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The following are the tentative titles and abstracts of the ten lectures.

1. An introduction on random fields

We present an overview on univariate and multivariate random fields and introduce im-

portant statistical characteristics such as spectral representations, self-similarity, anisotropy

of random fields. Important examples of random fields include Gaussian random fields

with stationary increments and solutions to stochastic partial differential equations.

2. General results on regularity of Gaussian random fields.

Regularity properties such as continuity and differentiability of the sample functions of

Gaussian processes are important topics in probability theory and essential for statistical

applications. Necessary and sufficient conditions for sample path continuity based on

the metric entropy or majorizing measure were established by Dudley (1967), Fernique

(1975), and Talagrand (1987).

This lecture recalls briefly some general methods for studying the regularity properties

of Gaussian random fields. These include bounds on expectations of the supremum of

Gaussian processes in terms of metric entropy and majorizing measure, sample path

continuity, and differentiability. These methods are applicable to the Gaussian random

fields described in Lecture 1.

3. Exact results on regularity of Gaussian random fields

The purpose of this module is to present methods for establishing exact uniform and local

modulus of continuity results for Gaussian random fields. In particular, we prove four

types of limit theorems: the law of the iterated logarithm, uniform modulus of continuity,

Chung’s law of the iterated logarithm, and the modulus of nondifferentiability.

For this purpose, we formulate a framework that will be convenient for studying the

solutions of stochastic partial differential equations. An important condition in this

framework is the property of strong local nondeterminism.
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4. Properties of strong local nondeterminism

Sufficient conditions in terms of spectral measures or covariance functions for the prop-

erties of strong local nondeterminism for Gaussian random fields will be provided.

A comparison theorem allows to study Gaussian random fields with stationary increments

with discrete or singular spectral measures.

Properties of strong local nondeterminism are proved for solutions to stochastic heat and

wave equations with colored or fractional noises.

5. Fractal properties of random fields.

Fractal geometry is important for studying random fields with non-differentiable sam-

ple functions. We introduce Hausdorff and packing measure and dimensions and main

techniques for their computation.

We determine the Hausdorff dimensions of various random sets generated by multivariate

Gaussian random fields including the range, graph, level sets, and the set of multiple

points.

We determine the exact Hausdorff measure functions for the range, graph and level sets

of a large class of Gaussian random fields.

6. Local times of Gaussian random fields

Besides of the interest on their own, local times and self-intersections local times of

Gaussian random fields are important for studying fractal properties of the level sets and

the set of multiple points. The properties of strong local nondeterminism are applied to

establish sharp regularity results on the local times.

7. Hitting probabilities, polarity, and self-intersections.

The lecture is concerned with hitting probabilities of Gaussian random fields and their

applications in studying the existence and Hausdorff dimensions of intersections.

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd. For any compact

sets E ⊂ RN and F ⊂ Rd, we study conditions on E and F for P
{
X(E) ∩ F 6= ∅

}
> 0.

Only in a few special cases, this hitting probability problem has been completely solved

[e.g., Khoshnevisan and Shi (1999), Khoshnevisan and Xiao (2007, 2015)].

We will present some necessary conditions and sufficient conditions that improve those

in Biermé, Lacaux, and Xiao (2009). In some special cases such as F is a singleton,

more precise results have been proven in Dalang, Mueller, and Xiao (2017). This method

has been extended by Dalang, Lee, Mueller, and Xiao (2021) to study the existence of

multiple points of Gaussian random fields.

8. Properties of linear stochastic heat and wave equations
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We consider linear stochastic heat and wave equations with Gaussian noise (including

“white-colored” and “fractional-colored” noises). By applying general methods for Gaus-

sian random fields, we describe various regularity, singularity, and fractal properties of

the solutions to these SPDEs that highlight the effects of the equations and noises on

the behavior of the solutions.

Some of the techniques that are useful for analyzing SPDEs of higher orders and fractional

SPDEs.

9. Properties of nonlinear stochastic heat equation

Let (t , x) 7→ ut(x) denote the solution to the stochastic heat equation with multiplicative

noise

∂tu = −1

2
(−∆)α/2ut(x) + λσ(ut(x))Ẇ ,

where the variable x ranges over R, t > 0, −(−∆)α/2 denotes the generator of a symmetric

α-stable Lévy process on R, and Ẇ denotes the space-time white noise on (0 ,∞) × R.

Based on a quantitative version of the intuitively-appealing statement that “locally, t 7→
ut(x) behaves as a conditionally-Gaussian process”, We derive a number of results about

the local behavior of t 7→ ut(x), where x ∈ R is fixed.

If time permits, we will also study the polarity of the solution to the a system of the

stochastic heat equations with multiplicative noise.

10. Extreme values of random fields.

General bounds for the excursion probabilities of real-valued Gaussian random fields can

obtained by applying the general methods (e.g., the metric entropy method). These

results have found many applications in mathematics and statistics. However, studies on

multivariate Gaussian random fields are scarce.

In this lecture, we consider a class of bivariate Gaussian random fields and apply the

double sum method to establish more precise approximations to the excursion probabil-

ities.
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