C1) implies
that Var(X0(t) |X0(s)) ≤ c2,4

∑N
j=1 |sj − tj |2Hj for all s, t ∈ I and, on

the other hand, (C2) implies σ2(s, t) ≥ c2,5

∑N
j=1 |sj − tj |2Hj . Moreover,

if the function σ(0, t) satisfies certain smoothness condition, say, it has
continuous first order derivatives on I, then one can show that (C1) implies
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(C2) by using the following fact [which can be easily verified]: If (U , V ) is
a Gaussian vector, then

Var(U |V ) =

(
ρ2
U,V − (σU − σV )2

)(
(σU + σV )2 − ρ2

U,V

)

4σ2
V

, (41)

where ρ2
U,V = E[(U − V )2], σ2

U = E(U2) and σ2
V = E(V 2).

• Pitt [77] proved that fractional Brownian motion Xα satisfies Condition
(C3′) for all I ∈ A with H = 〈α〉; Khoshnevisan and Xiao [55] proved
that the Brownian sheet satisfies the property (C3) with H = 〈1/2〉 for
all I ∈ A which are away from the boundary of RN

+ . It has been proved
in [7; 97] that, for every ε ∈ (0 , 1), fractional Brownian sheets satisfy
Conditions (C1), (C2) and (C3) for all I ⊆ [ε ,∞)N .

• Let X be a Gaussian random field with stationary increments and spectral
density comparable to (17). Then one can verify that X satisfies Condition
(C1). In the next section, we will prove that X satisfies Condition (C3′)
[thus it also satisfies (C2)]. Therefore, all the results in this paper are
applicable to such Gaussian random fields.

• Note that Condition (C3′) implies (C3). It can be verified that the converse
does not even hold for the Brownian sheet [this is an exercise]. Roughly
speaking, when H = 〈α〉, the behavior of a Gaussian random field X sat-
isfying conditions (C1) and (C3′) is comparable to that of a fractional
Brownian motion of index α; while the behavior of a Gaussian random
field X satisfying conditions (C1) and (C3) [but not (C3′)] is comparable
to that of a fractional Brownian sheet. Hence, in analogy to the terminol-
ogy respectively for fractional Brownian motion and the Brownian sheet,
Condition (C3′) will be called the strong local nondeterminism [in metric
ρ] and Condition (C3) will be called the sectorial local nondeterminism.

• It is well-known that there is a close relation between Gaussian processes
and operators in Hilbert spaces [62]. Recently Linde [64] has extended the
notion of strong local nondeterminism to a linear operator u : H → C(T ),
where H is a real Hilbert space and C(T ) is the Banach space of continu-
ous functions on the compact metric space T , and applied this property to
derive a lower bound for the entropy number of u. As examples, Linde [64]
showed that the integral operators related to fractional Brownian motion
and fractional Brownian sheets are strongly locally nondeterministic in
his sense. Following this line, it would be interesting to further study the
properties of strong local nondeterminism analogous to (C3) and (C3′) for
linear operators related to anisotropic Gaussian random fields such as the
solutions to the stochastic heat and wave equations.
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3 Properties of Strong Local Nondeterminism

One of the main difficulties in studying sample path properties of anisotropic
Gaussian random fields such as fractional Brownian sheets is the complex-
ity of their dependence structure. For example, unlike fractional Brownian
motion which is locally nondeterministic [77] or the Brownian sheet which
has independent increments, a fractional Brownian sheet has neither of these
properties. The same is true for anisotropic Gaussian random fields in general.
The main technical tool which we will apply to study anisotropic Gaussian
random fields is the properties of strong local nondeterminism [SLND] and
sectorial local nondeterminism.

Recall that the concept of local nondeterminism was first introduced by
Berman [14] to unify and extend his methods for studying local times of
real-valued Gaussian processes, and then extended by Pitt [77] to Gaussian
random fields. The notion of strong local nondeterminism was later developed
to investigate the regularity of local times, small ball probabilities and other
sample path properties of Gaussian processes and Gaussian random fields. We
refer to [107; 108] for more information on the history and applications of the
properties of local nondeterminism.

For Gaussian random fields, the aforementioned properties of local non-
determinism can only be satisfied by those with approximate isotropy. It is
well-known that the Brownian sheet does not satisfy the properties of local
nondeterminism in the senses of Berman or Pitt. Because of this, many prob-
lems for fractional Brownian motion and the Brownian sheet have to be
investigated using different methods.

Khoshnevisan and Xiao [55] have recently proved that the Brownian sheet
satisfies the sectorial local nondeterminism [i.e., (C3) with H = 〈1/2〉] and
applied this property to study various analytic and geometric properties of
the Brownian sheet; see also [51].

Wu and Xiao [97] extended the result of [55] and proved that fractional
Brownian sheet BH0 satisfies Condition (C3).

Theorem 3.1. Let BH0 = {BH0 (t), t ∈ RN} be an (N, 1)-fractional Brownian
sheet with index H = (H1, . . . , HN ) ∈ (0 , 1)N . For any fixed number ε ∈
(0 , 1), there exists a positive constant c3,1 , depending on ε,H and N only,
such that for all positive integers n ≥ 1, and all u, t1, . . . , tn ∈ [ε, ∞)N , we
have

Var
(
BH0 (u)

∣
∣ BH0 (t1) , . . . , BH0 (tn)

) ≥ c3,1

N∑

j=1

min
0≤k≤n

∣
∣uj − tkj

∣
∣2Hj

, (42)

where t0j = 0 for j = 1, . . . , N .

Proof. While the argument of [55] relies on the property of independent incre-
ments of the Brownian sheet and its connection to Brownian motion, the proof
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for BH0 is based on a Fourier analytic argument in [46, Chapter 18] and the
harmonizable representation (10) of BH0 . We refer to [97] for details. �

Now we prove a sufficient condition for an anisotropic Gaussian random
field with stationary increments to satisfy Condition (C3′).

Theorem 3.2. Let X = {X(t), t ∈ RN} be a centered Gaussian random field
in R with stationary increments and spectral density f(λ). Assume that there
is a vector H = (H1, . . . , HN ) ∈ (0 , 1)N such that

f(λ) # 1
(∑N

j=1 |λj |Hj
)2+Q ∀λ ∈ RN\{0}, (43)

where Q =
∑N

j=1
1
Hj

. Then there exists a constant c3,2 > 0 such that for all
n ≥ 1, and all u, t1, . . . , tn ∈ RN ,

Var
(
X(u)

∣
∣X(t1) , . . . , X(tn)

) ≥ c3,2 min
0≤k≤n

ρ(u , tk)2, (44)

where t0 = 0.

Remark 3.3. The following are some comments about Theorem 3.2.

(i) When H1 = · · · = HN , (44) is of the same form as the SLND of fractional
Brownian motion [77]. As shown by Xiao [102; 108] and Shieh and Xiao
[83], many sample path properties of such Gaussian random fields are
similar to those of fractional Brownian motion.

(ii) Condition (43) can be significantly weakened. In particular, one can
prove that similar results hold for Gaussian random fields with stationary
increments and discrete spectrum measures; see [109] for details.

(iii) It would be interesting to study under which conditions the solutions to
the stochastic heat and wave equations (29) and (33) are strongly local
nondeterministic.

Proof of Theorem 3.2. Denote r ≡ min
0≤k≤n

ρ(u , tk). Since the conditional vari-

ance in (44) is the square of the L2(P)-distance of X(u) from the subspace
generated by {X(t1) , . . . , X(tn)}, it is sufficient to prove that for all ak ∈ R
(1 ≤ k ≤ n),

E

⎛

⎝

∣
∣
∣
∣
∣
X(u)−

n∑

k=1

akX(tk)

∣
∣
∣
∣
∣

2
⎞

⎠ ≥ c3,2 r
2, (45)

and c3,2 > 0 is a constant which may only depend on H and N .
By the stochastic integral representation (15) of X , the left hand side of

(45) can be written as
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E

⎛

⎝

∣
∣
∣
∣
∣
X(u)−

n∑

k=1

akX(tk)

∣
∣
∣
∣
∣

2
⎞

⎠

=
∫

RN

∣
∣
∣
∣
∣
ei〈u,λ〉 − 1−

n∑

k=1

ak

(
ei〈t

k, λ〉 − 1
)
∣
∣
∣
∣
∣

2

f(λ) dλ.

(46)

Hence, we need to only show that

∫

RN

∣
∣
∣ei〈u,λ〉 −

n∑

k=0

ak e
i〈tk, λ〉

∣
∣
∣
2

f(λ) dλ ≥ c3,2 r
2, (47)

where t0 = 0 and a0 = −1 +
∑n
k=1 ak.

Let δ(·) : RN → [0 , 1] be a function in C∞(RN) such that δ(0) = 1 and
it vanishes outside the open ball Bρ(0 , 1) in the metric ρ. Denote by δ̂ the
Fourier transform of δ. Then δ̂(·) ∈ C∞(RN ) as well and δ̂(λ) decays rapidly
as |λ| → ∞.

Let E be the diagonal matrix with H−1
1 , . . . , H−1

N on its diagonal and
let δr(t) = r−Qδ(r−Et). Then the inverse Fourier transform and a change of
variables yield

δr(t) = (2π)−N
∫

RN

e−i〈t,λ〉 δ̂(rEλ) dλ. (48)

Since min{ρ(u, tk) : 0 ≤ k ≤ n} ≥ r, we have δr(u−tk) = 0 for k = 0, 1, . . . , n.
This and (48) together imply that

J :=
∫

RN

(

ei〈u,λ〉 −
n∑

k=0

ak e
i〈tk,λ〉

)

e−i〈u,λ〉 δ̂(rEλ) dλ

= (2π)N
(

δr(0)−
n∑

k=0

ak δr(u − tk)
)

= (2π)N r−Q.

(49)

On the other hand, by the Cauchy–Schwarz inequality and (46), we have

J2 ≤
∫

RN

∣
∣
∣ei〈u,λ〉 −

n∑

k=0

ak e
i〈tk,λ〉

∣
∣
∣
2

f(λ) dλ ·
∫

RN

1
f(λ)

∣
∣
∣δ̂(rEλ)

∣
∣
∣
2

dλ

≤ E

⎛

⎝

∣
∣
∣
∣
∣
X(u)−

n∑

k=1

akX(tk)

∣
∣
∣
∣
∣

2
⎞

⎠ · r−Q
∫

RN

1
f(r−E λ)

∣
∣
∣δ̂(λ)

∣
∣
∣
2

dλ

≤ cE

⎛

⎝

∣
∣
∣
∣
∣
X(u)−

n∑

k=1

akX(tk)

∣
∣
∣
∣
∣

2
⎞

⎠ · r−2Q−2,

(50)

where c > 0 is a constant which may only depend on H and N .
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We square both sides of (49) and use (50) to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E

⎛

⎝

∣
∣
∣
∣
∣
X(u)−

n∑

k=1

akX(tk)

∣
∣
∣
∣
∣

2
⎞

⎠ . (51)

Hence (47) holds. This finishes the proof of the theorem.

Given a Gaussian vector (Z1, . . . , Zn), we denote the determinant of its
covariance matrix by detCov

(
Z1, . . . , Zn

)
. If detCov

(
Z1, . . . , Zn

)
> 0, then

we have the identity

(2π)n/2

detCov
(
Z1, . . . , Zn

) =
∫

Rn

E exp

(

−i
n∑

k=1

uk Zk

)

du1 · · · dun. (52)

By using the fact that, for every k, the conditional distribution of Zk given
Z1, . . . , Zk−1 is still Gaussian with mean E(Zk |Z1, . . . , Zk−1) and variance
Var(Zk |Z1, . . . , Zk−1), one can evaluate the integral in the right-hand side of
(52) and thus verify the following formula:

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

k=2

Var
(
Zk

∣
∣Z1, . . . , Zk−1

)
. (53)

A little thought reveals that (53) still holds when detCov
(
Z1, . . . , Zn

)
= 0.

Note that the left-hand side of (53) is permutation invariant for Z1, . . . , Zn,
one can represent detCov(Z1, . . . , Zn) in terms of the conditional variances in
n! different ways.

Combined with (42) or (44), the identity (53) can be applied to estimate
the joint distribution of the Gaussian random variables X(t1), . . . , X(tn),
where t1, . . . , tn ∈ RN . This is why the properties of strong local nondeter-
minism are not only essential in this paper, but will also be useful in studying
self-intersection local times, exact Hausdorff measure of the sample paths and
other related problems [68; 69].

The following simple result will be needed in Section 8.

Lemma 3.4. Let X be a Gaussian random field satisfying Condition (C 3′)
[resp., (C3)]. Then for all integers n ≥ 1 and for all distinct points t1, . . . , tn ∈
[ε , 1]N [resp., all points t1, . . . , tn ∈ [ε , 1]N with distinct coordinates, i.e.,
tki �= tlj when (i , k) �= (j , l)], the Gaussian random variables X(t1), . . . , X(tn)
are linearly independent.

Proof. We assume Condition (C3′) holds and let t1, . . . , tn ∈ [ε , 1]N be n
distinct points. Then it follows from (53) that detCov

(
X(t1), . . . , X(tn)

)
>

0. This proves the lemma. Similar conclusion holds when Condition (C3) is
satisfied. �
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4 Modulus of Continuity

It is sufficient to consider real-valued Gaussian random fields. Ayache and
Xiao [7] established a sharp modulus of continuity (i.e., including the loga-
rithmic correction) for fractional Brownian sheets as a consequence of their
wavelet expansion for BH0 . Since the wavelet method depends on the stochas-
tic integral representation (8), it can not be easily applied to Gaussian random
fields in general. In this section, we describe several ways to establish sharp
modulus of continuity for all anisotropic Gaussian random fields satisfying
Condition (C1). The first two methods, i.e., the extended Garsia-Rodemich-
Rumsey continuity lemma and the minorization metric method of Kwapień
and Rosiński [60], can be applied to random fields which are not necessarily
Gaussian. Hence they can be more convenient when applied to solutions of
stochastic partial differential equations. The third method, which is based on
Dudley’s entropy theorem and the Gaussian isoperimetric inequality, provides
a stronger result in the sense that the upper bound is a constant instead of a
random variable [cf. (69)].

Theorem 4.1 is an extension of the well-known Garsia-Rodemich-Rumsey
continuity lemma [40]. It follows from Theorem 2.1 of [39], which is slightly
more general [because of its freedom in choosing the function p] than an
analogous result of [2]. A similar result can also be found in [22].

For our purpose, we have formulated Theorem 4.1 in terms of the metric
ρ defined in (37). Let T ⊆ RN be a fixed closed interval. For any r > 0 and
s ∈ T , recall that Bρ(s, r) =

{
t ∈ T : ρ(t, s) ≤ r} denotes the closed ball (in

T ) with center s and radius r in the metric ρ.

Theorem 4.1. Suppose that Y : T → R is a continuous mapping. If there
exist two strictly increasing functions Ψ and p on R+ with Ψ(0) = p(0) = 0
and lim

u→∞ Ψ(u) =∞ such that

K :=
∫

T

∫

T

Ψ
( |Y (s)− Y (t)|

p(ρ(s , t))

)

ds dt <∞. (54)

Then for all s, t ∈ T , we have

∣
∣Y (s)− Y (t)

∣
∣ ≤ 8 max

z∈{s,t}

∫ ρ(s,t)

0

Ψ−1

(
4K

λN
(
Bρ(z , u)

)2

)

p̃(du), (55)

where p̃(u) = p(4u) for all u ∈ R+.

Applying Theorem 4.1, we prove the following theorem on the modulus of
continuity of an anisotropic Gaussian random field.

Theorem 4.2. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Condition (C1). Then, almost surely, there exists a random variable
A depending on N and (H1, . . . , HN ) only such that A has finite moments of
all orders and for all s, t ∈ I,
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|X(s)−X(t)| ≤ Aρ(s , t)
√

log
(
1 + ρ(s , t)−1

)
. (56)

Proof. In Theorem 4.1, let T = I and we choose the functions Ψ(x) =
exp

(
x2

4c2,3

)− 1 and p(x) = x, where c2,3 > 0 is the constant in (40). It follows

from Condition (C1) that the random variable K in (54) has finite moments
of all orders and

E(K) = E
∫

I

∫

I

Ψ
( |X(s)−X(t)|

ρ(s , t)

)

ds dt

≤
∫

I

∫

I

EΨ
(
c |ξ|) ds dt = c4,1 <∞.

(57)

In the above ξ is a standard normal random variable. Note that Ψ−1(u) =√
4c2,3 log(1 + u) and λN

(
Bρ(z , u)

) # uQ is independent of z. Hence by
Theorem 4.1 we have

|X(s)−X(t)| ≤ c

∫ ρ(s,t)

0

√

log
(
1 +

4K
uQ

)
du

≤ Aρ(s, t)
√

log(1 + ρ(s , t)−1),

(58)

where A is a random variable depending on K and we can choose it so that
A ≤ c max{1, logK}. Thus all moments of A are finite. This finishes the proof
of Theorem 4.2. �

Let X = {X(t), t ∈ T } be a stochastic process defined on a separable met-
ric space (T, d) and let ψ be a Young function [that is, ψ is strictly increasing,
convex and ψ(0) = 0]. Recently, Kwapień and Rosiński [60] investigated the
following problem: When can one find an appropriate metric τ on T such that
the implication

sup
s,t∈T

Eψ
( |X(s)−X(t)|

d(s , t)

)

<∞ ⇒ sup
s,t∈T

|X(s)−X(t)|
τ(s , t)

<∞, a.s.

(59)
holds? Their results can be applied to derive sharp modulus of continuity for
a large class of stochastic processes including Gaussian random fields [but not
stable random fields].

Recall from [60] that a probability measure m on T is called a weakly
majorizing measure relative to ψ and the metric d if for all s, t ∈ T ,

∫ d(s,t)

0

ψ−1

(
1

m(Bd(s , r))

)

dr <∞, (60)

where ψ−1 denotes the inverse function of ψ and Bd(s , r) = {t ∈ T : d(t , s) ≤
r}. For every weakly majorizing measure m, the “minorizing metric” τ =
τψ,d,m on T relative to ψ, d and m is defined as
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τ(s, t) = max

{∫ d(s,t)

0

ψ−1

(
1

m(Bd(s, r))

)

dr,

∫ d(t,s)

0

ψ−1

(
1

m(Bd(t, r))

)

dr

}

.

(61)

The following theorem of [60] gives a sufficient condition for (59) to hold.

Theorem 4.3. Let ψ be a Young function satisfying the following growth
condition:

ψ(x)ψ(y) ≤ ψ(c4,2(x + y)) for all x, y ≥ 0, (62)

where c4,2 > 0 is a constant. Let m be a weakly majorizing measure relative
to ψ and d on T . Then there exists a positive constant c4,3 depending only on
ψ such that for every stochastic process X = {X(t), t ∈ T },

Eψ
(

c4,3 sup
s,t∈T

|X(s)−X(t)|
τ(s , t)

)

≤ 1 + sup
s,t∈T

Eψ
( |X(s)−X(t)|

d(s , t)

)

, (63)

where τ is the minorizing metric relative to ψ, d and m.

Note that, for any α > 0, the function ψ(x) = xα does not satisfy the
growth condition (62), hence Theorem 4.3 is not applicable to stable random
fields.

By applying Theorem 4.3 to the metric space (I, ρ) in our setting, we can
provide more information about the random variable A in Theorem 4.2.

Corollary 4.4. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Condition (C1). Then there exists a constant c4,4 > 0 such that

E exp

(

c4,4 sup
s,t∈I

|X(s)−X(t)|2
ρ2(s , t) log

(
1 + ρ(s , t)−1

)

)

<∞. (64)

Proof. This can be verified by showing that the Lebesgue measure on I is a
weakly majorizing measure relative to the Young function ψ(x) = ex

2 −1 and
the metric ρ; and the corresponding minorizing metric τ(s , t) satisfies

c4,5 ρ(s , t)
√

log
(
1 + ρ(s, t)−1

) ≤ τ(s , t) ≤ c4,6 ρ(s , t)
√

log
(
1 + ρ(s, t)−1

)
,

(65)
for all s, t ∈ I. We leave the details to an interested reader. �

As a third method, we mention that it is also possible to obtain a uniform
modulus of continuity for a Gaussian random field satisfying Condition (C1)
by using the Gaussian isoperimetric inequality [85, Lemma 2.1]. To this end,
we introduce an auxiliary Gaussian random field Y = {Y (s , t) : t ∈ I, s ∈
[0, h]} defined by Y (t, s) = X(t + s) − X(t), where h ∈ (0 , 1)N . Then the
canonical metric d on T := I × [0, h] associated with Y satisfies the following
inequality:
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d
(
(t, s), (t′, s′)

) ≤ c min
{
ρ(0, s) + ρ(0, s′), ρ(s, s′) + ρ(t, t′)

}
. (66)

Denote the d-diameter of T by D. It follows from (66) that D ≤ c4,7

∑N
j=1 h

Hj

j

= c4,7 ρ(0, h), and the d-covering number of T satisfies

Nd(T, ε) ≤ c

(
1
ε

)Q N∏

j=1

(
hj

ε1/Hj

)

≤ c4,8 ε
−2Q.

One can verify that
∫ D

0

√
logNd(T, ε)dε ≤ c4,9 ρ(0, h)

√
log

(
1 + ρ(0, h)−1

)
. (67)

It follows from Lemma 2.1 in [85] that for all u≥ 2c4,9 ρ(0, h)
√

log
(
1 + ρ(0, h)−1

)
,

P
{

sup
(t,s)∈T

∣
∣X(t+ s)−X(t)

∣
∣ ≥ u

}

≤ exp
(

− u2

D2

)

. (68)

By using (68) and a standard Borel-Cantelli argument, we can prove that

lim sup
|h|→0

supt∈I,s∈[0,h] |X(t+ s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,10 , (69)

where c4,10 > 0 is a finite constant depending on c2,4 , I and H only.
We believe that, for Gaussian random fields satisfying (C1), the rate func-

tion in (56) is sharp. This has been partly verified by Meerschaert, Wang and
Xiao [68] who proved that, if a Gaussian field X satisfies Conditions (C1) and
(C3), then

c4,11 ≤ lim sup
|h|→0

supt∈I,s∈[0,h] |X(s)−X(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,12 , (70)

where c4,11 and c4,12 are positive constants depending on c2,3 , c2,4 , I and H
only.

On the other hand, we can also use the above metric entropy method to
prove that, for all t0 ∈ I and u > 0 large enough,

P
{

sup
s∈[0,h]

∣
∣X(t0 + s)−X(t0)

∣
∣ ≥ ρ(0, h)u

}

≤ exp
(− c4,13 u

2
)
, (71)

where c4,13 is a positive constant depending on c2,4 , I and H only.
By using (71) and the Borel-Cantelli lemma, we derive the following local

modulus of continuity for Gaussian random fields satisfying (C1): There exists
a positive constant c4,14 such that for every t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

≤ c4,14 , a.s. (72)
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Under certain mild conditions, it can be shown that (72) is sharp. For
example, Meerschaert, Wang and Xiao [68] proved that, if X is a Gaussian
random field with stationary increments and satisfies (C1), then for every
t0 ∈ I,

lim sup
|h|→0

sups∈[0,h] |X(t0 + s)−X(t0)|
ρ(0, h)

√
log log(1 + ρ(0, h)−1)

= c4,15 , a.s., (73)

where c4,15 is a positive constant.
We should mention that one can also study the uniform and local moduli

of continuity in terms of the increments of X over intervals. Related results
of this type for fractional Brownian sheets have been obtained by Wang [95].

In the special case when X is a direct sum of independent fractional
Brownian motions of indices H1, . . . , HN , that is,

X(t) = X1(t1) + · · ·+XN (tN ), ∀ t = (t1, . . . , tN ) ∈ RN , (74)

where X1, . . . , XN are independent fractional Brownian motions in R of
indices H1, . . . , HN , respectively, Kôno [58] established integral tests for the
uniform and local upper and lower classes. It is natural to ask whether his
results hold for more general anisotropic Gaussian random fields.

5 Small Ball Probabilities

In recent years, there has been much interest in studying the small ball prob-
abilities of Gaussian processes [62; 63]. Small ball properties of fractional
Brownian sheets have been considered by Dunker [32], Mason and Shi [66],
Belinski and Linde [9].

The small ball behavior of operator-scaling Gaussian random fields with
stationary increments and the solution to the stochastic heat equation is
different, as shown by the following general result.

Theorem 5.1. Let X = {X(t), t ∈ RN} be a centered Gaussian field in R
satisfying Conditions (C1) and (C3′) on I = [0 , 1]N . Then there exist positive
constants c5,1 and c5,2 such that for all ε > 0,

exp
(

− c5,1

εQ

)

≤ P
{

max
t∈[0,1]N

|X(t)| ≤ ε

}

≤ exp
(

− c5,2

εQ

)

, (75)

where Q =
∑N
j=1

1
Hj

.

In order to prove the lower bound in (75), we will make use of the following
general result of [84], see also [61, p. 257].
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Lemma 5.2. Let Y = {Y (t), t ∈ T } be a real-valued Gaussian process with
mean zero and let d be the canonical metric on T defined by

d(s , t) =
{
E
(|Y (s)− Y (t)|2)}1/2

, s, t ∈ T, (76)

and denote by Nd(T, ε) the smallest number of d-balls of radius ε > 0 needed
to cover T . Assume that there is a nonnegative function ψ on R+ such that
Nd(T, ε) ≤ ψ(ε) for ε > 0 and such that

c5,3ψ(ε) ≤ ψ
(ε

2

)
≤ c5,4ψ(ε) (77)

for some constants 1 < c5,3 ≤ c5,4 <∞ and all ε > 0. Then there is a constant
c5,5 > 0 such that

P
{

sup
t,s∈T

|Y (t)− Y (s)| ≤ ε

}

≥ exp
(− c5,5ψ(ε)

)
. (78)

Proof of Theorem 5.1. It follows from (C1) that for all ε ∈ (0 , 1),

Nρ(I, ε) ≤ c ε−Q := ψ(ε). (79)

Clearly ψ(ε) satisfies the condition (77). Hence the lower bound in (75) follows
from Lemma 5.2.

The proof of the upper bound in (75) is based on Condition (C3′) and a
conditioning argument in [71]. For any integer n ≥ 2, we divide [0 , 1]N into
nQ rectangles of side-lengths n−1/Hj (j = 1, . . . , N). We denote the lower-left
vertices of these rectangles (in any order) by tn,k (k = 1, 2, . . . , nQ). Then

P
{

max
t∈[0 ,1]N

|X(t)| ≤ ε

}

≤ P
{

max
1≤k≤nQ

|X(tn,k)| ≤ ε

}

. (80)

It follows from Condition (C3′) that for every 1 ≤ k ≤ nQ,

Var
(
X(tn,k)

∣
∣X(tn,i), 1 ≤ i ≤ k − 1

) ≥ c n−1. (81)

This and Anderson’s inequality for Gaussian measures imply the following
upper bound for the conditional probabilities

P
{
|X(tn,k)| ≤ ε

∣
∣
∣ X(tn,j), 1 ≤ j ≤ k − 1

}
≤ Φ (cεn) , (82)

where Φ(x) is the distribution function of a standard normal random variable.
It follows from (80) and (82) that

P
{

max
t∈[0 ,1]N

|X(t)| ≤ ε

}

≤ [Φ(cεn)]n
Q

. (83)

By taking n = (cε)−1, we obtain the upper bound in (75).
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Remark 5.3. If H1 = H2 = · · · = HN , then (75) is of the same form as
the small ball probability estimates for multiparameter fractional Brownian
motion [62; 85].

Among many applications, Theorem 5.1 can be applied to establish Chung-
type laws of the iterated logarithm for anisotropic Gaussian random fields.
Moreover, it would also be interesting to investigate the small ball probabilities
ofX in other norms such as the L2 or Hölder norms; see [62; 63] for information
on Gaussian processes.

6 Hausdorff and Packing Dimensions of the Range
and Graph

In this section, we study the Hausdorff and packing dimensions of the range
X([0 , 1]N) = {X(t) : t ∈ [0 , 1]N} and the graph GrX([0 , 1]N) = {(t,X(t)) :
t ∈ [0 , 1]N} of a Gaussian random fieldX satisfying Condition (C1) on [0 , 1]N .

Hausdorff dimension and Hausdorff measure have been extensively used
in describing thin sets and fractals. For any set E ⊆ Rd and γ > 0, we will
denote the Hausdorff dimension and the γ-dimensional Hausdorff measure of
E by dim

H
E and H γ(E), respectively [36; 46; 67]. More generally, for any

nondecreasing, right continuous function ϕ : [0 , 1] → [0 ,∞) with ϕ(0) = 0,
one can define the Hausdorff measure of E with respect to ϕ and denoted it
by H ϕ(E). We say that a function ϕ is an exact Hausdorff measure function
for E if 0 < H ϕ(E) <∞.

Now we recall briefly the definition of capacity and its connection to Haus-
dorff dimension. A kernel κ is a measurable function κ : Rd ×Rd → [0 ,∞].
For a Borel measure μ on Rd, the energy of μ with respect to the kernel κ (in
short, κ energy of μ) is defined by

Eκ(μ) =
∫∫

κ(x , y)μ(dx)μ(dy). (84)

For any Borel set E ⊆ Rd, the capacity of E with respect to κ, denoted by
Cκ(E), is defined by

Cκ(E) =
[

inf
μ∈P(E)

Eκ(μ)
]−1

, (85)

where P(E) is the family of probability measures carried by E, and, by
convention,∞−1 = 0. Note that Cκ(E) > 0 if and only if there is a probability
measure μ on E with finite κ-energy. We will mostly consider the case when
κ(x, y) = f(|x−y|), where f is a non-negative and non-increasing function on
R+. In particular, if

f(r) =

{
r−α if α > 0,
log

( e

r ∧ 1

)
if α = 0, (86)
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then the corresponding Eκ(μ) and Cκ(E) will be denoted by Eα(μ) and
Cα(E)respectively; and the former will be called the α-energy of μ and the
latter will be called the Bessel–Riesz capacity of E of order α. The capacity
dimension of E is defined by

dimc(E) = sup{α > 0 : Cα(E) > 0}. (87)

The well-known Frostman’s theorem (see [46, p. 133] or [49]) states that
dimH E = dimc(E) for every compact set E in Rd. This result provides a
very useful analytic way for the lower bound calculation of Hausdorff dimen-
sion. That is, for E ⊆ Rd in order to show dimH E ≥ α, one only needs to
find a measure μ on E such that the α-energy of μ is finite. For many deter-
ministic and random sets such as self-similar sets or the range of a stochastic
process, there are natural choices of μ. This argument is usually referred to
as the capacity argument.

Packing dimension and packing measure were introduced by Tricot [92] and
Taylor and Tricot [89] as dual concepts to Hausdorff dimension and Hausdorff
measure. We only recall briefly a definition of packing dimension, which will
be denoted by dimP . For any ε > 0 and any bounded set F ⊆ Rd, let N(F, ε)
be the smallest number of balls of radius ε needed to cover F . Then the upper
box-counting dimension of F is defined as

dim
B
F = lim sup

ε→0

logN(F, ε)
− log ε

. (88)

The packing dimension of F can be defined by

dim
P
F = inf

{

sup
n

dim
B
Fn : F ⊆

∞⋃

n=1

Fn

}

. (89)

It is known that for any bounded set F ⊆ Rd,

dim
H
F ≤ dim

P
F ≤ dim

B
F ≤ d. (90)

Further information on packing dimension and packing measure can be found
in [36; 67]. We mention that various tools from fractal geometry have been
applied to studying sample path properties of stochastic processes since 1950’s.
The survey papers [88] and [106] summarize various fractal properties of
random sets related to sample paths of Markov processes.

Throughout the rest of this paper, we will assume that

0 < H1 ≤ . . . ≤ HN < 1. (91)

Theorem 6.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field satisfy-
ing Condition (C1) on I = [0 , 1]N . Then, with probability 1,
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dim
H
X
(
[0 , 1]N

)
= dim

P
X
(
[0 , 1]N

)
= min

{

d;
N∑

j=1

1
Hj

}

(92)

and

dim
H

GrX
(
[0 , 1]N

)
= dim

P
GrX

(
[0 , 1]N

)

= min
{ k∑

j=1

Hk

Hj
+N − k + (1−Hk)d, 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

}

(93)

=

{∑N
j=1H

−1
j , if

∑N
j=1H

−1
j ≤ d,

∑k
j=1(Hk/Hj) +N − k + (1−Hk)d, if

∑k−1
j=1 H

−1
j ≤ d<

∑k
j=1H

−1
j ,

where
∑0

j=1H
−1
j := 0.

The last equality in (93) is verified by the following lemma, whose proof
is elementary and is omitted. Denote

κ := min

⎧
⎨

⎩

k∑

j=1

Hk

Hj
+N − k + (1−Hk)d , 1 ≤ k ≤ N ;

N∑

j=1

1
Hj

⎫
⎬

⎭
. (94)

Lemma 6.2. Assume (91) holds. We have

(i) If d ≥∑N
j=1H

−1
j , then κ =

∑N
j=1H

−1
j .

(ii) If
∑�−1

j=1H
−1
j ≤ d <

∑�
j=1H

−1
j for some 1 ≤ � ≤ N , then

κ =
�∑

j=1

H�

Hj
+N − �+ (1 −H�)d (95)

and κ ∈ (N − �+ d ,N − �+ d+ 1].

Because of (90) we can divide the proof of Theorem 6.1 into proving the
upper bounds for the upper box dimensions and the lower bounds for the
Hausdorff dimensions separately. The proofs are similar to those in [7] for
fractional Brownian sheets. In the following, we first show that the upper
bounds for dim

B
X([0 , 1]N) and dim

B
GrX([0 , 1]N) follow from Theorem 4.2

and a covering argument.

Proof of the upper bounds in Theorem 6.1. In order to prove the upper bound
in (92), we note that clearly dimBX([0 , 1]N) ≤ d a.s., so it suffices to prove
the following inequality:

dimBX
(
[0 , 1]N

) ≤
N∑

j=1

1
Hj

, a.s. (96)
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For any constants 0 < γj < Hj (1 ≤ j ≤ N), it follows from Theorem 4.2
that there is a random variable A of finite moments of all orders such that for
almost all ω ∈ Ω,

sup
s,t∈[0 ,1]N

|X(s , ω)−X(t , ω)|
∑N

j=1 |sj − tj |γj

≤ A(ω). (97)

We fix an ω such that (97) holds and then suppress it. For any integer
n ≥ 2, we divide [0 , 1]N into mn sub-rectangles {Rn,i} with sides parallel to
the axes and side-lengths n−1/Hj (j = 1, . . . , N), respectively. Then

mn ≤ c6,1 n
∑N

j=1(1/Hj) (98)

and X([0 , 1]N) can be covered by X(Rn,i) (1 ≤ i ≤ mn). By (97), we see that
the diameter of the image X(Rn,i) satisfies

diamX(Rn,i) ≤ c6,2 n
−1+δ, (99)

where δ = max{(Hj−γj)/Hj , 1 ≤ j ≤ N}. Consequently, for εn = c6,2 n
−1+δ,

X([0 , 1]N) can be covered by at most mn balls in Rd of radius εn. That is,

N
(
X
(
[0 , 1]N

)
, εn

) ≤ c6,1 n
∑N

j=1(1/Hj). (100)

This implies

dim
B
X
(
[0 , 1]N

) ≤ 1
1− δ

N∑

j=1

1
Hj

, a.s. (101)

By letting γj ↑ Hj along rational numbers, we have δ ↓ 0 and (96) follows
from (101).

Now we turn to the proof of the upper bound in (93). We will show that
there are several different ways to cover GrX([0 , 1]N) by balls in RN+d of the
same radius, each of which leads to an upper bound for dimBGrX([0 , 1]N).

For each fixed integer n ≥ 2, we have

GrX
(
[0 , 1]N

) ⊆
mn⋃

i=1

Rn,i ×X(Rn,i). (102)

It follows from (99) and (102) that GrX([0 , 1]N) can be covered by mn balls
in RN+d with radius c6,2 n

−1+δ and the same argument as the above yields

dim
B

GrX
(
[0 , 1]N

) ≤
N∑

j=1

1
Hj

, a.s. (103)

We fix an integer 1 ≤ k ≤ N . Observe that each Rn,i × X(Rn,i) can be
covered by �n,k balls (or cubes) in RN+d of radius (or side-length) n−(1/Hk),
where by (97) we have
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�n,k ≤ c n
∑N

j=k(H−1
k

−H−1
j ) × n(H−1

k −1+δ)d, a.s. (104)

Hence GrX([0 , 1]N) can be covered by mn × �n,k balls in RN+d with radius
n−(1/Hk). Consequently,

dimBGrX
(
[0 , 1]N

) ≤
k∑

j=1

Hk

Hj
+N − k + (1−Hk + δHk)d, a.s. (105)

Letting γj ↑ Hj along rational numbers, we derive that for every k = 1, . . . , N ,

dimBGrX
(
[0 , 1]N

) ≤
k∑

j=1

Hk

Hj
+N − k + (1−Hk)d. (106)

Combining (103) and (106) yields the upper bound in (93).

For proving the lower bounds in Theorem 6.1, we will make use of the
following elementary Lemmas 6.3 and 6.4. The former is proved in [110, p.
212] which will be used to derive a lower bound for dim

H
X([0 , 1]N); the

latter is proved in [7] which will be needed for determining a lower bound for
dimH GrX([0 , 1]N). Both lemmas will be useful in the proof of Theorem 7.1
in Section 7.

Lemma 6.3. Let 0 < α < 1 and ε > 0 be given constants. Then for any
constants δ > 2α, M > 0 and p > 0, there exists a positive and finite constant
c6,3 , depending on ε, δ, p and M only, such that for all 0 < A ≤M ,

∫ 1

ε

ds

∫ 1

ε

dt
(
A+ |s− t|2α)p ≤ c6,3

(
A−(p− 1

δ ) + 1
)
. (107)

Lemma 6.4. Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A+ tα)β(B + t)η
. (108)

Then there exist finite constants c6,4 and c6,5 , depending on α, β, η only, such
that the following hold for all real numbers A, B > 0 satisfying A1/α ≤ c6,3 B:

(i) If αβ > 1, then

J ≤ c6,5

1
Aβ−α−1Bη

; (109)

(ii) If αβ = 1, then

J ≤ c6,5

1
Bη

log
(
1 +BA−1/α

)
; (110)
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(iii) If 0 < αβ < 1 and αβ + η �= 1, then

J ≤ c6,5

( 1
Bαβ+η−1

+ 1
)
. (111)

Proof of the lower bounds in Theorem 6.1. First we prove the lower bound
in (92). Note that for any ε ∈ (0 , 1), dim

H
X([0 , 1]N) ≥ dim

H
X([ε , 1]N).

It is sufficient to show that dimH X([ε , 1]N) ≥ γ a.s. for every 0 < γ <

min{d,∑N
j=1

1
Hj
}.

Let μX be the image measure of the Lebesgue measure on [ε , 1]N under
the mapping t �→ X(t). Then the energy of μX of order γ can be written as

∫

Rd

∫

Rd

μX(dx)μX(dy)
|x− y|γ =

∫

[ε ,1]N

∫

[ε,1]N

ds dt

|X(s)−X(t)|γ .

Hence by Frostman’s theorem [46, Chapter 10], it is sufficient to show that
for every 0 < γ < min{d,∑N

j=1
1
Hj
},

Eγ =
∫

[ε,1]N

∫

[ε,1]N
E
(

1
|X(s)−X(t)|γ

)

ds dt <∞. (112)

Since 0 < γ < d, we have 0 < E(|Ξ|−γ) < ∞, where Ξ is a standard d-
dimensional normal vector. Combining this fact with Condition (C1), we have

Eγ ≤ c

∫ 1

ε

ds1

∫ 1

ε

dt1 · · ·
∫ 1

ε

dsN

∫ 1

ε

dtN
(∑N

j=1 |sj − tj |2Hj
)γ/2 . (113)

We choose positive constants δ2, . . . , δN such that δj > 2Hj for each 2 ≤ j ≤ N
and

1
δ2

+ · · ·+ 1
δN

<
γ

2
<

1
2H1

+
1
δ2

+ · · ·+ 1
δN

. (114)

This is possible since γ <
∑N

j=1(1/Hj). By applying Lemma 6.3 to (113) with

A =
N−1∑

j=1

|sj − tj |2Hj and p = γ/2, (115)

we find that Eγ is at most c6,6 plus c6,6 times

∫ 1

ε

ds1 · · ·
∫ 1

ε

dsN−1

∫ 1

ε

dtN−1
(∑N−1

j=1 |sj − tj |2Hj
)(γ/2)−(1/δN )

. (116)

By repeatedly using Lemma 6.3 to the integral in (116) for N − 2 steps, we
deduce that
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Eγ ≤ c6,7 + c6,7

∫ 1

ε

ds1

∫ 1

ε

dt1
(|s1 − t1|2H1

)(γ/2)−((1/δ2)+···+(1/δN ))
. (117)

Since the δj ’s satisfy (114), we have 2H1[γ/2− (δ−1
2 + · · ·+ δ−1

N )] < 1. Thus
the integral in the right hand side of (117) is finite. This proves (112), and
(92) follows.

Now we prove the lower bound in (93). Since dimH GrX([0 , 1]N) ≥
dimH X([0 , 1]N) always holds, we only need to consider the case when

k−1∑

j=1

1
Hj
≤ d <

k∑

j=1

1
Hj

for some 1 ≤ k ≤ N. (118)

Here and in the sequel,
∑0
j=1(1/Hj) = 0.

Let 0 < ε < 1 and 0 < γ <
∑k

j=1(Hk/Hj) + N − k + (1 − Hk)d be
fixed, but arbitrary, constants. By Lemma 6.2, we may and will assume γ ∈
(N − k + d ,N − k + d + 1). In order to prove dim

H
GrX([ε , 1]N) ≥ γ a.s.,

again by Frostman’s theorem, it is sufficient to show

Gγ =
∫

[ε,1]N

∫

[ε,1]N
E

[
1

(|s− t|2 + |X(s)−X(t)|2)γ/2
]

ds dt <∞. (119)

Since γ > d, we note that for a standard normal vector Ξ in Rd and any
number a ∈ R,

E

[
1

(
a2 + |Ξ|2)γ/2

]

≤ c6,8 a
−(γ−d), (120)

see [46, p. 279]. Consequently, we derive that

Gγ ≤ c6,8

∫

[ε,1]N

∫

[ε,1]N

ds dt

σ(s , t)d |s− t|γ−d , (121)

where σ2(s , t) = E
[
(X1(s) − X1(t))2

]
. By Condition (C1) and a change of

variables, we have

Gγ ≤ c6,9

∫ 1

0

dtN · · ·
∫ 1

0

dt1
(∑N

j=1 t
Hj

j

)d (∑N
j=1 tj

)γ−d . (122)

In order to show the integral in (122) is finite, we will integrate [dt1], . . . , [dtk]
iteratively. Furthermore, we will assume k > 1 in (118) [If k = 1, we can use
(111) to obtain (126) directly].

We integrate [dt1] first. Since H1d > 1, we can use (109) of Lemma 6.4
with A =

∑N
j=2 t

Hj

j and B =
∑N

j=2 tj to get

Gγ ≤ c6,10

∫ 1

0

dtN · · ·
∫ 1

0

dt2
(∑N

j=2 t
Hj

j

)d−(1/H1) (∑N
j=2 tj

)γ−d . (123)
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We can repeat this procedure for integrating dt2, . . . , dtk−1. Note that if d =
∑k−1
j=1 (1/Hj), then we need to use (110) to integrate [dtk−1] and obtain

Gγ ≤ c6,11

∫ 1

0

dtN · · ·
∫ 1

0

1
(∑N

j=k tj
)γ−d log

(

1 +
1

∑N
j=k tj

)

dtk <∞. (124)

Note that the last integral is finite since γ − d < N − k + 1. On the other
hand, if d >

∑k−1
j=1 (1/Hj), then (109) gives

Gγ ≤ c6,12

∫ 1

0

dtN · · ·
∫ 1

0

dtk
(∑N

j=k t
Hj

j

)d−∑k−1
j=1 (1/Hj) (∑N

j=k tj
)γ−d . (125)

We integrate [dtk] in (125) and by using (111), we see that Gγ is bounded
above by

c6,13

[∫ 1

0

dtN · · ·
∫ 1

0

dtk+1

(∑N
j=k+1 tj

)γ−d+Hk(d−∑k−1
j=1 (1/Hj))−1

+ 1
]

<∞, (126)

since γ − d+Hk(d−
∑k−1

j=1 (1/Hj))− 1 < N − k. Combining (124) and (126)
yields (119). This completes the proof of Theorem 6.1.

There are several possible ways to strengthen and extend Theorem 6.1. For
example, it would be interesting to determine the exact Hausdorff and pack-
ing measure functions for the range X([0 , 1]N) and graph GrX([0 , 1]N) for
anisotropic Gaussian random fields. When X is the Brownian sheet or a frac-
tional Brownian motion, the problems on exact Hausdorff measure functions
have been considered by Ehm [34], Talagrand [85; 86], Xiao [99; 101; 102].
Here is a summary of the known results:

(i) Let Xα = {Xα(t), t ∈ RN} be an (N, d)-fractional Brownian motion of
index α. If N < αd, then ϕ1(r) = rN/α log log 1/r ia an exact Haus-
dorff measure function for the range and graph of Xα. If N > αd, then
Xα([0 , 1]N) a.s. has positive Lebesgue measure and interior points; and

ϕ2(r) = rN+(1−α)d
(
log log 1/r

)αd
N is an exact Hausdorff measure function

for the graph of Xα. If N = αd, then H ϕ3(Xα([0 , 1]N)) is σ-finite almost
surely, where ϕ3(r) = rd log(1/r) log log log 1/r. In the latter case the same
is also true for the Hausdorff measure of the graph set of Xα(t). However,
the lower bound problems for the Hausdorff measure of the range and
graph remain open.

(ii) Let W = {W (t), t ∈ RN
+} be the Brownian sheet in Rd. If 2N < d, then

ϕ4(r) = r2N
(
log log 1/r

)N ia an exact Hausdorff measure function for the
range and graph of W . If 2N > d, then W ([0 , 1]N) a.s. has interior points
and ϕ5(r) = rN+ d

2 (log log 1/r)
d
2 is an exact Hausdorff measure function for

the graph of W . When 2N = d, the problems for finding exact Hausdorff
measure functions for the range and graph of W are completely open.
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It is interesting to notice the subtle differences in the exact Hausdorff functions
for the range and graph sets of fractional Brownian motion and the Brownian
sheet, respectively. I believe the differences are a reflection of the two different
types of local nondeterminism that they satisfy.

We remark that the methods in the aforementioned references rely respec-
tively on specific properties of the Brownian sheet and fractional Brownian
motion, and it is not clear whether these methods are applicable to Gaus-
sian random fields satisfying (C3) or (C3′). It would be interesting to develop
general methods that are applicable to larger classes of (Gaussian) random
fields.

The problems on exact packing measure functions for X([0 , 1]N) and
GrX([0 , 1]N) are related to the liminf properties of the occupation mea-
sures of X and are more difficult to study. When X is an (N, d)-fractional
Brownian motion of index α and N < αd, Xiao [100; 105] proved that
ϕ6(r) = rN/α(log log 1/r)−N/(2α) is an exact packing measure function for
X([0 , 1]N) and GrX([0 , 1]N). For all the other Gaussian fields including the
Brownian sheet, the corresponding problems remain to be open.

On the other hand, it is a natural question to find dim
H
X(E) when E ⊆

RN is an arbitrary Borel set, say a fractal set. It is not hard to see that, due to
the anisotropy of X , the Hausdorff dimension of X(E) can not be determined
by dim

H
E and the index H alone, as shown by Example 6.6 below. This is in

contrast with the cases of fractional Brownian motion or the Brownian sheet.
We start with the following Proposition 6.5 which determines dimH X(E)

when E belongs to a special class of Borel sets in RN . Since the proof is
almost the same as that of Proposition 3.1 in [97], we omit the proof.

Proposition 6.5. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random
field satisfying Condition (C1) on I = [0 , 1]N with parameters (H1, . . . , HN ).
Assume that Ej (j = 1, . . . , N) are Borel subsets of (0 , 1) satisfying the follow-
ing property: ∃ {j1, . . . , jN−1} ⊆ {1, . . . , N} such that dim

H
Ejk = dim

P
Ejk

for k = 1, . . . , N − 1. Let E = E1 × · · · ×EN ⊆ RN , then we have

dimH X(E) = min
{

d;
N∑

j=1

dimH Ej
Hj

}

, a.s. (127)

The following simple example illustrates that, in general, dimH E alone is
not enough to determine the Hausdorff dimension of X(E).

Example 6.6. Let X = {X(t), t ∈ R2} be a (2, d)-Gaussian field with index
H = (H1, H2) and H1 < H2. Let E = E1 × E2 and F = E2 × E1, where
E1 ⊆ (0 , 1) satisfies dim

H
E1 = dim

P
E1 and E2 ⊆ (0 , 1) is arbitrary. It is

well known that

dim
H
E = dim

H
E1 + dim

H
E2 = dim

H
F. (128)
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See [36, p. 94]. However, by Proposition 6.5 we have

dim
H
X(E) = min

{

d ;
dim

H
E1

H1
+

dim
H
E2

H2

}

, (129)

and

dimH X(F ) = min
{

d ;
dimH E2

H1
+

dimH E1

H2

}

. (130)

We see that dim
H
X(E) �= dim

H
X(F ) in general unless dim

H
E1 = dim

H
E2.

Example 6.6 shows that for determining dimH X(E), we need to have more
information about the geometry of E than its Hausdorff dimension.

In order to solve the problem for finding the Hausdorff dimension of the
image BH(E) of fractional Brownian sheet BH , Wu and Xiao [97] applied a
measure-theoretic approach and introduced a notion of Hausdorff dimension
contour for finite Borel measures and Borel sets.

Recall that the Hausdorff dimension of a Borel measure μ on RN (or lower
Hausdorff dimension as it is sometimes called) is defined by

dimH μ = inf
{
dimH F : μ(F ) > 0 and F ⊆ RN is a Borel set

}
. (131)

Hu and Taylor [44] proved the following characterization of dimH μ: If μ
is a finite Borel measure on RN , then

dimH μ = sup

{

γ ≥ 0 : lim sup
r→0+

μ
(
B(t , r)

)

rγ
= 0 for μ-a.e. t ∈ RN

}

, (132)

where B(t , r) = {s ∈ RN : |s− t| ≤ r}. It can be verified that for every Borel
set E ⊆ RN , we have

dim
H
E = sup

{
dim

H
μ : μ ∈M +

c (E)
}
, (133)

where M +
c (E) denotes the family of finite Borel measures on E with compact

support in E.
From (132), we note that dim

H
μ only describes the local behavior of μ

in an isotropic way and is not quite informative if μ is highly anisotropic. To
overcome this difficulty, Wu and Xiao [97] introduce the following notion of
“dimension” for E ⊆ (0 ,∞)N that is natural for studying X(E).

Definition 6.7. Given a Borel probability measure μ on RN , we define the
set Λμ ⊆ RN

+ by

Λμ =
{

λ = (λ1, . . . , λN ) ∈ RN
+ : lim sup

r→0+

μ (R(t , r))
r〈λ,H−1〉 = 0 for μ-a.e. t ∈ RN

}

,

where R(t , r) =
∏N
j=1[tj − r1/Hj , tj + r1/Hj ] and H−1 = (H−1

1 , . . . , H−1
N ).
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The following lemma is proved in [97], which summarizes some basic
properties of Λμ. Recall that H1 = min{Hj : 1 ≤ j ≤ N}.
Lemma 6.8. Λμ has the following properties:

(i) The set Λμ is bounded:

Λμ ⊆
{

λ = (λ1, . . . , λN ) ∈ RN
+ : 〈λ ,H−1〉 ≤ N

H1

}

. (134)

(ii) For all β ∈ (0 , 1]N and λ ∈ Λμ, the Hadamard product of β and λ,
β ◦ λ = (β1λ1, . . . , βNλN ) ∈ Λμ.

(iii) Λμ is convex; i.e., bλ+ (1− b)η ∈ Λμ for all λ, η ∈ Λμ and 0 < b < 1.
(iv) For every a ∈ (0 ,∞)N , supλ∈Λμ

〈λ , a〉 is achieved on the boundary of
Λμ.

We call the boundary of Λμ, denoted by ∂Λμ, the Hausdorff dimension
contour of μ. See [97] for some examples for determining ∂Λμ.

For any Borel set E ⊆ RN , we define

Λ(E) =
⋃

μ∈M+
c (E)

Λμ. (135)

Similar to the case for measures, we call the set ∪μ∈M+
c (E)∂Λμ the Haus-

dorff dimension contour of E. It follows from Lemma 6.8 that, for every
a ∈ (0 ,∞)N , the supermum supλ∈Λ(E) 〈λ, a〉 is determined by the Hausdorff
dimension contour of E.

The same proof of Theorem 3.10 in [97] yields the following result.

Theorem 6.9. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Condition (C1) on I = [0 , 1]N . Then for every Borel set E ⊆
[0 , 1]N ,

dimH X(E) = min{d, s(H,E)} a.s., (136)

where s(H,E) = supλ∈Λ(E) 〈λ ,H−1〉 = supμ∈M+
c (E) sμ(E).

In the following, we give a more direct approach. Our results yield more
geometric information about the quantity s(H,E) as well.

For an arbitrary vector (H1, . . . , HN ) ∈ (0 , 1)N , we consider the metric
space (RN , ρ), where ρ is defined by (37). For any β > 0 and E ⊆ RN , define
the β-dimensional Hausdorff measure [in the metric ρ] of E by

H β
ρ (E) = lim

δ→0
inf

{ ∞∑

n=1

(2rn)β : E ⊆
∞⋃

n=1

Bρ(rn), rn ≤ δ

}

. (137)

This is a metric outer measure and all Borel sets are H β
ρ -measurable. The

corresponding Hausdorff dimension of E is defined by

dimρ
H
E = inf

{
β > 0 : H β

ρ (E) = 0
}
. (138)
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In some special cases, Hausdorff measure and dimension of this type have
been applied by Kaufman [48], Hawkes [42], Taylor and Watson [90], and Tes-
tard [91] to study the hitting probability of space-time processes of Brownian
motion and other processes.

Note that the metric space (RN , ρ) is complete and separable. Hence the
following generalized Frostman’s lemma is a consequence of Theorem 8.17 in
[67] and a remark on page 117 of the same reference. It can also be proved by
using a 1977 result of Assouad [46, p. 137] on the quasi-helix and the classical
Frostman’s lemma; see [91, p. 4] for a special case.

Lemma 6.10. For any Borel set E ⊆ RN , H β
ρ (E) > 0 if and only if there

exist a Borel probability measure on E and a positive constant c such that
μ(Bρ(x , r)) ≤ c rβ for all x ∈ RN and r > 0.

We can now prove an equivalent result to Theorem 6.9, which extends the
Hausdorff dimension result for the range of X in Theorem 6.1.

Theorem 6.11. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random
field satisfying Condition (C1) on I = [0 , 1]N . Then for every Borel set E ⊆
[0 , 1]N ,

dimH X(E) = min{d ; dimρ
H
E} a.s. (139)

Proof. Since the idea for proving (139) is quite standard, we only give a sketch
of it. For any γ > dimρ

H
E, there is a covering {Bρ(rn), n ≥ 1} of E such

that
∑∞

n=1(2rn)
γ ≤ 1. Note that X(E) ⊆ ∪∞

n=1X
(
Bρ(rn)

)
and the uniform

modulus of continuity of X implies that the diameter of X
(
Bρ(rn)

)
is at most

cr1−δn , where δ ∈ (0 , 1) is a constant. We can show that dimH X(E) ≤ γ/(1−δ)
almost surely. The desired upper bound follows from the arbitrariness of γ
and δ.

To prove the lower bound, let γ ∈ (0 ,min{d ; dimρ
H
E}) be fixed. Then

by using the generalized Frostman’s lemma [Lemma 6.10] one can show that
there exists a probability measure μ on E such that

∫ ∫
1

ρ(s, t)γ
μ(ds)μ(dt) <∞. (140)

This and Condition (C1) immediately imply

E
∫ ∫

μ(ds)μ(dt)
|X(s)−X(t)|γ <∞. (141)

Hence dim
H
X(E) ≥ min{d ; dimρ

H
E} almost surely. �

Combining Theorems 6.9 and 6.11, the invariance properties of dimρ
H
E

and s(H,E), we can derive the following alternative expression for s(H,E). Of
course, this can also be proved directly by using measure-theoretic methods.
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Corollary 6.12. For every Borel set E ⊆ RN , we have dimρ
H
E = s(H,E).

As in the case of fractional Brownian sheets considered by Wu and Xiao
[97], the image X(E) has rich Fourier analytic and topological properties. For
example, by modifying the proofs in [97], one can prove that ifX is a Gaussian
random field with stationary increments and spectral density satisfying (43)
thenX(E) is a Salem set [46; 67] whenever dimρ

H
E ≤ d, andX(E) has interior

points whenever dimρ
H
E > d [It is an exercise to work out the details].

Finally, we consider the special case when H = 〈α〉. Theorem 6.11 implies
that for every Borel set E ⊆ [0 , 1]N ,

dim
H
X(E) = min

{

d ,
1
α

dim
H
E

}

a.s. (142)

The following theorem gives us a uniform version of (142).

Theorem 6.13. Let X = {X(t), t ∈ RN} be as in Theorem 6.11 with H =
〈α〉. If N ≤ αd and X satisfies either Condition (C3) or (C 3′), then with
probability 1

dimH X(E) =
1
α

dimH E for all Borel sets E ⊆ I, (143)

and
dim

P
X(E) =

1
α

dim
P
E for all Borel sets E ⊆ I. (144)

The proof of Theorem 6.13 is reminiscent to those in [51; 70; 97]. The key
step is to apply Condition (C3) or (C3′) to prove the following lemma. For
simplicity, assume I = [0 , 1]N .

Lemma 6.14. Suppose the assumptions of Theorem 6.13 hold, and let δ > 0
and 0 < 2α− δ < β < 2α be given constants. Then with probability 1, for all
integers n large enough, there do not exist more than 2nδd distinct points of
the form tj = 4−n kj, where kj ∈ {1, 2, . . . , 4n}N , such that

∣
∣X(ti)−X(tj)

∣
∣ < 3 · 2−nβ for i �= j. (145)

Proof. A proof of Lemma 6.14 under Condition (C3) is given in [97]; see also
[51]. The proof under (C3′) is similar and is left to the reader as an exercise.

�
Both (142) and Theorem 6.13 imply that sometimes one can determine

the packing dimension of the image X(E) by the packing dimension of E.
However, it is known that the conclusion is false if N > αd [87]. The method in
[103] shows that if X = {X(t), t ∈ RN} is a Gaussian random field satisfying
(C1) with H = 〈α〉 then for every Borel set E ⊆ I,

dim
P
X(E) =

1
α

Dim
αd
E a.s., (146)

where DimsE is the packing dimension profile of E defined by Falconer
and Howroyd [37]. However, the analogous problem for general anisotropic
Gaussian random fields has not been settled.
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7 Hausdorff Dimension of the Level Sets and Hitting
Probabilities

Under Conditions (C1) and (C2), we can study fractal properties of the level
set Lx = {t ∈ I : X(t) = x} (x ∈ Rd) and the hitting probabilities of
Gaussian random field X .

The following result determines the Hausdorff and packing dimensions of
the level set.

Theorem 7.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Conditions (C1) and (C2) on I = [ε , 1]N .

(i) If
∑N
j=1H

−1
j < d, then for every x ∈ Rd, Lx = Ø a.s.

(ii)If
∑N
j=1H

−1
j > d, then for every x ∈ Rd,

dimH Lx = dimPLx

= min
{ k∑

j=1

Hk

Hj
+N − k −Hkd, 1 ≤ k ≤ N

}

=
k∑

j=1

Hk

Hj
+N − k −Hkd if

k−1∑

j=1

1
Hj
≤ d <

k∑

j=1

1
Hj

,

(147)

with positive probability.

Remark 7.2. In the critical case when
∑N

j=1H
−1
j = d, it is believed that Lx =

Ø a.s. In the Brownian sheet case, this was proved by Orey and Pruitt [76,
Theorem 3.4]. It also follows from a potential theoretic result of [50]. If X is
a fractional Brownian motion of index α ∈ (0 , 1), then an argument of [86]
can be modified to show Lx = Ø a.s. However, the problem whether Lx = Ø
a.s. for more general Gaussian random fields remains open. A proof would
require Condition (C3) or (C3′) and some extra conditions on the function
E(|X1(t)−X1(s)|2).
Proof of Theorem 7.1. Similar to the proof of Theorem 5 in [7], we divide
the proof of Theorem 7.1 into two steps. In Step one, we prove (i) and the
upper bound for dim

P
Lx in (147); and in Step two we prove the lower bound

for dimH Lx by constructing a random measure on Lx and using a capacity
argument. Moreover, the last equality in (147) follows from Lemma 6.2.

First we prove

dimBLx ≤ min

⎧
⎨

⎩

k∑

j=1

Hk

Hj
+N − k −Hkd , 1 ≤ k ≤ N

⎫
⎬

⎭
a.s. (148)

and Lx = Ø a.s. whenever the right hand side of (148) is negative. It can be
verified that the latter is equivalent to

∑N
j=1H

−1
j < d.
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For an integer n ≥ 1, divide the interval [ε , 1]N into mn sub-rectangles
Rn,� of side lengths n−1/Hj (j = 1, · · · , N). Then mn ≤ c n

∑N
j=1(1/Hj). Let

0 < δ < 1 be fixed and let τn,� be the lower-left vertex of Rn,�. Then

P
{
x ∈ X(Rn,�)

} ≤ P
{

max
s,t∈Rn,�

|X(s)−X(t)| ≤ n−(1−δ); x ∈ X(Rn,�)
}

+ P
{

max
s,t∈Rn,�

|X(s)−X(t)| > n−(1−δ)
}

(149)

≤ P
{

|X(τn,�)− x| ≤ n−(1−δ)
}

+ e−c n
2δ

≤ c n−(1−δ)d.

In the above we have applied Lemma 2.1 in [85] to get the second inequality.
If
∑N

j=1H
−1
j < d, we choose δ > 0 such that (1 − δ)d > ∑N

j=1H
−1
j . Let Nn

be the number of rectangles Rn,� such that x ∈ X(Rn,�). It follows from (149)
that

E(Nn) ≤ c n
∑N

j=1(1/Hj)n−(1−δ)d → 0 as n→∞. (150)

Since the random variables Nn are integer-valued, (150) and Fatou’s lemma
imply that a.s. Nn = 0 for infinitely many integers n ≥ 1. Therefore Lx = Ø
almost surely.

Now we assume
∑N
j=1H

−1
j > d and define a covering {R′

n,�} of Lx by
R′
n,� = Rn,� if x ∈ X(Rn,�) and R′

n,� = Ø otherwise. We will show that there
are N different ways to cover Lx by using cubes of the same side-lengths and
each of these ways leads to an upper bound for dim

B
Lx.

For every 1 ≤ k ≤ N , R′
n,� can be covered by n

∑N
j=k+1(H−1

k −H−1
j ) cubes of

side-length n−1/Hk . Thus we can cover the level set Lx by a sequence of cubes
of side-length n−1/Hk . Denote the number of such cubes by Mn,k. Using (149)
again, we have

E(Mn,k) ≤ c7,1 n
∑N

j=1 H
−1
j n−(1−δ)d · n

∑N
j=k+1(H−1

k
−H−1

j )

= c7,1 n
(N−k)H−1

k +
∑k

j=1H
−1
j −(1−δ)d.

(151)

Now let η be the constant defined by

η = (N − k)H−1
k +

k∑

j=1

H−1
j − (1 − 2δ)d. (152)

We consider the sequence of integers ni = 2i (i ≥ 1). Then by (151), the
Markov inequality and the Borel-Cantelli lemma we see that almost surely
Mni,k ≤ c nηi for all i large enough. This implies that dimBLx ≤ Hk η almost
surely. Letting δ ↓ 0 along rational numbers, we have

dimBLx ≤
k∑

j=1

Hk

Hj
+N − k −Hkd a.s. (153)
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Optimizing (153) over k = 1, . . . , N yields (148).
In order to prove the lower bound for dim

H
Lx in (147), we assume that

∑k−1
j=1 H

−1
j ≤ d <

∑k
j=1H

−1
j for some 1 ≤ k ≤ N . Let δ > 0 be a small

constant such that

γ :=
k∑

j=1

Hk

Hj
+N − k −Hk(1 + δ)d > N − k. (154)

This is possible by Lemma 6.2. Note that if we can prove that there is a
constant c7,2 > 0, independent of δ, such that

P
{
dimH Lx ≥ γ

} ≥ c7,2 , (155)

then the lower bound in (147) will follow by letting δ ↓ 0.
Our proof of (155) is based on the capacity argument due to Kahane [46].

Similar methods have been used by Adler [1], Testard [91], and Xiao [98] to
certain Gaussian and stable random fields.

Let M +
γ be the space of all non-negative measures on RN with finite

γ-energy [recall (84)]. It is known [1] that M +
γ is a complete metric space

under the metric

‖μ‖2γ =
∫∫

μ(dt)μ(ds)
|t− s|γ . (156)

We define a sequence of random positive measures μn := μn(x , •) on the Borel
sets C of [ε , 1]N by

μn(C) =
∫

C

(2πn)d/2 exp
(

−n |X(t)− x|2
2

)

dt

=
∫

C

∫

Rd

exp
(

−|ξ|
2

2n
+ i〈ξ ,X(t)− x〉

)

dξ dt.

(157)

It follows from [46, p. 206] or [91, p. 17] that if there exist positive and
finite constants c7,3 , c7,4 and c7,5 such that

E
(‖μn‖

) ≥ c7,3 , E
(‖μn‖2

) ≤ c7,4 , (158)

E
(‖μn‖γ

) ≤ c7,5 , (159)

where ‖μn‖ = μn([ε , 1]N ) denotes the total mass of μn, then there is a sub-
sequence of {μn}, say {μnk

}, such that μnk
→ μ in M +

γ and μ is strictly
positive with probability ≥ c2

7,3
/(2c7,4). In this case, it follows from (157) that

μ has its support in Lx almost surely. Moreover, (159) and the monotone
convergence theorem together imply that the γ-energy of μ is finite. Hence
Frostman’s theorem yields (155) with c7,2 = c2

7,3
/(2c7,4).
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It remains to verify (158) and (159). By Fubini’s theorem we have

E
(‖μn‖

)
=
∫

[ε,1]N

∫

Rd

e−i〈ξ ,x〉 exp
(

− |ξ|
2

2n

)

E exp
(
i〈ξ ,X(t)〉

)
dξ dt

=
∫

[ε,1]N

∫

Rd

e−i〈ξ ,x〉 exp
(

− 1
2
(n−1 + σ2(t))|ξ|2

)

dξ dt

=
∫

[ε,1]N

(
2π

n−1 + σ2(t)

)d/2
exp

(

− |x|2
2(n−1 + σ2(t))

)

dt

≥
∫

[ε,1]N

(
2π

1 + σ2(t)

)d/2
exp

(

− |x|2
2σ2(t)

)

dt := c7,3 .

(160)

Denote by I2d the identity matrix of order 2d and Cov(X(s) , X(t)) the
covariance matrix of the random vector (X(s) , X(t)). Let Γ = n−1I2d +
Cov(X(s), X(t)) and (ξ , η)′ be the transpose of the row vector (ξ , η). Then
E(‖μn‖2) is equal to
∫

[ε,1]N

∫

[ε,1]N

∫

Rd

∫

Rd

e−i〈ξ+η, x〉 exp
(

− 1
2
(ξ , η) Γ (ξ , η)′

)

dξ dη ds dt

=
∫

[ε,1]N

∫

[ε,1]N

(2π)d√
detΓ

exp
(

− 1
2
(x , x) Γ−1 (x , x)′

)

ds dt

≤
∫

[ε,1]N

∫

[ε,1]N

(2π)d
[
detCov(X0(s) , X0(t))

]d/2 ds dt.

(161)

It follows from Conditions (C1), (C2) and (53) that for all s, t ∈ [ε , 1]N ,

detCov
(
X0(s) , X0(t)

) ≥ c7,6

N∑

j=1

|sj − tj |2Hj . (162)

We combine (161), (162) and then apply Lemma 6.3, repeatedly, to obtain

E(‖μn‖2) ≤ c7,7

∫

[ε,1]N

∫

[ε,1]N

ds dt
[∑N

j=1 |sj − tj |2Hj
]d/2 := c7,4 <∞. (163)

This is similar to (113)–(117) in the proof of Theorem 6.1. Thus we have
shown (158) holds.

Similar to (161), we find that E(‖μn‖γ) is equal to
∫

[ε,1]N

∫

[ε,1]N

ds dt

|s− t|γ

×
∫

Rd

∫

Rd

e−i〈ξ+η, x〉 exp
(

− 1
2
(ξ , η) Γ (ξ , η)′

)

dξdη

≤ c7,8

∫

[ε,1]N

∫

[ε,1]N

ds dt
(∑N

j=1 |sj − tj |
)γ(∑N

j=1 |sj − tj |2Hj
)d/2

≤ c7,9

∫ 1

0

dtN · · ·
∫ 1

0

dt1
(∑N

j=1 t
Hj

j

)d (∑N
j=1 tj

)γ ,

(164)
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where the two inequalities follow from (162) and a change of variables. Note
that the last integral in (164) is similar to (122) and can be estimated by using
Lemma 6.4 in the same way as in the proof of (123)–(126). Moreover, we can
take δ small enough, say δ < δ0, so that the γ defined in (154) is bounded
away from N − k and N − k + 1. This implies that E

(‖μn‖γ
) ≤ c7,9 which is

independent of δ. This proves (159) and hence Theorem 7.1.

In light of Theorem 7.1, it is of interest to further study the following
question about fractal properties of the level sets.

Question 7.3. Determine the exact Hausdorff and packing measure functions
for the level set Lx.

Questions 7.3 is closely related to the regularity properties such as the laws
of the iterated logarithm of the local times of X . The latter will be considered
in Section 8. When X is an (N, d)-fractional Brownian motion with index α,
Xiao [102] proved that ϕ7(r) = rN−αd(log log 1/r)αd/N is an exact Hausdorff
measure function for Lx. In Theorem 8.11 we give a partial result [i.e., lower
bound] for the exact Hausdorff measure of the level set Lx. It seems that the
method in [102] may be modified to determine an exact Hausdorff measure
function for the level sets of Gaussian random fields satisfying (C3) or (C3′).

So far no exact packing measure results have been proved for the level sets
of fractional Brownian motion or the Brownian sheet. These problems are
related to the liminf behavior of the local times of X which are more difficult
to study.

More general than level sets, one can consider the following questions:

Question 7.4. Given a Borel set F ⊆ Rd, when is P{X(I)∩F �= Ø} positive?

Question 7.5. If P
{
X(I) ∩ F �= Ø

}
> 0, what are the Hausdorff and packing

dimensions of the inverse image X−1(F ) ∩ I?
Question 7.4 is an important question in potential theory of random fields.

Complete answer has only been known for a few types of random fields with
certain Markov structures. We mention that Khoshnevisan and Shi [50] proved
that if X is an (N, d)-Brownian sheet, then for every Borel set F ⊆ Rd,

P
{
X(I) ∩ F �= Ø

}
> 0⇐⇒ Cd−2N (F ) > 0. (165)

Recall that Cα denotes the Bessel-Riesz capacity of order α. Dalang and
Nualart [26] have recently extended the methods of [50] and proved simi-
lar results for the solution of a system of d nonlinear hyperbolic stochastic
partial differential equations with two variables. In this context, we also men-
tion that Khoshnevisan and Xiao [52; 53; 54; 56] and Khoshnevisan, Xiao,
and Zhong [57] have established systematic potential theoretical results for
additive Lévy processes in Rd. The arguments in the aforementioned work
rely on the multiparameter martingale theory [49].
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For random fields with general dependence structures, it is more difficult
to solve Question 7.4 completely. Instead, one can look for sufficient conditions
and necessary conditions on F so that P

{
X(I) ∩ F �= Ø

}
> 0. For example,

when X is an (N, d)-fractional Brownian motion, Testard [91] and Xiao [104]
proved the following results:

Cd−N/α(F ) > 0⇒ P
{
X(I) ∩ F �= Ø

}
> 0⇒H d−N/α(F ) > 0. (166)

Similar results for the solution to a non-linear stochastic heat equation with
multiplicative noise have been proved recently by Dalang, Khoshnevisan and
Nualart [23].

The following theorem is an analogue of (166) for all Gaussian random
fields X satisfying Conditions (C1) and (C2).

Theorem 7.6. Assume that an (N, d)-Gaussian random field X = {X(t), t ∈
RN} satisfies Conditions (C1) and (C2) on I and d > Q. Then for every
Borel set F ⊆ Rd,

c7,10 Cd−Q(F ) ≤ P
{
X(I) ∩ F �= Ø

} ≤ c7,11 Hd−Q(F ), (167)

where Q =
∑N

j=1H
−1
j , c7,10 and c7,11 are positive constants depending on I, F

and H only.

Remark 7.7. When d < Q, Theorem 7.1 tells us that X hits points, hence
(167) holds automatically. When d = Q, our proof below shows that the lower
bound in (167) remains to be true provided C0 means the logarithmic capacity
[see (86)]. This can be seen by estimating the integral in (173) when d = Q.
However, if C0(F ) > 0, then the upper bound in (167) becomes ∞, thus not
informative.

Proof of Theorem 7.6. The lower bound in (167) can be proved by using a
second moment argument. In fact one can follow the method in [26; 50; 91]
to prove the lower bound in (167).

In the following, we provide an alternative proof for the lower bound which
is similar to that of Theorem 7.1. For any Borel probability measure κ on F
with Ed−Q(κ) <∞ and for all integers n ≥ 1, we consider a family of random
measures νn on I defined by
∫

I

f(t) νn(dt) =
∫

I

∫

Rd

(2πn)d/2 exp
(− n |X(t)− x|2) f(t)κ(dx) dt

=
∫

I

∫

Rd

∫

Rd

exp
(

−|ξ|
2

2n
+ i〈ξ ,X(t)− x〉

)

f(t) dξ κ(dx) dt,
(168)

where f is an arbitrary measurable function on I. We claim that the following
two inequalities hold:

E
(‖νn‖

) ≥ c7,12 , E
(‖νn‖2

) ≤ c7,13Ed−Q(κ), (169)
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where the constants c7,12 and c7,13 are independent of κ and n.
Since the proof of the first inequality in (169) is very similar to (160) in

the proof of Theorem 7.1, we only prove the second inequality in (169).
Denote by I2d the identity matrix of order 2d and Cov(X(s) , X(t)) the

covariance matrix of the random vector (X(s) , X(t)). Let Γn = n−1I2d +
Cov(X(s) , X(t)) and (ξ , η)′ be the transpose of the row vector (ξ , η). Since
Γn is positive definite, we have

E
(‖νn‖2

)
=
∫

I

∫

I

∫

R2d

∫

R2d

e−i(〈ξ ,x〉+〈η, y〉)

× exp
(
− 1

2
(ξ , η) Γn (ξ , η)′

)
dξdη κ(dx)κ(dy) ds dt

=
∫

I

∫

I

∫

R2d

(2π)d√
detΓn

exp
(

− 1
2
(x , y) Γ−1

n (x , y)′
)

κ(dx)κ(dy) ds dt.

(170)

By modifying an argument from [91], we can prove that, under conditions
(C1) and (C2), we have

(2π)d√
detΓn

exp
(

− 1
2
(x , y) Γ−1

n (x , y)′
)

≤ c7,14

max{ρd(s , t), |x− y|d} (171)

for all s, t ∈ I and x, y ∈ Rd; see [16] for details. Hence, it follows from (170)
and (171) that

E
(‖νn‖2

) ≤ c7,14

∫

I

∫

I

∫

R2d

1
max{ρd(s , t), |x− y|d} κ(dx)κ(dy) ds dt. (172)

We can verify that for all x, y ∈ Rd,
∫

I

∫

I

ds dt

max{ρd(s , t) , |x− y|d} ≤ c7,15 |x− y|−(d−Q), (173)

where c7,15 > 0 is a constant. This can be done by breaking the integral in
(173) over the regions {(s , t) ∈ I × I : ρ(s , t) ≤ |x − y|} and {(s , t) ∈ I × I :
ρ(s , t) > |x − y|}, and estimate them separately. It is clear that (170), (173)
and Fubini’s theorem imply the second inequality in (169).

By using (169) and the Paley-Zygmund inequality [46], one can verify
that there is a subsequence of {νn, n ≥ 1} that converges weakly to a finite
measure ν which is positive with positive probability [depending on c7,12 and
c7,13 only] and ν also satisfies (169). Since ν is supported on X−1(F ) ∩ I, we
use the Paley-Zygmund inequality again to derive

P
{
X(I) ∩ F �= Ø

}
≥ P

{‖ν‖ > 0
} ≥

[
E(‖ν‖)]2
E
[‖ν‖2] ≥

c7,16

Ed−Q(κ)
, (174)

where c7,16 = c2
7,12

/c7,13 . This implies the lower bound in (167).
Our proof of the upper bound in (167) relies on the following lemma on

the hitting probability of X , whose proof will be deferred to the end of this
section.
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Lemma 7.8. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field
satisfying Conditions (C1) and (C2) on I. Then there exists a constant c7,17 >
0 such that for all x ∈ I and y ∈ Rd,

P
{

inf
t∈Bρ(x,r)

∣
∣X(t)− y∣∣ ≤ r

}

≤ c7,17 r
d. (175)

Now we proceed to prove the upper bound in (167) by using a simple
covering argument. Choose and fix an arbitrary constant γ > Hd−Q(F ). By
the definition of Hd−Q(F ), there is a sequence of balls {B(yj, rj), j ≥ 1} in
Rd such that

F ⊆
∞⋃

j=1

B(yj , rj) and
∞∑

j=1

(2rj)d−Q ≤ γ. (176)

Clearly we have

{
F ∩X(I) �= Ø

} ⊆
∞⋃

j=1

{
B(yj , rj) ∩X(I) �= Ø

}
. (177)

For every j ≥ 1, we divide the interval I into c r−Qj intervals of side-lengths

r
−1/H�

j (� = 1, . . . , N). Hence I can be covered by at most c r−Qj many balls
of radius rj in the metric ρ. It follows from Lemma 7.8 that

P
{
B(yj , rj) ∩X(I) �= Ø

} ≤ c rd−Qj . (178)

Combining (177) and (178) we derive that P
{
F ∩ X(I) �= Ø

} ≤ cγ. Since
γ > Hd−Q(F ) is arbitrary, the upper bound in (167) follows.

The following are some further remarks and open questions related to
Theorem 7.6.

Remark 7.9. For any Borel set F ⊆ Rd, Theorem 7.6 provides a sufficient con-
dition and a necessary condition for P{X−1(F )∩ I �= Ø} > 0. It is interesting
to determine the Hausdorff and packing dimensions of X−1(F ) when it is not
empty. Recently, Biermé, Lacaux and Xiao (2007) determined the Hausdorff
dimension of X−1(F ). Namely, they proved that if dimH F > d−∑N

�=1(1/H�),
then
∥
∥dimH

(
X−1(F ) ∩ I)∥∥

L∞(P)

= min
1≤k≤N

{ k∑

j=1

Hk

Hj
+N − k −Hk

(
d− dimH F

)
}

,
(179)

where, for all nonnegative random variables Y ,

‖Y ‖L∞(P) = sup
{
θ : Y ≥ θ on an event E with P(E) > 0

}
. (180)

However, except for the special case of F = {x}, there have been no results
on the packing dimension of X−1(F ) for a given Borel set F ⊆ Rd.
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Remark 7.10. Note that the event on which (179) holds depends on F .
Motivated by the results in [70], we may ask the following natural question:
When

∑N
�=1H

−1
� > d, is it possible to have a single event Ω1 ⊆ Ω of positive

probability such that on Ω1 (179) holds for all Borel sets F ⊆ Rd?
Here are some partial answers. If in addition to Conditions (C1) and (C2),

we also assume Condition (C3) or (C3′) holds and H1 = H2 = · · · = HN ,
then one can modify the proofs in [70] to show that the answer to the above
question is affirmative. In general, it can be proved that, when

∑N
�=1H

−1
� > d,

the upper bound in (179) holds almost surely for all Borel sets F ⊆ Rd. But
it is likely that the lower bound may not hold uniformly due to the anisotropy
of X .

Remark 7.11. The method for proving Theorem 7.6 may be extended to pro-
vide necessary conditions and sufficient conditions for P{X(E)∩F �= Ø} > 0,
where E ⊆ (0 ,∞)N and F ⊆ Rd are arbitrary Borel sets. Some difficul-
ties arise when both E and F are fractal sets. Testard [91] obtained some
partial results for fractional Brownian motion and, for every fixed Borel set
E ⊆ (0 ,∞)N (or F ⊆ Rd), Xiao [104] characterized the “smallest” set F (or
E) such that P{X(E)∩F �= Ø} > 0. No such results on anisotropic Gaussian
random fields have been proved.

Finally, let us prove Lemma 7.8. There are two ways to prove (175). One
is to use the argument in the proof of Proposition 4.4 of [22] and the other
is reminiscent to the proof of Lemma 3.1 in [100]. While the former method
is slightly simpler, the latter can be adapted to establish hitting probability
estimates of the form (194) below for anisotropic Gaussian random fields.
Hence we will use an argument similar to that in [100].

Proof of Lemma 7.8. For every integer n ≥ 1, let εn = r exp(−2n+1) and
denote by Nn = Nρ(Bρ(x , r) , εn) the minimum number of ρ-balls of radius
εn that are needed to cover Bρ(x , r). Note that Nn ≤ c exp(Q2n+1) [recall
that Q =

∑N
�=1(1/H�)].

Let {t(n)
i , 1 ≤ i ≤ Nn} be a set of the centers of open balls with radius εn

that cover Bρ(x, r). Denote

rn = βεn 2(n+1)/2, (181)

where β ≥ c4,10 is a constant to be determined later. Here c4,10 is the constant
in (69).

For all integers n ≥ 1, 1 ≤ j ≤ n and 1 ≤ i ≤ Nn, we consider the following
events

A
(j)
i =

{
∣
∣X(t(j)i )− y∣∣ ≤ r +

∞∑

k=j

rk

}

,

A(n) =
n⋃

j=1

Nj⋃

i=1

A
(j)
i = A(n−1) ∪

Nn⋃

i=1

A
(n)
i .

(182)
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Then by a chaining argument, the triangle inequality and (69), we have

P
{

inf
t∈Bρ(x,r)

∣
∣X(t)− y∣∣ ≤ r

}

≤ lim
n→∞P

(
A(n)

)
. (183)

By (182), we have

P
(
A(n)

) ≤ P
(
A(n−1)

)
+ P

(
A(n)\A(n−1)

)
(184)

and

P
(
A(n)\A(n−1)

) ≤
Nn∑

i=1

P
(
A

(n)
i \A(n−1)

i′
)
, (185)

where i′ is chosen so that ρ(t(n)
i , t

(n−1)
i′ ) < εn−1. Note that

P
(
A

(n)
i \A(n−1)

i′
)

= P
{
∣
∣X(t(n)

i )− y∣∣ < r +
∞∑

k=n

rk ,
∣
∣X(t(n−1)

i′ )− y∣∣ > r +
∞∑

k=n−1

rk

}

≤ P
{
∣
∣X(t(n)

i )− y∣∣ < r +
∞∑

k=n

rk ,
∣
∣X(t(n)

i )−X(t(n−1)
i′ )

∣
∣ ≥ rn−1

}

.

(186)

By the elementary properties of Gaussian random variables, we can write

X(t(n)
i )−X(t(n−1)

i′ )

σ(t(n)
i , t

(n−1)
i′ )

= η
X(t(n)

i )

σ(t(n)
i )

+
√

1− η2 Ξ , (187)

where

η =
E
[(
X1(t

(n)
i )−X1(t

(n−1)
i′ )

)
X1(t

(n)
i )

]

σ(t(n)
i , t

(n−1)
i′ )σ(t(n)

i )
(188)

and where Ξ is a centered Gaussian random vector in Rd with the identity
matrix as its covariance matrix and, moreover, Ξ is independent of X(t(n)

i ).
We observe that

r +
∞∑

k=n

rk ≤ r +
∞∑

k=0

rk ≤
(

1 + c

∫ ∞

0

exp(−αx2) dx
)

r := c7,18 r. (189)

It follows from Condition (C1) that (186) is bounded by

P

{
∣
∣X(t(n)

i )− y∣∣ ≤ c7,18 r , |Ξ| ≥
1

√
1− η2

[
rn−1

ρ(t(n)
i , t

(n−1)
i′ )

− η X(t(n)
i )

σ(t(n)
i )

]}

≤ P
{

|X(t(n)
i )− y| ≤ c7,18r , |Ξ| ≥

βd

2
2n/2

}

(190)

+ P

{

|X(t(n)
i )− y| ≤ c7,18r , η

|X(t(n)
i )|

σ(t(n)
i )

≥ βd

2
2n/2

}

:= I1 + I2.
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By the independence of Ξ and X(t(n)
i ), we have

I1 = P
{∣
∣X(t(n)

i )− y∣∣ ≤ c7,18 r
}
· P

{
|Ξ| ≥ βd2−1+(n/2)

}

≤ c7,19 r
d exp

(

− (βd)2

16
2n
)

.
(191)

On the other hand,

I2 ≤
∫

{|u−y|≤c7,18 r, |u|≥βd2−1+(n/2)σ(t
(n)
i )}

(
1
2π

)d/2 1

σd(t(n)
i )

exp
(

− |u|2
2σ2(t(n)

i )

)

du

≤ c7,20

∫

{|u−y|≤c7,18r}

1

σd(t(n)
i )

exp
(

− |u|2
4σ2(t(n)

i )

)

du · exp
(

− (βd)2

16
2n
)

≤ c7,21 r
d exp

(

− (βd)2

16
2n
)

. (192)

Combining (184) through (192) and choosing β ≥ c4,10 satisfying (βd)2 > 32,
we obtain

P
(
A(n)

) ≤ P
(
A(n−1)

)
+ c7,22 Nn r

d exp
(

− (βd)2

16
2n
)

≤ c7,23

[ ∞∑

k=0

Nk exp
(

− (βd)2

16
2k
)]

rd

≤ c7,24 r
d.

(193)

Therefore, (175) follows from (183) and (193).

When X is an (N, d)-fractional Brownian motion of index α, Xiao [104]
proved the following hitting probability result: If N < αd, then there exist
positive and finite constants c7,25 and c7,26 , depending only on N , d and α,
such that for any r > 0 small enough and any y ∈ Rd with |y| ≥ r, we have

c7,25

(
r

|y|
)d−Nα ≤ P

{∃ t ∈ RN such that |X(t)− y| < r
}

≤ c7,26

(
r

|y|
)d−Nα

.

(194)

It would be interesting and useful to establish analogous results for all Gaus-
sian random fields satisfying Conditions (C1) and (C2). Such an estimate will
be useful in studying the escape rate and exact packing measure of the sam-
ple paths of Gaussian random fields; see [105] for the special case of fractional
Brownian motion.
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8 Local Times and Their Joint Continuity

We start by briefly recalling some aspects of the theory of local times. For
excellent surveys on local times of random and deterministic vector fields, we
refer to [31; 41].

Let X(t) be a Borel vector field on RN with values in Rd. For any Borel
set T ⊆ RN , the occupation measure of X on T is defined as the following
Borel measure on Rd:

μ
T
(•) = λN{t ∈ T : X(t) ∈ •}. (195)

If μ
T

is absolutely continuous with respect to the Lebesgue measure λd,
we say that X(t) has a local time on T , and define its local time, L(• , T ), as
the Radon–Nikodým derivative of μT with respect to λd, i.e.,

L(x , T ) =
dμ

T

dλd
(x) ∀x ∈ Rd. (196)

In the above, x is the so-called space variable, and T is the time variable.
Sometimes, we write L(x , t) in place of L(x , [0 , t]). It is clear that if X has
local times on T , then for every Borel set S ⊆ T , L(x , S) also exists.

By standard martingale and monotone class arguments, one can deduce
that the local times of X have a version, still denoted by L(x , T ), such that
it is a kernel in the following sense:

(i) For each fixed S ⊆ T , the function x �→ L(x , S) is Borel measurable in
x ∈ Rd.

(ii) For every x ∈ Rd, L(x , ·) is Borel measure on B(T ), the family of Borel
subsets of T .

Moreover,L(x , T ) satisfies the following occupation density formula: For every
Borel set T ⊆ RN and for every measurable function f : Rd → R+,

∫

T

f(X(t)) dt =
∫

Rd

f(x)L(x , T ) dx. (197)

See [41, Theorems 6.3 and 6.4].
Suppose we fix a rectangle T =

∏N
i=1[ai, ai+hi] in A . Then, whenever we

can choose a version of the local time, still denoted by L(x,
∏N
i=1[ai, ai + ti]),

such that it is a continuous function of (x, t1, · · · , tN ) ∈ Rd×∏N
i=1[0 , hi], X is

said to have a jointly continuous local time on T . When a local time is jointly
continuous, L(x , •) can be extended to be a finite Borel measure supported
on the level set

X−1
T (x) = {t ∈ T : X(t) = x}; (198)

see [1] for details. In other words, local times often act as a natural measure
on the level sets of X for applying the capacity argument. As such, they are
useful in studying the various fractal properties of level sets and inverse images
of the vector field X [13; 34; 70; 81; 102].

First we consider the existence of the local times of Gaussian random fields.
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Theorem 8.1. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined
by (36) and suppose Condition (C1) is satisfied on I. Then X has a local
time L(x , I) ∈ L2(P× λd) if and only if d <

∑N
j=1(1/Hj). In the latter case,

L(x , I) admits the following L2 representation:

L(x , I) = (2π)−d
∫

Rd

e−i〈y, x〉
∫

I

ei〈y,X(s)〉ds dy, ∀x ∈ Rd. (199)

Proof. The Fourier transform of the occupation measure μI is

μ̂I(ξ) =
∫

I

ei〈ξ ,X(t)〉 dt. (200)

By applying Fubini’s theorem twice, we have

E
∫

Rd

∣
∣μ̂(ξ)

∣
∣2 dξ =

∫

I

ds

∫

I

dt

∫

Rd

E exp
(
i〈ξ ,X(s)−X(t)〉

)
dξ. (201)

We denote the right hand side of (201) by J (I). It follows from the Plancherel
theorem that X has a local time L(·, I) ∈ L2(P×λd) if and only if J (I) <∞;
see [41, Theorem 21.9] or [46]. Hence it is sufficient to prove

J (I) <∞ if and only if d <

N∑

j=1

1
Hj

. (202)

For this purpose, we use the independence of the coordinate processes of
X and Condition (C1) to deduce

J (I) =
∫

I

∫

I

ds dt
[
E(X0(s)−X0(t))2

]d/2

#
∫

I

∫

I

ds dt
(∑N

j=1 |sj − tj |2Hj
)d/2 .

(203)

By using Lemma 8.6 below, it is elementary to verify that the last integral in
(203) is finite if and only if d <

∑N
j=1(1/Hj). This proves (202), and hence

Theorem 8.1. �
The following result on the joint continuity of the local times is similar to

those proved by Xiao and Zhang [110], Ayache, Wu and Xiao [6] for fractional
Brownian sheets.

Theorem 8.2. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field defined
by (36) and we assume Conditions (C1) and (C 3′) are satisfied on I. If d <
∑N
j=1(1/Hj), then X has a jointly continuous local time on I.
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Remark 8.3. The conclusion of Theorem 8.2 can also be proved to hold for
all Gaussian random fields satisfying Conditions (C1) and (C3). The proof
follows a similar line, but some modifications are needed in order to prove
analogous estimates in Lemmas 8.4 and 8.8. This is left to the reader as an
exercise.

To prove Theorem 8.2 we will, similar to [6; 34; 102], first use the Fourier
analytic arguments to derive estimates on the moments of the local times
[see Lemmas 8.4 and 8.8 below] and then apply a multiparameter version
of Kolmogorov continuity theorem [49]. It will be clear that Condition (C3′)
plays an essential role in the proofs of Lemmas 8.4 and 8.8.

Our starting points is the following identities about the moments of the
local time and its increments. It follows from [41, (25.5) and (25.7)] or [77]
that for all x, y ∈ Rd, T ∈ A and all integers n ≥ 1,

E [L(x , T )n] = (2π)−nd
∫

Tn

∫

Rnd

e−i
∑n

j=1 〈uj , x〉

× E
[
ei
∑n

j=1 〈uj , X(tj)〉
]
du dt

(204)

and for all even integers n ≥ 2,

E [(L(x , T )− L(y , T ))n] (205)

= (2π)−nd
∫

Tn

∫

Rnd

n∏

j=1

[
e−i〈u

j ,x〉 − e−i〈uj , y〉
]
E
[
ei
∑n

j=1 〈uj , X(tj)〉
]
du dt,

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ T ⊆ (0 ,∞)N .
In the coordinate notation we then write uj = (uj1, . . . , u

j
d).

Lemma 8.4. Suppose the assumptions of Theorem 8.2 hold. Let τ ∈ {1, . . . ,
N} be the integer such that

τ−1∑

�=1

1
H�
≤ d <

τ∑

�=1

1
H�

, (206)

then there exists a positive and finite constant c8,1 , depending on N, d, H
and I only, such that for all hypercubes T = [a , a+ 〈r〉] ⊆ I with side-length
r ∈ (0 , 1), all x ∈ Rd and all integers n ≥ 1,

E
[
L(x , T )n

] ≤ cn
8,1
n! rn βτ , (207)

where βτ =
∑τ

�=1(Hτ/H�) +N − τ −Hτd.

Remark 8.5. (i) It is important to note that, when (206) holds, βτ =∑τ
�=1(Hτ/H�) +N − τ −Hτd is the Hausdorff dimension of the level set

Lx; see Theorem 7.1. Combining (207) with the upper density theorem of
[80], one can obtain some information on the exact Hausdorff measure of
Lx [see Corollary 8.11 below].
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(ii) We point out that the upper bound in (207) is not sharp, and one may be
able to prove the following inequality:

E
[
L(x , T )n

] ≤ cn
8,2

(n!)N−βτ rn βτ . (208)

If this is indeed true, then one can conjecture that the function ϕ8(r) =
rβτ

(
log log 1/r

)N−βτ is an exact Hausdorff measure function for Lx.

For proving Lemma 8.4, we will make use of the following elementary
lemma [which is stronger than Lemma 6.3].

Lemma 8.6. Let α, β and A be positive constants. Then

∫ 1

0

1
(
A+ tα

)β dt #
⎧
⎨

⎩

A−(β− 1
α ) if αβ > 1,

log
(
1 +A−1/α

)
if αβ = 1,

1 if αβ < 1.
(209)

Proof of Lemma 8.4. Since X1, · · · , Xd are independent copies of X0, it follows
from (204) that for all integers n ≥ 1,

E
[
L(x , T )n

] ≤ (2π)−nd
∫

Tn

d∏

k=1

{∫

Rn

e−
1
2 Var(∑n

j=1 u
k
j X0(tj)) dUk

}

dt, (210)

where Uk = (u1
k, · · · , unk ) ∈ Rn. It is clear that in order to bound the inte-

gral in dt it is sufficient to consider only the integral over T n�= = {t ∈ T n :
t1, . . . , tn are distinct} [the set of t ∈ RNn having ti = tj for some i �= j has
(Nn)-dimensional Lebesgue measure 0]. It follows from Lemma 3.4 that for
every t ∈ T n�=, the covariance matrix of X0(t1), · · · , X0(tn) is invertible. We
denote the inverse matrix by R(t1, · · · , tn), and let (Z1, · · · , Zn) be the Gaus-
sian vector with mean zero and the covariance matrix R(t1, · · · , tn). Then the
density function of (Z1, · · · , Zn) is given by

[
detCov

(
X0(t1), . . . , X0(tn)

)]1/2

(2π)n/2
e−

1
2UCov(X0(t

1),...,X0(t
n))U ′

, (211)

where U = (u1, · · · , un) ∈ Rn and U ′ is the transpose of U . Hence for each
1 ≤ k ≤ d,
∫

Rn

e−
1
2Var(∑n

j=1 u
j
k X0(tj)) dUk =

(2π)n/2
[
detCov

(
X0(t1), . . . , X0(tn)

)]1/2 . (212)

Combining (210) and (212), we derive

E
[
L(x , T )n

] ≤ (2π)−nd/2
∫

Tn

1
[
detCov(X0(t1), . . . , X0(tn))

]d/2 dt. (213)
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It follows from Condition (C3′) and (53) that

detCov
(
X0(t1), . . . , X0(tn)

)
=

n∏

j=1

Var
(
X0(tj)

∣
∣X0(ti), j < i ≤ n

)

≥ cn
8,3

n∏

j=1

min
j<i≤n+1

ρ(tj , ti)2,

(214)

where tn+1 = 0. This and (213) together imply that

E
[
L(x , T )n

] ≤ cn
8,4

∫

Tn

n∏

j=1

1
[

min
j<i≤n+1

ρ(tj , ti)
]d dt. (215)

We will estimate the integral in (215) by integrating in the order dt1,
dt2, . . . , dtn. Considering first the integral in dt1, we have

∫

T

1
[

min
1<i≤n+1

ρ(tj , ti)
]d dt

1 ≤
n+1∑

i=2

∫

T

1
[
ρ(tj , ti)

]d dt
1

≤ c n

∫

[0,r]N

ds1 · · · dsN
[∑N

k=1 s
Hk

k

]d ,

(216)

where the last inequality follows from a change of variables. Integrating the
last integral in the order ds1, · · · , dsN and applying (209) in Lemma 6.3,
we can show that, because of (206), the last integrand in (216) only affects
the integral in ds1, . . . , dsτ which contributes [up to a constant] the factor
r
∑ τ

�=1(Hτ/H�)−Hτd; and the integral in dsτ+1, . . . , dsN contributes the factor
rN−τ . In other words, we have

∫

[0,r]N

ds1 · · · dsN
[∑N

k=1 s
Hk

k

]d ≤ c8,5 r
∑ τ

�=1(Hτ/H�)+N−τ−Hτd. (217)

This and (216) imply
∫

T

dt1
[

min
1<i≤n+1

ρ(tj , ti)
]d ≤ c8,6 n r

∑ τ
�=1(Hτ/H�)+N−τ−Hτd. (218)

Repeating the same procedure for integrating in dt2, . . . , dtn in (215) yields
(207). This proves Lemma 8.4.

Remark 8.7. In the proof of Lemma 8.4, we have assumed T is a hypercube
T = [a , a + 〈r〉]. This is only for convenience and one can consider arbitrary
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closed intervals T =
∏N
�=1[a� , a�+r�] ⊆ I. The argument is the same as above,

but (216) becomes
∫

T

dt1
[

min
1<i≤n+1

ρ(tj , ti)
]d ≤ cn

∫

∏
N
k=1[0,rk]

ds1 · · · dsN
[∑N

k=1 s
Hk

k

]d . (219)

Choose N positive numbers p1, . . . , pN ∈ (0 , 1) defined by

pk =
H−1
k

∑N
i=1H

−1
i

(k = 1, . . . , N). (220)

Then
∑N
k=1 pk = 1. By using the following inequality

N∑

k=1

sHk

k ≥
N∑

k=1

pk s
Hk

k ≥
N∏

k=1

spkHk

k ∀ s ∈ (0 ,∞)N , (221)

one can verify that
∫

∏N
k=1[0,rk]

ds1 · · · dsN
[∑N

k=1 s
Hk

k

]d ≤ c λN (T )1−ν , (222)

where ν = d/(
∑N
i=1H

−1
i ) ∈ (0 , 1). Combining (215), (219) and (222) we

derive that
E
[
L(x , T )n

] ≤ cn
8,7
n!λN (T )n(1−ν) (223)

holds for every interval T ⊆ I. We will apply this inequality in the proof of
Theorem 8.2 below.

Lemma 8.4 implies that for all n ≥ 1, L(x , T ) ∈ Ln(Rd) a.s. [41, p. 42)].
Our next lemma estimates the moments of the increments of L(x , T ) in the
space variable x.

Lemma 8.8. Assume (206) holds for some τ ∈ {1, . . . , N}. Then there exists
a positive and finite constant c8,8 , depending on N, d, H and I only, such
that for all hypercubes T = [a, a + 〈r〉] ⊆ I, x , y ∈ Rd with |x − y| ≤ 1, all
even integers n ≥ 1 and all γ ∈ (0 , 1) small enough,

E
[(
L(x , T )− L(y , T )

)n
]
≤ cn

8,8
(n!)(1+γ) |x− y|nγ rn(βτ−2Hτγ). (224)

In order to prove Lemma 8.8, we will make use of the following lemma
essentially due to Cuzick and DuPreez [19]; see also [55].
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Lemma 8.9. Let Z1, . . . , Zn be mean zero Gaussian variables which are
linearly independent, then for any nonnegative function g : R→ R+,
∫

Rn

g(v1)e−
1
2Var(∑n

j=1 vjZj) dv1 · · ·dvn

=
(2π)(n−1)/2

[
detCov

(
Z1, · · · , Zn

)]1/2

∫ ∞

−∞
g

(
v

σ1

)

e−v
2/2 dv,

(225)

where σ2
1 = Var(Z1 |Z2, . . . , Zn) denotes the conditional variance of Z1 given

Z2, . . . , Zn.

Proof of Lemma 8.8. Let γ ∈ (0 , 1) be a constant whose value will be
determined later. Note that by the elementary inequalities

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R (226)

and |u+ v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏

j=1

∣
∣
∣e−i〈u

j , x〉 − e−i〈uj , y〉
∣
∣
∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏

j=1

|ujkj
|γ , (227)

where the summation
∑

´ is taken over all the sequences (k1, · · · , kn) ∈
{1, · · · , d}n.

It follows from (205) and (227) that for every even integer n ≥ 2,

E
[(
L(x , T )− L(y , T )

)n
]
≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

Tn

∫

Rnd

n∏

m=1

|umkm
|γ E

[
e−i

∑n
j=1 〈uj , X(tj)〉

]
du dt

≤ cn
8,9
|x− y|nγ

∑′ ∫

Tn

dt

×
n∏

m=1

{∫

Rnd

|umkm
|nγe− 1

2Var(∑n
j=1 〈uj , X(tj)〉) du

}1/n

,

(228)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, . . . , kn) ∈ {1, · · · , d}n and n distinct points

t1, . . . , tn ∈ T [the set of such points has full (nN)-dimensional Lebesgue
measure]. Let M = M (k, t, γ) be defined by

M =
n∏

m=1

{∫

Rnd

|umkm
|nγ e− 1

2Var(∑n
j=1 〈uj , X(tj)〉) du

}1/n

. (229)

Note that X� (1 ≤ � ≤ N) are independent copies of X0. By Lemma 3.4, the
random variables X�(tj) (1 ≤ � ≤ N, 1 ≤ j ≤ n) are linearly independent.
Hence Lemma 8.9 gives
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∫

Rnd

|umkm
|nγ e− 1

2Var(∑n
j=1 〈uj ,X(tj)〉) du

=
(2π)(nd−1)/2

[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2

∫

R

(
v

σm

)nγ
e−v

2/2 dv

≤ cn
8,10

(n!)γ
[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2
1
σnγm

,

(230)

where σ2
m is the conditional variance of Xkm(tm) given Xi(tj) (i �= km or

i = km but j �= m), and the last inequality follows from Stirling’s formula.

Combining (229) and (230) we obtain

M ≤ cn
8,11

(n!)γ
[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2

n∏

m=1

1
σγm

. (231)

The second product in (231) will be treated as a “perturbation” factor and
will be shown to be small when integrated. For this purpose, we use again the
independence of the coordinate processes of X and Condition (C3′) to derive

σ2
m = Var

(
Xkm(tm)

∣
∣Xkm(tj), j �= m

)

≥ c2
8,12

min
{
ρ(tm, tj)2 : j = 0 or j �= m

}
.

(232)

Now we define a permutation π of {1, · · · , n} such that

ρ
(
tπ(1), 0

)
= min

1≤j≤n
ρ(tj , 0). (233)

and once tπ(m−1) has been defined, we choose tπ(m) such that

ρ
(
tπ(m), tπ(m−1)

)

= min
{
ρ
(
tj , tπ(m−1)

)
, j ∈ {1, · · · , n} \ {π(1) , · · · , π(m− 1)}

}
.

(234)

By this definition, we see that for every m = 1, · · · , n,

min
{
ρ
(
tπ(m), tj

)
: j = 0 or j �= π(m)

}

= min
{
ρ
(
tπ(m), tπ(m−1)

)
, ρ
(
tπ(m+1), tπ(m)

)}
.

(235)

It follows from (232), (235) and (53) that
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n∏

m=1

1
σγm

≤ c−nγ
8,12

n∏

m=1

1
min

{
ρ
(
tπ(m), tj

)γ : j = 0 or j �= π(m)
}

≤ cn
8,13

n∏

m=1

1
min

{
ρ
(
tπ(m), tπ(m−1)

)γ
, ρ
(
tπ(m+1), tπ(m)

)γ}

≤ cn
8,13

n∏

m=1

1

ρ
(
tπ(m), tπ(m−1)

)2γ

≤ cn
8,14

n∏

m=1

1
[
Var(X0(tπ(m))|X0(tπ(i)), i = 1, · · · ,m− 1)

]γ

=
cn
8,15[

detCov(X0(t1), · · · , X0(tn))
]γ .

(236)

Combining (231) and (236), we obtain

M ≤ cn
8,16

(n!)γ
[
detCov(X0(t1), · · · , X0(tn))

] d
2 +γ

≤ cn
8,17

(n!)γ

∏n
j=1

[

min
j<i≤n+1

ρ(tj , ti)
]d+2γ

,
(237)

where the last step follows from Condition (C3′) and (53).
It follows from (228), (229), (231) and (237) that

E
[(
L(x+ y, T )− L(x , T )

)n]

≤ cn
8,18
|y|nγ (n!)γ

∫

Tn

n∏

j=1

1
[

min
j<i≤n+1

ρ(tj , ti)
]d+2γ

dt. (238)

Note that the last integral in (238) is similar to that in (215) and can be
estimated by integrating in the order dt1, dt2, . . . , dtn. To this end, we take
γ ∈ (0 , 1) small such that

τ−1∑

�=1

1
H�
≤ d+ 2γ <

τ∑

�=1

1
H�

. (239)

Then, similar to (216)–(218), we derive

∫

Tn

n∏

j=1

1
[

min
j<i≤n+1

ρ(tj , ti)
]d+2γ

dt

≤ cn
8,19

(n!)1+γ rn
(∑ τ

�=1(Hτ/H�)+N−τ−Hτ (d+2γ)
)

.

(240)
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It is now clear that (224) follows from (238) and (240). This proves Lemma 8.8.

Now we are ready to prove Theorem 8.2.
Proof of Theorem 8.2. It follows from Lemma 8.8 and the multiparameter
version of Kolmogorov’s continuity theorem [49] that, for every fixed interval
T ∈ A such that T ⊆ I, X has almost surely a local time L(x , T ) that is
continuous for all x ∈ Rd.

To prove the joint continuity, observe that for all x, y ∈ Rd, s, t ∈ I and
all even integers n ≥ 1, we have

E [(L(x , [ε, s])− L(y , [ε, t]))n] (241)

≤ 2n−1 {E [(L(x , [ε, s])− L(x , [ε, t]))n] + E [(L(x , [ε, t])− L(y , [ε, t]))n]} .

Since the difference L(x , [ε, s])− L(x , [ε, t]) can be written as a sum of finite
number (only depends onN) of terms of the form L(x , Tj), where each Tj ∈ A
is a closed subinterval of I with at least one edge length ≤ |s − t|, we can
use Lemma 8.4 and Remark 8.7, to bound the first term in (241). On the
other hand, the second term in (241) can be dealt with using Lemma 8.8 as
above. Consequently, for some γ ∈ (0 , 1) small, the right hand side of (241) is
bounded by cn

8,20
(|x− y|+ |s− t|)nγ , where n ≥ 2 is an arbitrary even integer.

Therefore the joint continuity of the local times L(x , t) follows again from the
multiparameter version of Kolmogorov’s continuity theorem. This finishes the
proof of Theorem 8.2.

The proof of Theorem 8.2 also provides some information about the mod-
ulus of continuity of L(x , t) as a function of x and t. It would be interesting to
establish sharp local and uniform Hölder conditions for the local time, because
such results bear rich information about the irregular properties of the sample
functions of X [1; 13; 41; 102].

By applying Lemma 8.4 and the Borel-Cantelli lemma, one can easily
derive the following law of the iterated logarithm for the local time L(x , ·):
There exists a positive constant c8,21 such that for every x ∈ Rd and t ∈
(0, 1)N ,

lim sup
r→0

L(x ,U(t , r))
ϕ9(r)

≤ c8,21 , (242)

where U(t , r) denotes the open or closed ball [in the Euclidean metric] cen-
tered at t with radius r and ϕ9(r) = rβτ log log(1/r). It follows from Fubini’s
theorem that, with probability one, (242) holds for λN -almost all t ∈ I. Now
we prove a stronger version of this result, which is useful in determining the
exact Hausdorff measure of the level set Lx.

Theorem 8.10. Let X be an (N, d)-Gaussian random field defined by (36).
We assume Conditions (C1) and (C3′) are satisfied on I and d <

∑N
j=1(1/Hj).

Let τ ∈ {1, . . . , N} be the integer so that (206) holds and let L be the jointly
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continuous local time of X. Then, there is a finite constant c8,22 such that with
probability one,

lim sup
r→0

L(x ,U(t , r))
ϕ9(r)

≤ c8,22 (243)

holds for L(x , ·)-almost all t ∈ I.
Proof. The proof is similar to that of Theorem 4.1 in [6]. See also [102].

For every integer k ≥ 1, we consider the random measure μk := μk(x, •)
on the Borel subsets C of I defined by (157) [where the integer n is replaced
by k]. Then, by the occupation density formula (197) and the continuity of
the function y �→ L(y , C), one can verify that almost surely μk(C)→ L(x ,C)
as k →∞ for every Borel set C ⊆ I.

For every integer m ≥ 1, denote fm(t) = L
(
x ,U(t, 2−m)

)
. From the

proof of Theorem 8.2 we can see that almost surely the functions fm(t)
are continuous and bounded. Hence we have almost surely, for all integers
m, n ≥ 1, ∫

I

[fm(t)]n L(x , dt) = lim
k→∞

∫

I

[fm(t)]n μk(dt). (244)

It follows from (244), (157) and the proof of Proposition 3.1 of [77] that for
every positive integer n ≥ 1,

E
∫

I

[fm(t)]n L(x , dt)

=
(

1
2π

)(n+1)d ∫

I

∫

U(t,2−m)n

∫

R(n+1)d
e−i

∑n+1
j=1 〈x,uj〉

× E exp

⎛

⎝i

n+1∑

j=1

〈uj, X(sj)〉
⎞

⎠ duds,

(245)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the
proof of (207) we have that the right hand side of Eq. (245) is at most

cn
8,23

∫

I

∫

U(t,2−m)n

ds

[detCov(X0(t) , X0(s1) , . . . , X0(sn))]
d/2

≤ cn
8,24

n! 2−mnβτ ,

(246)

where c8,24 is a positive and finite constant depending on N, d, H, and I only.
Let γ > 0 be a constant whose value will be determined later. We consider

the random set

Im(ω) =
{
t ∈ I : fm(t) ≥ γϕ9(2−m)

}
.

Denote by νω the restriction of the random measure L(x , ·) on I, that is,
νω(E) = L(x ,E ∩ I) for every Borel set E ⊆ RN

+ . Now we take n = &logm',
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where &y' denotes the integer part of y. Then by applying (246) and Stirling’s
formula, we have

E
[
νω(Im)

] ≤ E
∫
I [fm(t)]n L(x , dt)
[γϕ9(2−m)]n

≤ cn
8,25

n! 2−mnβτ

γn2−mnβτ (logm)n
≤ m−2,

(247)

provided γ > 0 is chosen large enough, say, γ ≥ c8,25 e
2 := c8,26 . This implies

that

E

( ∞∑

m=1

νω(Im)

)

<∞. (248)

Therefore, with probability 1 for νω almost all t ∈ I, we have

lim sup
m→∞

L(x ,U(t , 2−m))
ϕ9(2−m)

≤ c8,26 . (249)

Finally, for any r > 0 small enough, there exists an integer m such that
2−m ≤ r < 2−m+1 and (249) is applicable. Since the function ϕ9(r) is increas-
ing near r = 0, (243) follows from (249) and a monotonicity argument. �

Since L(x , ·) is a random Borel measure supported on the level set Lx =
{t ∈ I : X(t) = x}, Theorem 8.10 and the upper density theorem of [80] imply
the following partial result on the exact Hausdorff measure of Lx.

Corollary 8.11. Assume the conditions of Theorem 8.10 are satisfied. Then
there exists a positive constant c8,27 such that for every x ∈ Rd, we have

H ϕ9 (Lx) ≥ c8,27 L(x , I), a.s. (250)

Proof. The proof is left to the reader as an exercise. �
We should mention that the estimates in Lemmas 8.4 and 8.8 are not sharp

and it would be interesting to improve them. In the rest of this section, we
consider the special case when H = 〈α〉 and α ∈ (0 , 1). Many sample path
properties of such Gaussian random fields have been studied in [1; 49; 83; 102;
108]. By applying Lemma 2.3 in [102] in place of (216), we prove the following
sharp estimates.

Lemma 8.12. Let X be an (N, d)-Gaussian random field satisfying the con-
ditions (C1) and (C3′) with H = 〈α〉. We assume that N > αd. Then there
exists a positive and finite constant c8,28 , depending on N, d, α and I only,
such that for all intervals T = [a , a+ 〈r〉] ⊆ I with edge length r ∈ (0 , 1), all
x ∈ Rd and all integers n ≥ 1,
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E [L(x , T )n] ≤ cn
8,28

(n!)αd/N rn(N−αd) (251)

and for any 0 < γ < min{1 , (N/α− d)/2}, there exists a positive and finite
constant c8,29 such that

E [(L(x , T )− L(y , T ))n]

≤ cn
8,29

(n!)2γ+α(d+γ)/N |x− y|nγ rn(N−α(d+γ)).
(252)

Note that, for a Gaussian random field X satisfying the assumptions of
Lemma 8.12, Eq. (251) allows us to improve the results in Theorem 8.10
and Corollary 8.11 by replacing the Hausdorff measure function ϕ9(r) by
ϕ7(r) = rN−αd(log log 1/r)αd/N . Moreover, by combining Lemma 8.12 and
the argument in [102], one can establish the following sharp local and uniform
Hölder conditions for the maximum local time L∗(•) of X defined by

L∗(T ) = sup
x∈Rd

L(x , T ) ∀ T ⊆ I. (253)

Theorem 8.13. Let X be an (N, d)-Gaussian random field satisfying the con-
ditions (C1) and (C3′) with H = 〈α〉 and N > αd. The following statements
hold:

(i) There exists a positive and finite constant c8,30 such that for every t ∈ I,

lim sup
r→0

L∗(U(t , r))
ϕ7(r)

≤ c8,30 a.s., (254)

where U(t , r) = {s ∈ I : |s− t| ≤ r}.
(ii) There exists a positive and finite constant c8,31 such that

lim sup
r→0

sup
t∈I

L∗(U(t , r))
ϕ10(r)

≤ c8,31 a.s., (255)

where ϕ10(r) = rN−αd(log 1/r)αd/N .

Proof. The proofs of (254) and (255) are based on Lemma 8.12 and a chaining
argument, which is the same as those of Theorems 1.1 and 1.2 in [102]; see
also [34]. We leave the details to the reader. �

Similar to [102; 108], one can apply Lemma 8.12 and Theorem 8.13 to
derive further results, such as the Chung-type laws of the iterated logarithm,
modulus of nowhere differentiability, tail probability of the local times, for
(N, d)-Gaussian random fields satisfying the conditions (C1) and (C3′) with
H = 〈α〉. These are left to the reader as exercises.

The following is our final remark.
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Remark 8.14. Both Conditions (C3) and (C3′) are useful in studying the
existence and regularity of the self-intersection local times of X which, in
turn, provide information on the fractal dimensions of the sets of multiple
points and multiple times of X . When X is an (N, d)-fractional Brownian
sheet, these problems have been studied in [69]. It is expected that analogous
results also hold for Gaussian random fields satisfying Conditions (C1) and
(C3′).

References

[1] R. J. Adler (1981), The Geometry of Random Fields. John Wiley & Sons Ltd.,
New York.

[2] L. Arnold and P. Imkeller (1996), Stratonovich calculus with spatial parame-
ters and anticipative problems in multiplicative ergodic theory. Stoch. Process.
Appl. 62, 19–54.

[3] A. Ayache (2004), Hausdorff dimension of the graph of the fractional Brownian
sheet. Rev. Mat. Iberoamericana, 20, 395–412.

[4] A. Ayache, S. Leger and M. Pontier (2002), Drap Brownien fractionnaire.
Potential Theory 17, 31–43.

[5] A. Ayache and M. S. Taqqu (2003), Rate optimality of wavelet series
approximations of fractional Brownian sheet. J. Fourier Anal. Appl. 9,
451–471.

[6] A. Ayache, D. Wu and Y. Xiao (2006), Joint continuity of the local times
of fractional Brownian sheets. Ann. Inst. H. Poincaré Probab. Statist., (to
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Ann. Inst. H. Poincaré Probab. Statist. 43, 619–631.

[96] D. Wu and Y. Xiao (2006), Fractal properties of random string processes. IMS
Lecture Notes-Monograph Series–High Dimensional Probability. 51, 128–147.

[97] D. Wu and Y. Xiao (2007), Geometric properties of fractional Brownian sheets.
J. Fourier Anal. Appl. 13, 1–37.

[98] Y. Xiao (1995), Dimension results for Gaussian vector fields and index-α stable
fields. Ann. Probab. 23, 273–291.

[99] Y. Xiao (1996a), Hausdorff measure of the sample paths of Gaussian random
fields. Osaka J. Math. 33, 895–913.

[100] Y. Xiao (1996b), Packing measure of the sample paths of fractional Brownian
motion. Trans. Amer. Math. Soc. 348, 3193–3213.

[101] Y. Xiao (1997a), Hausdorff measure of the graph of fractional Brownian
motion. Math. Proc. Camb. Philos. Soc. 122, 565–576.



212 Y. Xiao
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