
Ten Lectures on

“Gaussian Random Fields, SPDEs, Fractals, and Extremes”

Yimin Xiao
Michigan State University

October 2, 2021

Contents

1 Lecture 1. Introduction to (Gaussian) random fields 2
1.1 Stationary random fields and their spectral representations . . . . . . . . . . . . . . . . . . . 3
1.2 Gaussian random fields with stationary increments . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 More examples of non-stationary Gaussian random fields . . . . . . . . . . . . . . . . . . . . . 5
1.4 Multivariate Gaussian random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Lecture 2. Gaussian random fields: general methods 11
2.1 The entropy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Majorizing measure (generic chaining) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Lecture 3. Exact Results on Regularity of Gaussian Random Fields 15
3.1 Local modulus of continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Law of the iterated logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Chung’s law of the iterated logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Exact uniform modulus of continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Modulus of non-differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Lecture 4. Properties of Strong Local Nondeterminism of Gaussian Random Fields 27
4.1 Spectral conditions for strong local nondeterminism . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 A comparison theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 SLND of linear SHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 SLND of linear stochastic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Lecture 5. Fractal Properties of Gaussian Random Fields 40
5.1 Definitions of Hausdorff measure and dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Packing measure and packing dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Exact Hausdorff measure functions for BH([0, 1]N ) and GrBH([0, 1]N ) . . . . . . . . . . . . . 43
5.4 Exact packing measure functions for fractional Brownian motion . . . . . . . . . . . . . . . . 43
5.5 Exact Hausdorff measure function for the ranges of Gaussian random fields . . . . . . . . . . 44

6 Lecture 6. Local Times of Gaussian Random Fields 51
6.1 Local times: existence and joint continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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1 Lecture 1. Introduction to (Gaussian) random fields

Multivariate random fields (or spatial processes) have recently been the focus of much attention in
probability and statistics, due to their extensive applications as spatial or spatio-temporal models
in scientific areas where many problems involve data sets with multivariate measurements obtained
at spatial locations.

In this section, we present an overview on random fields and provide concrete examples of
random fields that are drawn from science and engineering.

We introduce important statistical characteristics such as self-similarity, operator-self- similar-
ity, anisotropy, long range dependence of random fields.

A random field X = {X(t), t ∈ T} is a family of random variables with values in state space
S, where T is the parameter set. We consider T ⊆ RN and S = Rd (d ≥ 1). Then X is called an
(N, d) random field.

Random fields arise naturally in turbulence (A. N. Kolmogorov, 1941), oceanography (M.S.
Longuet-Higgins, 1953, ...) spatial statistics, spatio-temporal geostatistics (G. Mathron, 1962),
stochastic hydrology (Mandelbrot and Wallis, 1968–1969), ... image and signal processing (Krueger
et al. 1996; Kaplan and Kuo,1996); Han and Denney 1999; Bonami and Estrade, 2003), just to
mention a few.

In theories on random fields, the following questions are addressed:

1. How to construct random fields?

2. How to characterize and analyze random fields?

3. How to estimate parameters in random fields?

2



4. How to use random fields to make predictions?

In this lecture, we provide a brief introduction to answers to Questions (1) and (2).
The mathematical theory of random fields developed by Itô (1954), Yaglom (1957, 1987), Gih-

man and Skorohod (1974) provides an excellent framework for constructing and studying multi-
variate random fields. This lecture will introduce systematic methods for constructing univariate
and multivariate Gaussian random fields, including characterization of cross-covariance matrices
and the spectral method. Interesting examples of multivariate Gaussian random fields that can be
constructed by using these methods include multivariate stationary Gaussian random fields with
Matérn cross-covariance matrix and operator fractional Brownian motion. Another natural way to
define multivariate random fields is through systems of stochastic partial differential equations.

1.1 Stationary random fields and their spectral representations

A real-valued random field {X(t), t ∈ RN} is called second-order stationary if E(X(t)) ≡ m, where
m is a constant, and the covariance function depends on s− t only:

E
[
(X(s)−m)(X(t)−m)

]
= C(s− t), ∀s, t ∈ RN .

The celebrated Bochner’s Theorem (1932) says that a bounded and continuous function C is
positive definite if and only if there is a finite Borel measure µ such that

C(t) =

∫
RN

ei〈t, x〉 dµ(x), ∀t ∈ RN .

Similar problems for second-order stationary processes were studied by N. Wiener (1930) and
and by A. Y. Khinchin (1934). They proved the following representation theorem:

Theorem 1.1 Every second-order stationary random field {X(t), t ∈ RN} with continuous covari-
ance can be represented as

X(t) =

∫
RN

ei〈t, x〉 dW̃ (x),

where W̃ is certain random measure.

If X = {X(t), t ∈ RN} is a centered, stationary Gaussian random field with values in R whose
covariance function is the Fourier transform of µ, then there is a complex-valued Gaussian random
measure W̃ on B(RN ) such that E

(
W̃ (A)

)
= 0,

E(W̃ (A)W̃ (B)) = µ(A ∩B) and W̃ (−A) = W̃ (A)

and X has the following Wiener integral representation:

X(t) =

∫
RN

ei〈t, x〉 dW̃ (x).

The finite measure µ is called the spectral measure of X.
An important class of isotropic stationary random fields are those with the Matérn covariance

function

C(t) =
1

Γ(ν)2ν−1

(√
2ν
|t|
ρ

)ν
Kν

(√
2ν
|t|
ρ

)
, (1.1)
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where Γ is the Gamma function, Kν is the modified Bessel function of the second kind, and ρ and
ν are non-negative parameters.

Since the covariance function C(t) in (1.1) depends only on the Euclidean norm |t|, the corre-
sponding Gaussian field X is called isotropic.

By the inverse Fourier transform, one can show that the spectral measure of X has the following
density function:

f(λ) =
1

(2π)N
1

(|λ|2 + ρ2

2ν )ν+N
2

, ∀λ ∈ RN . (1.2)

Whittle (1954) showed that the Gaussian random field X with Matérn covariance function (1.1)
can be obtained as the solution to the following fractional SPDE

(
∆ +

ρ2

2ν

) ν
2

+N
4 X(t) = Ẇ (t),

where ∆ = ∂2

dt21
+ · · ·+ ∂2

dt2N
is the N -dimensional Laplacian, and Ẇ (t) is the white noise.

1.2 Gaussian random fields with stationary increments

Let X = {X(t), t ∈ RN} be a centered Gaussian random field with stationary increments and
X(0) = 0. Yaglom (1954) showed that, if R(s, t) = E

[
X(s)X(t)

]
is continuous, then R(s, t) can be

written as

R(s, t) = 〈s,At〉+

∫
RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ),

where A is a nonnegative definite real N ×N matrix and ∆(dλ) is a Borel measure which satisfies∫
RN

(1 ∧ |λ|2) ∆(dλ) <∞. (1.3)

In analogy to the stationary case, the measure ∆ is called the spectral measure of X.
We assume that A = 0. Then

E
[
(X(s)−X(t))2

]
= 2

∫
RN

(
1− cos〈s− t, λ〉

)
∆(dλ);

and X has the stochastic integral representation:

X(t)
d
=

∫
RN

(
ei〈t,λ〉 − 1

)
W̃ (dλ), (1.4)

where
d
= denotes equality of all finite-dimensional distributions, W̃ (dλ) is a centered complex-valued

Gaussian random measure with ∆ as its control measure.
Gaussian fields with stationary increments can be constructed by choosing spectral measures

∆. In turn, the spectral measure characterizes the properties of the Gaussian random field.
We consider two examples.
Example 1.1 If ∆ has a density function

fH(λ) = c(H,N)|λ|−(2H+N),
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where H ∈ (0, 1) and c(H,N) > 0, then X is fractional Brownian motion with index H.
It can be verified that (for proper choice of c(H,N)),

E
[
(X(s)−X(t))2

]
= 2c(H,N)

∫
RN

1− cos〈s− t, λ〉
|λ|2H+N

dλ

= |s− t|2H .

For the last identity, see, e.g., Schoenberg (1939). Moreover, one can verify the following properties:

• FBm X has stationary increments: for any b ∈ RN ,{
X(t+ b)−X(b), t ∈ RN

} d
=
{
X(t), t ∈ RN

}
. (1.5)

• FBm X is H-self-similar: for every constant c > 0,{
X(ct), t ∈ RN

} d
=
{
cHX(t), t ∈ RN

}
. (1.6)

Example 1.2 A large class of Gaussian fields can be obtained by letting spectral density
functions satisfy (1.3) and

f(λ) � 1(∑N
j=1 |λj |βj

)γ , ∀λ ∈ RN , |λ| ≥ 1, (1.7)

where (β1, . . . , βN ) ∈ (0,∞)N and γ >
∑N

j=1
1
βj
.

This last condition is necessary for f ∈ L2(RN ). More conveniently, we re-write (1.7) as

f(λ) � 1(∑N
j=1 |λj |Hj

)Q+2
, ∀λ ∈ RN , |λ| ≥ 1, (1.8)

where Hj =
βj
2

(
γ −

∑N
i=1

1
βi

)
and Q =

∑N
j=1H

−1
j .

1.3 More examples of non-stationary Gaussian random fields

The Brownian sheet and fractional Brownian sheets
The Brownian sheet W = {W (t), t ∈ RN+} is a centered (N, d)-Gaussian field whose covariance

function is

E
[
Wi(s)Wj(t)

]
= δij

N∏
k=1

sk ∧ tk. (1.9)

The Brownian sheet is a random field is a random field extension of the Wiener process (Brownian
motion).

• When N = 1, W is Brownian motion in Rd.

• W is N/2-self-similar, but it does not have stationary increments.

• It gives rise to the Gaussian white noise Ẇ , which can be used as a stochastic integrator.
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Fractional Brownian sheet
A fractional Brownian sheet W

~H =
{
W

~H(t), t ∈ RN
}

is a mean zero Gaussian field in R with
covariance function

E
[
W

~H(s)W
~H(t)

]
=

N∏
j=1

1

2

(
|sj |2Hj + |tj |2Hj − |sj − tj |2Hj

)
,

where ~H = (H1, . . . ,HN ) ∈ (0, 1)N .
For all constants c > 0,{

W
~H(cEt), t ∈ RN

}
d
=
{
cW

~H(t), t ∈ RN
}
,

where E = (aij) is the N ×N diagonal matrix with aii = 1/(NHi) for all 1 ≤ i ≤ N and aij = 0 if
i 6= j.

This is referred to as an “operator-scaling” property.
Linear stochastic heat equation
Consider the linear stochastic heat equation with the Gaussian noise Ẇ :

∂u

∂t
(t, x) =

1

2
∆u(t, x) + σ Ẇ , t ≥ 0, x ∈ Rk,

u(0, x) ≡ 0,
(1.10)

where ∆ is the Laplacian operator in the spatial variables, σ is a constant or a deterministic function,
and Ẇ is a Gaussian noise that is white in time and has a spatially homogeneous covariance [Dalang
(1999)] given by the Riesz kernel with exponent β ∈ (0, k ∧ 2), i.e.

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white noise considered by Walsh (1986).
It follows from Walsh (1986) and Dalang (1999) that the mild solution of (1.10) is the mean

zero Gaussian random field u = {u(t, x), t ≥ 0, x ∈ R} defined by

u(t, x) =

∫ t

0

∫
R
G̃t−r(x− y)σW (drdy), t ≥ 0, x ∈ R, (1.11)

where G̃t(x) is the Green kernel given by

G̃t(x) = (2πt)−1/2 exp
(
− |x|

2

2t

)
, ∀ t > 0, x ∈ Rk.

Linear stochastic wave equation
The linear stochastic wave equation

∂2

∂t2
u(t, x) = ∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(1.12)

where Ẇ is a Gaussian noise as in the previous example with exponent β ∈ (0, k ∧ 2).
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The existence of real-valued process solution to (1.12) was studied by Walsh (1986) for the
space-time white noise and by Dalang (1999) in the more general setting.

We recall briefly some known results.
Let G be the fundamental solution of the wave equation. Then

G(t, x) =
1

2
1{|x|<t} if k = 1;

G(t, x) = ck

(1

t

∂

∂t

)(k−2)/2
(t2 − |x|2)

−1/2
+ , if k ≥ 2 is even;

G(t, x) = ck

(1

t

∂

∂t

)(k−3)/2σkt (dx)

t
, if k ≥ 3 is odd,

where σkt is the uniform surface measure on the sphere {x ∈ Rk : |x| = t}.
Note that for k ≥ 3, G is not a function but a distribution.
For any dimension k ≥ 1, the Fourier transform of G in variable x is given by

F (G(t, ·))(ξ) =
sin(t|ξ|)
|ξ|

, t ≥ 0, ξ ∈ Rk. (1.13)

Dalang (1999) extended Walsh’s stochastic integration and proved that the real-valued process
solution of equation (1.12) is given by

u(t, x) =

∫ t

0

∫
Rk
G(t− s, x− y)W (ds dy), (1.14)

where W is the martingale measure induced by the noise Ẇ .
The range of β has been chosen so that the stochastic integral exists.
The solution u = {u(t, x), t ≥ 0, x ∈ Rk} is a centered Gaussian random field, which can be

studied by using general Gaussian methods.
Recall from Theorem 2 of Dalang (1999) that

E
[( ∫ t

0

∫
Rk
H(s, y)W (ds dy)

)2]
= c

∫ t

0
ds

∫
Rk

dξ

|ξ|k−β
|F (H(s, ·))(ξ)|2 (1.15)

provided that s 7→ H(s, ·) is a deterministic function with values in the space of nonnegative
distributions with rapid decrease and∫ t

0
ds

∫
Rk

dξ

|ξ|k−β
|F (H(s, ·)(ξ)|2 <∞.

Eq. (1.15) is a basic tool for studying the Gaussian random field u = {u(t, x), t ≥ 0, x ∈ Rk}.
Non-linear stochastic heat & wave equations
Many authors have studied the following nonlinear SPDE:Lu = b(u) + σ(u)Ẇ , t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(1.16)
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where L is a partial differential operator, σ and b are non-random functions that satisfy some
regularity conditions [e.g., σ and b are Lipschitz continuous.]

For example, Lu = ∂u
∂t −

1
2∆u and Lu = ∂2u

∂t2
−∆u give the stochastic heat and wave equation,

respectively.
The solutions, when they exist, are in general non-Gaussian random fields. We refer to Dalang

(1999), Khoshnevisan (2014) for more information.

1.4 Multivariate Gaussian random fields

Consider a multivariate random field X = {X(t), t ∈ RN} taking values in Rd defined by

X(t) = (X1(t), · · · , Xd(t)), t ∈ RN . (1.17)

Their key features are:

• the components X1, . . . , Xd are dependent.

• X1, . . . , Xd may have different smoothness properties.

For any i, j = 1, . . . , d, define
Cij(s, t) := E[Xi(s)Xj(t)]. (1.18)

They are called the cross-covariance functions of X.
(i) The multivariate Matérn random fields
Gneiting, Kleiber and Schlather (2010) introduced a class of multivariate stationary Matérn

models {X(t), t ∈ RN} in (1.17) with marginal and cross-covariance functions of the form

Cij(s, t) = M(s− t|νij , aij),

where

M(h|ν, a) :=
21−ν

Γ(ν)
(a|h|)νKν(a|h|).

and provided conditions for such matrix-valued functions to form legitimate cross-covariance func-
tions.

See also Apanansovich, Genton and Sun (2012), Kleiber and Nychka (2013).
The bivariate Matérn fields
Let X(t) = (X1(t), X2(t))′ be an R2-valued Gaussian field whose covariance matrix is deter-

mined by

C(h) =

(
c11(h) c12(h)
c21(h) c22(h)

)
, (1.19)

where cij(h) := E[Xi(s+ h)Xj(s)] are specified by

c11(h) = σ2
1M(h|ν1, a1),

c22(h) = σ2
2M(h|ν2, a2),

c12(h) = c21(h) = ρσ1σ2M(h|ν12, a12)

(1.20)

with a1, a2, a12, σ1, σ2 > 0 and ρ ∈ (−1, 1).
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Gneiting, et al. (2010) gave NSC for (1.19) to be valid. In particular, if ρ 6= 0, one must have

ν1 + ν2

2
≤ ν12.

The parameters ν1 and ν2 control the smoothness of the sample function t 7→X(t).
For example, if ν1 > 1, then a.s. the sample function t 7→ X1(t) is continuously differentiable.

This can be proved using the spectral density.
Zhou and X. (2017, 2018) studied extreme values and estimation problems for a class of bivariate

random fields that includes the bivariate Matérn fields.
(ii). Multivariate random fields with stationary increments
An Rd-valued Gaussian random field X = {X(t), t ∈ RN} is said to have stationary increments

if ∀ t0 ∈ RN ,

{X(t+ t0)−X(t0), t ∈ RN} d
= {X(t)−X(0), t ∈ RN}.

A general framework for multivariate random fields with stationary increments was provided
by Yaglom (1957).

As an example, we consider a spacial class of operator fractional Brownian motions.
Let D be a linear operator on Rd (or a d× d real matrix). The operator norm of D is defined

by
‖D‖ = max

|x|=1
|Dx|.

It can be shown that if D = (aij) then

max
1≤i,j≤d

|aij | ≤ ‖D‖ ≤ d3/2 max
1≤i,j≤d

|aij |.

Denote the eigenvalues of D by

λk = αk + iβk, (k = 1, . . . , d).

We assume that
0 < α1 ≤ α2 ≤ · · · ≤ αd < 1. (1.21)

For any c > 0, we define the linear operator cD by

cD =

∞∑
k=0

(ln c)k

k!
Dk.

(a). Moving average representation
One can define ofBm X = {X(t), t ∈ R} in Rd by using the stochastic integration method:

X(t) =

∫
R

[
(t− r)D−

1
2
I

+ − (−r)D−
1
2
I

+

]
W (dr), (1.22)

where W is d-dimensional Brownian motion, is an operator fractional Brownian motion with expo-
nent D.

It has the following properties:
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• stationary increments.

• (operator self-similarity) For every constant c > 0,

{X(c t), t ∈ R} d
= {cDX(t), t ∈ R}.

(b). Harmonizable representation
The Gaussian random field Y = {Y (t), t ∈ RN} in Rd defined by

Y (t) =

∫
RN

ei〈t,r〉 − 1

|r|D+N
2
I
W̃ (dr), (1.23)

where W̃ is a complex-valued Gaussian random measure on Rd with Lebesgue control measure and
i.i.d. components, is also an operator fractional Brownian motion with exponent D.

In order to verify that the stochastic integrals in (1.22) and (1.23) are well defined, it is sufficient
to verify respectively that ∫

R

∥∥(t− r)D−
1
2
I

+ − (−r)D−
1
2
I

+

∥∥2
dr <∞,

and ∫
RN

(1− cos〈t, r〉)
∥∥|r|−D−N2 I∥∥2

dr <∞.

This is where condition (1.21) is needed.
(iii). Operator-scaling and operator-self-similar random fields
Li and X. (2011) constructed a large class of more general, namely, operator-scaling and

operator-self-similar random fields with stationary increments.
Several authors have studied properties of these random fields. See, for example,

• Ercan Sönmez (2017, 2018, 2020).

• Kremer and Scheffler (2019) for further development and recent results.

• Shen, Stilian, and Hsing (2020).

(iv). Systems of stochastic partial differential equations
There has been a lot of recent research on this topic, which we do not discuss here. In the

subsequent sections, we will consider the systems of stochastic heat and wave equations.
(v). Matrix-valued Gaussian random fields
Let ξ = {ξ(t) : t ∈ RN+} be a centered Gaussian random field and let {ξi,j : i, j ∈ N} be a family

of independent copies of ξ.
Consider the symmetric d×d matrix-valued process X = {Xi,j(t); t ∈ RN+ , 1 ≤ i, j ≤ d} defined

by

Xi,j(t) =


ξi,j(t), i < j;√

2ξi,i(t), i = j;

ξj,i(t), i > j.

(1.24)

One may study statistical and sample path properties of the eigenvalues of X.
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2 Lecture 2. Gaussian random fields: general methods

Let X = {X(t), t ∈ RN} be a random field. For each ω ∈ Ω, the function X(·, ω) : RN → Rd,
t 7→ X(t, ω), is called a sample function of X.

The following are natural questions:

(i) When are the sample functions of X bounded, or continuous?

(ii) When are the sample functions of X differentiable?

(iii) How to characterize the analytic and geometric properties of X(·) precisely?

We start with some general methods for Gaussian fields.

2.1 The entropy method

Let X = {X(t), t ∈ T} be a centered Gaussian process with values in R, where (T, τ) is a metric
space; e.g., T = [0, 1]N , or T = SN−1.

We define a pseudo metric dX(·, ·) : T × T → [0,∞) by

dX(s, t) =

√
E
[(
X(t)−X(s)

)2]
.

(dX is often called the canonical metric for X.)
Let D = supt,s∈T dX(s, t) be the diameter of T , under dX . For any ε > 0, let N(T, dX , ε) be

the minimum number of dX -balls of radius ε that cover T . N(T, dX , ε) is also called the metric
entropy of T .

Theorem 2.1 [Dudley, 1967] Assume N(T, dX , ε) <∞ for every ε > 0. If∫ D

0

√
logN(T, dX , ε) dε <∞.

Then ∃ a modification of X, still denoted by X, such that

E
(

sup
t∈T

X(t)
)
≤ 16

√
2

∫ D
2

0

√
logN(T, dX , ε) dε. (2.1)

Fernique (1975) proved that (2.1) is also necessary if X is a Gaussian process which is stationary
or has stationary increments.

The proof of Dudley’s Theorem is based on a chaining argument. See Talagrand (2005), Marcus
and Rosen (2007).

The proof of Dudley’s Theorem gives an upper bound for the uniform modulus of continuity of
X:

ωX,τ (δ) = sup
s,t∈T,τ(s,t)≤δ

∣∣X(s)−X(t)
∣∣.

The following theorem is taken from Adler and Talor (2007).
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Theorem 2.2 Under the condition of Dudley’s theorem, there is a random variable η ∈ (0,∞)
such that for all 0 < δ < η,

ωX,dX (δ) ≤ K
∫ δ

0

√
logN(T, dX , ε) dε,

where ωX,dX (δ) is the modulus of continuity of X(t) on (T, dX) and K is a universal constant.

Theorem 2.2 can be applied easily to a wide class of Gaussian processes. For example, fractional
Brownian motion, solutions of linear stochastic heat and wave equations, and a Gaussian random
field {X(t), t ∈ T} satisfying

dX(s, t) �
(

log
1

|s− t|

)−γ
,

its sample functions are continuous if γ > 1/2.

Corollary 2.3 Let BH = {BH(t), t ∈ RN} be a fractional Brownian motion with index H ∈
(0, 1). Then BH has a modification, still denoted by BH , whose sample functions are almost surely
continuous. Moreover,

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t+ s)−BH(t)|
εH
√

log 1/ε
≤ K, a.s.

Proof Recall that dBH (s, t) = |s− t|H and ∀ ε > 0,

N
(
[0, 1]N , dBH , ε

)
≤ K

( 1

ε1/H

)N
.

It follows from Theorem 2.2 that ∃ a random variable η > 0 and a constant K > 0 such that for
all 0 < δ < η,

ωBH (δ) ≤ K

δ∫
0

√
log
( 1

ε1/H

)
dε ≤ K δ

√
log

1

δ
a.s.

Returning to the Euclidean metric and noticing

dBH (s, t) ≤ δ ⇐⇒ |s− t| ≤ δ1/H ,

yields the desired result. �

Later on, we will prove that there is a constant K ∈ (0,∞) such that

lim sup
ε→0

maxt∈[0,1]N ,|s|≤ε |BH(t+ s)−BH(t)|
εH
√

log 1/ε
= K, a.s.

This is an analogue of Lévy’s uniform modulus of continuity for Brownian motion.
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2.2 Majorizing measure (generic chaining)

In general, (2.1) is not necessary for sample continuity.
Talagrand (1987) proved the following necessary and sufficient for the boundedness and conti-

nuity.

Theorem 2.4 [Talagrand, 1987] Let X = {X(t), t ∈ T} be a centered Gaussian process with
values in R. Suppose D = supt,s∈T dX(s, t) <∞. Then

(i) X has a modification which is bounded on T if and only if there exists a probability measure
µ on T such that

sup
t∈T

∫ D

0

(
log

1

µ(BdX (t, ε))

)1/2
dε <∞, (2.2)

where BdX (t, ε) = {s ∈ T : dX(s, t) ≤ ε}. Moreover,

E
(

sup
t∈T

X(t)
)
≤ K inf

µ
sup
t∈T

∫ ∞
0

(
log

1

µ(BdX (t, ε))

)1/2
dε.

(ii) There exists a modification of X with bounded, uniformly continuous sample functions if and
only if there exists a probability measure µ on T such that

lim
ε→0

sup
t∈T

∫ ε

0

(
log

1

µ(BdX (t, u))

)1/2
du = 0.

Kwapień and Rosiński (2004) provided an upper bound for the uniform modulus of continuity
in terms of “weakly majorizing measure”.

Theorem 2.5 Under the condition of Theorem 2.4, there exists a random variable η ∈ (0, ∞) and
a constant K > 0 such that for all 0< δ < η,

ωX,dX (δ) ≤ K
δ∫

0

√
logN(T, dX , ε) dε, a.s.

2.3 Differentiability

(i). Mean-square differentiability: the mean square partial derivative of X at t is defined as

∂X(t)

∂tj
= l.i.mh→0

X(t+ hej)−X(t)

h
,

where ej is the unit vector in the j-th direction.
For a Gaussian field, sufficient conditions can be given in terms of the differentiability of the

covariance function (Adler, 1981).
(ii). Sample path differentiability: the sample function t 7→ X(t) is differentiable. This is much

stronger and more useful than (i).
Sample path differentiability of X(t) can be proved by using criteria for continuity.
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Consider a centered Gaussian field with stationary increments whose spectral density function
satisfies

f(λ) � 1(∑N
j=1 |λj |βj

)γ , ∀λ ∈ RN , |λ| ≥ 1, (2.3)

where (β1, . . . , βN ) ∈ (0,∞)N and

γ >

N∑
j=1

1

βj
.

Theorem 2.6 [Xue and Xiao, 2011] Let X = {X(t), t ∈ RN} be a centered Gaussian field with
stationary increments and spectral density which satisfies (2.3).

(i) If

βj

(
γ −

N∑
i=1

1

βi

)
> 2, (2.4)

then the partial derivative ∂X(t)/∂tj is continuous almost surely. In particular, if (2.4) holds
for all 1 ≤ j ≤ N , then almost surely X(t) is continuously differentiable.

(ii) If max
1≤j≤N

βj
(
γ −

∑N
i=1 1/βi

)
≤ 2, then X(t) is not differentiable in any direction.

Proof of (i) : Under (2.4), we know that the mean square partial derivative X ′j(t) exists. In order
to show that X ′j(t) has a continuous version, by Kolmorogov’s continuity theorem, it is enough to

show that for any compact interval I ⊂ RN , there exist constants c > 0 and η > 0 such that

E
[
X ′j(s)−X ′j(t)

]2 ≤ c |s− t|η ∀ s, t ∈ I. (2.5)

By the spectral representation of X, we have

E
(
X ′j(s)−X ′j(t)

)2
= E

[
(X ′j(s))

2
]

+ E
[
(X ′j(t))

2
]
− 2E

[
(X ′j(s)X

′
j(t))

]
= 2

∫
RN

λ2
j

(
1− cos 〈s− t, λ〉

)
f(λ)dλ.

From this, we can verify that (2.5) holds under (2.4).
It follows from (2.5) that the Gaussian field X ′j = {X ′j(t), t ∈ RN} has a continuous version

[still denoted by X ′j ].

We define a new Gaussian field X̃ = {X̃(t), t ∈ RN} by

X̃(t) = X(t1, · · · , tj−1, 0, tj+1, · · · , tN )

+

∫ tj

0
X ′j(t1, · · · , tj−1, sj , tj+1, · · · , tN ) dsj .

(2.6)

Then we can verify that X̃ is a continuous version of X and, for every t ∈ RN , X̃ ′j(t) = X ′j(t)

almost surely. This amounts to verify that for every t ∈ RN ,

E
[(
X̃(t)−X(t)

)2]
= 0,

which can be proved by using (2.6) and the representations for X(t) and X ′j(t). We omit the details.
�
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3 Lecture 3. Exact Results on Regularity of Gaussian Random
Fields

For a Gaussian field X = {X(t), t ∈ RN}, we study:

(i) Local modulus of continuity: law of the iterated logarithm (LIL)

(ii) Chung’s law of the iterated logarithm

(iii) Uniform modulus of continuity

(iv) Modulus of non-diffenerability

3.1 Local modulus of continuity

Let X = {X(t), t ∈ RN} be a centered, real-valued Gaussian random field. For local oscillation
of X(t) near a fixed point t0 ∈ RN , we may study the following question: Are there functions
ϕ1, ϕ2 : RN → R+ and constants c1, c2 ∈ (0,∞) such that

lim sup
r→0

max
|h|≤r

|X(t0 + h)−X(t0)|
ϕ1(h)

= κ1, a.s.

and

lim inf
r→0

max
|h|≤r

|X(t0 + h)−X(t0)|
ϕ2(h)

= κ2, a.s.?

The answers to these questions are referred to as the LIL and Chung’s LIL, respectively. They
describe different aspects of X near t0 and rely on different methods.

Many authors have studied these questions for Gaussian random fields, usually under the extra
condition of stationarity, or stationarity of increments. See, e.g., the book by Marcus and Rosen
(2006) for Gaussian processes, Li and Shao (2001), Meerschaert, Wang and Xiao (2013) for Gaussian
random fields.

We will use the following setting from Dalang, Mueller and Xiao (2017), which does not require
stationarity of the Gaussian random field nor its increments, and can handle anisotropy. It is more
convenient for applications to the solutions of linear SPDEs.

Condition (A1) Consider a compact interval T ⊂ RN . There exists a Gaussian random field
{v(A, t) : A ∈ B(R+), t ∈ T} such that

(a) For all t ∈ T , A 7→ v(A, t) is a real-valued Gaussian noise, v(R+, t) = X(t), and v(A, ·) and
v(B, ·) are independent whenever A and B are disjoint.

(b) There are constants a0 > 0 and γj > 0, j = 1, . . . , N such that for all a0 ≤ a ≤ b ≤ ∞ and
s = (s1, . . . , sN ), t = (t1, . . . , tN ) ∈ T ,∥∥v([a, b), s)−X(s)− v([a, b), t) +X(t)

∥∥
L2

≤ C
( N∑
j=1

aγj |sj − tj |+ b−1
)
,

(3.1)
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where ‖Y ‖L2 =
[
E(Y 2)

]1/2
for a random variable Y and

∥∥v([0, a0), s)− v([0, a0), t)
∥∥
L2 ≤ C

N∑
j=1

|sj − tj |. (3.2)

The parameters γj (j = 1, . . . , N) in Condition (A1) are important for characterizing sample
path properties of X(t).

Let

Hj = (γj + 1)−1 and Q =

N∑
j=1

H−1j .

Define the metric ρ(s, t) on RN by

ρ(s, t) =

N∑
j=1

|sj − tj |Hj .

In order to see that (A1) is satisfied by the solution of an SPED, one needs to construct the random
field v(A, x). As an example, consider the solution of the linear one-dimensional heat equation driven by
space-time white noise. In this case, RN is replaced by R+ ×R, and X(t) is u(t, x). Dalang, Mueller and X.
(2017) defined

v(A, t, x) =

∫∫
max(|τ |

1
4 , |ξ|

1
2 )∈A

e−iξx
e−iτt − e−tξ2

|ξ|2 − iτ
W (dτ, dξ),

and verified that (A1) is satisfied with γ1 = 3, γ2 = 1. Thus, H1 = 1/4 and H2 = 1/2.
The following lemmas are needed for applying general Gaussian methods. For example, Lemma 2.1 can

be applied to derive an upper bound for the uniform modulus of continuity for {X(t), t ∈ T}.

Lemma 3.1 [Dalang, Mueller, Xiao (2017)] Under (A1), there is a constant c ∈ (0,∞) such that ρ(s, t)

dX(s, t) ≤ c ρ(s, t), ∀ s, t ∈ T, (3.3)

where dX(s, t) = ‖X(s)−X(t)‖L2 is the canonical metric.

Proof For any a > a0,

dX(s, t) ≤ ‖X(s)− v([a0, a[, s)−X(t) + v([a0, a[, t)‖L2

+ ‖v([a0, a[, s)− v([a0, a[, t)‖L2 .

By (7.9) in (A1)(b), we have

‖v([a0, a[, s)− v([a0, a[, t)‖L2

≤ ‖X(s)− v([a,∞[, s)−X(t) + v([a,∞[, t)‖L2

+ ‖ − v([0, a0[, s) + v([0, a0[, t)‖L2 .

Applying (7.10) in (A1)(b), we see that

dX(s, t) ≤ C

 N∑
j=1

(a
H−1
j −1

0 + aH
−1
j −1)|sj − tj |+ a−1 +

N∑
j=1

|sj − tj |

 .
By hypothesis, maxj=1,...,N |sj − tj |Hj ≤ ρ(s, t) ≤ C a−10 , so we choose a ≥ a0 such that max

j=1,...,N
|sj − tj |Hj =

a−1.
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Notice that

(a
H−1
j −1

0 + aH
−1
j −1)|sj − tj |

=
[(
a0 |sj − tj |Hj

) 1−Hj
Hj +

(
a |sj − tj |Hj

) 1−Hj
Hj

]
|sj − tj |Hj

≤ 2
(
a |sj − tj |Hj

) 1−Hj
Hj |sj − tj |Hj

≤ 2|sj − tj |Hj

by the choice of a. This proves (3.3). �

Condition (A1) indicates that X(t) can be approximated by v([a, b], t). The following lemma quantifies
the approximation error.

Lemma 3.2 [Dalang, Mueller, Xiao (2017)] Assume that (A1) holds. Consider b > a > 1 and r > 0 small.
Set

A =

N∑
j=1

aH
−1
j −1 rH

−1
j + b−1.

There are constants A0, K and c such that for A ≤ A0r and

u ≥ KA log1/2
( r
A

)
, (3.4)

we have for all t0 ∈ T ,

P
{

sup
t∈S(t0,r)

∣∣X(t)−X(t0)− (v([a, b], t)− v([a, b], t0))
∣∣ ≥ u}

≤ exp
(
− u2

cA2

)
,

(3.5)

where S(t0, r) = {t ∈ T : ρ(t, t0) ≤ r}.

The proof of Lemma 3.2 makes use of the following important inequality from Lemma 2.1 in ’ Talagrand
(1995).

Lemma 3.3 Let D be the dX-diameter of a subset S ⊂ RN . There is a universal constant K such that, for
all u > 0, we have

P

{
sup
s, t∈S

∣∣X(s)−X(t)
∣∣ ≥ K(u+

∫ D

0

√
logN(S, dX , ε) dε

)}

≤ exp
(
− u2

D2

)
.

(3.6)

Proof of Lemma 3.2 Set

d̃(s, t) =
∥∥X(s)−X(t)− (v([a, b[, s)− v([a, b[, t)

∥∥
L2 .

Then
d̃(s, t) ≤

∥∥X(s)−X(t)‖L2 + ‖v([a, b[, s)− v([a, b[, t)
∥∥
L2 .

Since

X(s)−X(t) =
(
v([a, b[, s)− v([a, b[, t)

)
+
(
v(R+ \ [a, b[, s)− v(R+ \ [a, b[, t)

)
,
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and the two terms on the right-hand side are independent by (A1)(a), we see that

‖v([a, b[, s)− v([a, b[, t)‖L2 ≤ ‖X(s)−X(t)‖L2 .

By Lemma 3.3, we obtain
d̃(s, t) ≤ 2

∥∥X(s)−X(t)
∥∥
L2 ≤ Kρ(s, t) (3.7)

Therefore, for small ε > 0, the number of ε-balls (in metric d̃) needed to cover S(t0, r) is

N(S(t0, r), d̃, ε) ≤ cr
Q

εQ
.

For t ∈ S(t0, r), |tj − t0j | ≤ r
H−1
j , so by (7.9), we have

d̃(t, t0) ≤ CA.

Therefore the diameter D of S(t0, r) satisfies D ≤ CA.
Assuming that we have chosen the constant A0 and that A ≤ A0r, then such that∫ D

0

√
logN(S(t0, r), d̃, ε) dε

≤ K
∫ CA

0

√
log
(r
ε

)
dε ≤ KA

√
log

r

A
.

It follows from this and Lemma 3.3 that (3.5) holds for all u ≥ KA log1/2
(
r
A

)
. This proves Lemma 3.2.

Similarly, Lemma 3.3 implies

Lemma 3.4 [Meerschaert, Wang, X. (2013)] Assume that (A1) holds. Then there exist positive and finite
constants u0 and C such that for all t0 ∈ T , and u ≥ u0

P
(

sup
s:|sj |≤aj

|X(t0 + s)−X(t0)| ≥ u
N∑
j=1

a
Hj
j

)
≤ e−C u

2

for all a = (a1, . . . , aN ) ∈ (0, 1]N such that [t0 − a, t0 + a] ⊆ T .

3.2 Law of the iterated logarithm

Besides (A1), we also need the following condition.
Condition (A2) ‖X(t)‖L2 ≥ c > 0 for all t ∈ T and

E
[
(X(s)−X(t))2

]
≥ Kρ(s, t)2 for all s, t ∈ T.

Theorem 3.5 [Lee and Xiao, 2021] Let X = {X(t), t ∈ RN} be a centered Gaussian random field that
satisfies (A1) and (A2). Then for every t0 ∈ RN , there is a constant κ1 = κ1(t0) ∈ (0,∞) such that

lim sup
|h|↓0

sup
s∈[−h, h]

|X(t0 + s)−X(t0)|
ϕ1(s)

= κ1, a.s., (3.8)

where

ϕ1(s) = ρ(0, s)

[
log log

(
1 +

1∏N
j=1 |sj |Hj

)] 1
2

, ∀ s ∈ RN .
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Proof of Theorem 3.1. For any h ∈ (0, 1)N , put

M(h) = sup
s∈[−h,h]

|X(t0 + s)−X(t0)|
ϕ1(s)

.

We claim that there exist constants c3,1, c3,2 ∈ (0,∞) such that

lim sup
|h|→0

M(h) ≤ c3,1 a.s. (3.9)

and
lim sup
|h|→0

M(h) ≥ c3,2 a.s. (3.10)

Before proving (3.9) and (3.10), let us notice that, (3.9), (3.10) and the proof of Lemma 7.1.1 in Marcus
and Rosen (2006) imply (3.8) and the constant κ1 ∈ [c3,2, c3,1].

Proof of (3.9). Let δ > 0 be a constant whose value will be determined later. For any n = (n1, ..., nN ) ∈
NN , define the event

Fn =

{
sup

s:2−nj≤|sj |≤2−nj+1

ϕ1(s)−1|X(t0 + s)−X(t0)| ≥ δ
}
.

By Condition (A1), we see that for any s ∈ RN that satisfies 2−nj ≤ |sj | ≤ 2−nj+1 for j = 1, . . . , N , we have

ϕ1(s) ≥
( N∑
j=1

2−njHj
)√√√√log log

(
1 +

N∏
j=1

2(nj−1)Hj
)
.

This and Lemma 3.5 imply

P(Fn) ≤ exp

(
− Cδ2 log log

(
1 +

N∏
j=1

2(nj−1)Hj
))

≤ K
( N∑
j=1

nj

)−Cδ2
.

By taking δ large enough such that C δ2 > N , we see that∑
n∈NN

P(Fn) ≤ K
∑

n∈NN
|n|−Cδ

2

<∞.

Thus, by the Borel-Cantelli lemma, a.s. only finitely many of the events Fn occur. This implies

lim sup
|n|→∞

sup
s:2−nj≤|sj |≤2−nj+1

|X(t0 + s)−X(t0)|
ϕ1(s)

≤ δ a.s.

This and a monotonicity argument yield (3.9).
Proof of (3.10). It is sufficient to provide a sequence {hn} ⊂ (0, 1)N such that |hn| → 0 and

lim sup
n→∞

∣∣X(t0 + hn)−X(t0)
∣∣

ϕ1(hn)
≥
√

2 a.s. (3.11)

This will be done by using the Borel-Cantelli lemma.
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For 0 < µ < 1 and n ≥ 1, define hn = (hn,1, . . . , hn,N ) by

hn,j = exp
(
−H−1j n1+µ

)
(j = 1, . . . , N).

Then ρ(0, hn) = N exp(−n1+µ).
Let β > 0 be a constant and let dn = exp(n1+µ)n−β .

For s ∈ RN , we write X(s) = Xn(s) + X̃n(s), where

Xn(s) = v([dn, dn+1), s) and X̃n(s) = X(s)− v([dn, dn+1), s).

Then {Xn(s), s ∈ RN} and {X̃n(s), s ∈ RN} are independent. Moreover, the sequence {Xn(s), s ∈ RN},
n = 1, 2, ... are independent.

Notice that

lim sup
n→∞

|X(t0 + hn)−X(t0)|
ϕ1(hn)

≥ lim sup
n→∞

|Xn(t0 + hn)−Xn(t0)|
ϕ1(hn)

− lim sup
n→∞

|X̃n(t0 + hn)− X̃n(t0)|
ϕ1(hn)

:= lim sup
n→∞

I1(n)− lim sup
n→∞

I2(n).

We use (A1) to show that I1(n) is the main term and I2(n) is negligible. By (A1) (b), we have

E
(
X̃n(t0 + hn)− X̃n(t0)

)2
≤ C

( N∑
j=1

d
H−1
j −1

n hn,j + d−1n+1

)2

= ρ(0, hn)2 · CN−2 exp(2n1+µ)

( N∑
j=1

d
H−1
j −1

n hn,j + d−1n+1

)2

≤ Cρ(0, hn)2 ·
( N∑
j=1

n−β(H
−1
j −1) + exp(−nµ)(n+ 1)β

)2
≤ Cρ(0, hn)2 · n−2β(H

−1−1),

for n ≥ n0, where H = max
1≤j≤N

{Hj}.

Hence, for any η ∈ (0, 1),

P
(
|X̃n(t0 + hn)− X̃n(t0)| ≥ ηϕ1(hn)

}
≤ P

(
|N(0, 1)| ≥ Cη

√
log nnβ(H

−1−1)
}

≤ n−2

for all n large enough. Thus, the Borel-Cantelli lemma and the arbitrariness of η imply lim sup
n→∞

I2(n) = 0.

a.s.
On the other hand, by the independence of Xn and X̃n, Condition (A2) and (A1)(b), we have

E
(
Xn(t0 + hn)−Xn(t0)

)2
= E

(
X(t0 + hn)−X(t0)

)2 − E
(
X̃n(t0 + hn)− X̃n(t0)

)2
≥ Cρ(0, hn)2
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for all n large enough. It follows that

P
(
|Xn(t0 + hn)−Xn(t0)| ≥ η

√
2Cϕ1(hn)

}
≥ P

(
|N(0, 1)| ≥ η

√
(1 + µ) log n

}
≥ 1

η
√

2π(1 + µ) log n
n−η

2(1+µ)

for all n large enough.
If the constants η and µ are chosen such that η2(1 + µ) ≤ 1, we have

∞∑
n=1

P
(
|Xn(t0 + hn)−Xn(t0)| ≥ η

√
2Cϕ1(hn)

)
=∞.

Since the events in the above are independent, the Borel-Cantelli lemma implies that

lim sup
n→∞

I1(n) ≥ η
√

2C a.s.

This finishes the proof of Theorem 3.1.

3.3 Chung’s law of the iterated logarithm

For studying Chung’s LIL at t0 ∈ T , we need the following assumption on the small ball probability of X.
Condition (A3) There is a constant c such that for all t0 ∈ T , r > 0 and 0 < ε < r,

P
{

max
ρ(s, t0)≤r

|X(s)−X(t0)| ≤ ε
}
≤ exp

(
− c
(r
ε

)Q)
.

A similar lower bound for P
{

maxρ(s, t0)≤r |X(s)| ≤ ε
}

is given in Lemma 3.7 below, which can be proved
by applying the following general result due to Talagrand (1993) [cf. p. 257, Ledoux (1996)].

Lemma 3.6 [Talagrand (1993)] Let {Y (t), t ∈ S} be an R-valued centered Gaussian process indexed by a
bounded set S. If there is a decreasing function ψ : (0, δ] → (0,∞) such that N(S, dY , ε) ≤ ψ(ε) for all
ε ∈ (0, δ] and there are constants c3,4 ≥ c3,3 > 1 such that

c3,3ψ(ε) ≤ ψ(ε/2) ≤ c3,4ψ(ε) (3.12)

for all ε ∈ (0, δ], then there is a constant K depending only on c3,3 and c3,4 such that for all u ∈ (0, δ),

P
(

sup
s, t∈S

|Y (s)− Y (t)| ≤ u
)
≥ exp

(
−Kψ(u)

)
. (3.13)

Lemma 3.7 Under (A1), there is a constant c′ ∈ (0,∞) such that for every t0 ∈ T , r > 0 and 0 < ε < r,

P
{

max
ρ(s, t0)≤r

|X(s)−X(t0)| ≤ ε
}
≥ exp

(
− c′

(r
ε

)Q)
. (3.14)

Proof . Let S = {s ∈ T : ρ(s, t0) ≤ r}. It follows from Lemma 2.1 that for all ε ∈ (0, r),

N(S, dX , ε) ≤ c
N∏
i=1

(r
ε

) 1
Hi

= c
(r
ε

)Q
:= ψ(ε).

Clearly ψ(ε) satisfies the condition (3.12) in Lemma 3.6. Hence the lower bound in (3.14) follows from (3.13).
�
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The following is Chung’s law of the iterated logarithm for X. It describes the smallest local oscillation
of X(t), which is useful for studying hitting probabilities and fractal properties of X.

Theorem 3.8 [Lee and Xiao, 2021] Let X = {X(t), t ∈ RN} be a centered Gaussian random field that
satisfies (A1) and (A3). Then for every t0 ∈ T , there is a constant κ2 = κ2(t0) ∈ (0,∞) such that

lim inf
r→0

maxs:ρ(s, t0)≤r |X(t0 + s)−X(t0)|
r(log log 1/r)−1/Q

= κ2, a.s., (3.15)

where Q =
∑N
j=1H

−1
j .

Proof . Assumption (A1) implies a 0-1 law for the limit in the left hand-side of (3.15).
We need to prove that κ2 ∈ (0,∞). It is sufficient to prove that for some constants c3,5, c3,6 ∈ (0,∞),

lim inf
r→0

maxs:ρ(s,t0)≤r |X(t0 + s)−X(t0)|
r(log log 1/r)−1/Q

≥ c3,5, a.s., (3.16)

and

lim inf
r→0

maxs:ρ(s,t0)≤r |X(t0 + s)−X(t0)|
r(log log 1/r)−1/Q

≤ c3,6, a.s. (3.17)

In fact, (3.16) and (3.17) imply that κ2 ∈ [c3,5, c3,6].
Proof of (3.16). For any integer n ≥ 1, let rn = e−n. Let η > 0 be a constant and consider the event

An =

{
max

ρ(s, t0)≤rn
|X(s)−X(t0)| ≤ ηrn(log log 1/rn)−1/Q

}
.

By (A3) we have

P(An) ≤ exp
(
− c

ηQ
log n

)
= n−c/η

Q

,

which is summable if η > 0 is chosen small enough. Hence, (3.16) follows from the Borel-Cantelli lemma.

Proof of (3.17). For every integer n ≥ 1, we take rn = e−(n+n
2) and dn = en

2

. Then it follows that

rn dn = e−n and rn dn+1 > en.

It’s sufficient to prove that there exists a finite constant c3,7 such that

lim inf
n→∞

maxρ(s, t0)≤rn |X(t0 + s)−X(t0)|
rn(log log 1/rn)−1/Q

≤ c3,7 a.s. (3.18)

For proving (3.18) we will use (A1) to decompose X in a way similar to that in the proof of Theorem 3.1.

Define two Gaussian fields Xn and X̃n by

Xn(s) = v([dn, dn+1), s) and X̃n(s) = X(s)−Xn(s).

Then the Gaussian fields {Xn(s), s ∈ RN} (n = 1, 2, · · · ) are independent and for every n ≥ 1, Xn and X̃n

are independent as well.
Denote γ(r) = r(log log 1/r)−1/Q. We make the following two claims:

(i). There is a constant η > 0 such that

∞∑
n=1

P
{

max
ρ(s,t0)≤rn

|Xn(t0 + s)−Xn(t0)| ≤ ηγ(rn)

}
=∞. (3.19)
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(ii). For every η1 > 0,

∞∑
n=1

P
{

max
ρ(s, t0)≤rn

|X̃n(t0 + s)−Xn(t0)| > η1γ(rn)

}
<∞. (3.20)

Since the events in (3.19) are independent, we see that (3.18) follows from (3.19), (3.20) and the Borel-
Cantelli Lemma.

It remains to verify the claims (i) and (ii) above.
By Lemma 3.7 and Anderson’s inequality [see Anderson (1955)], we have

P
{

max
ρ(s, t0)≤rn

|Xn(t0 + s)−Xn(t0)| ≤ ηγ(rn)
}

≥ P
{

max
ρ(s, t0)≤rn

|X(t0 + s)−X(t0)| ≤ ηγ(rn)
}

≥ exp
(
− c′

ηQ
log(n+ n2)

)
= (n+ n2)−c

′/ηQ .

Hence (i) holds for η > (2c′)1/Q.
To prove Claim (ii), we let S = {s ∈ T : ρ(s, t0) ≤ rn} and consider on S the metric

d̃(s, t) =
∥∥X̃n(t0 + s)− X̃n(t0 + t)

∥∥
L2 .

By Lemma 3.1 we have d̃(s, t) ≤ c
∑N
i=1 |si − ti|Hi for all s, t ∈ T and hence

N(S, d̃, ε) ≤ c
(rn
ε

)Q
.

Now we estimate the d̃-diameter D̃ of S. By (7.9) in (A1),

d̃(s, t) ≤ C
( N∑
j=1

d
H−1
j −1

n |sj − tj |+ d−1n+1

)
≤ C e−n

2−(H−1∧2)n.

Thus D̃ ≤ C e−n2−(H−1∧2)n.

Notice that D̃ ≤ rne−((H
−1∧2)−1)n. The Dudley’s integral is∫ D̃

0

√
logN(S, d̃, ε) dε ≤

∫ D̃

0

√
log(

rn
ε

)Q dε

≤ Crn
√
n e−((H

−1∧2)−1)n.

Hence for any η1 > 0, it follows from by Lemma 3.3 that for all n large,

P
{

max
ρ(s, t0)≤rn

|X̃n(t0 + s)−Xn(t0)| > η1γ(rn)

}
≤ exp

(
−Kη21γ(rn)2

D̃2

)
≤ exp

(
−Kη21(log n)−2/Q e((H

−1∧2)−1)n
)
.

Therefore Claim (ii) holds. The proof of Theorem 3.8 is finished. �
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3.4 Exact uniform modulus of continuity

In order to prove an exact uniform modulus of continuity, we will make use of Condition (A1) and the
following:

Condition (A4) [sectorial local nondeterminism] There exists a constant c > 0 such that for all n ≥ 1
and u, t1, . . . , tn ∈ T ,

Var
(
X(u)

∣∣X(t1), . . . , X(tn)
)
≥ c

N∑
j=1

min
1≤k≤n

∣∣uj − tkj ∣∣2Hj . (3.21)

Condition (A4) and the following (A4′) are properties of strong local nondeterminism for Gaussian
random fields with certain anisotropy.

Condition (A4′) [strong local nondeterminism] There exists a constant c > 0 such that ∀ n ≥ 1 and
u, t1, . . . , tn ∈ T ,

Var
(
X(u)

∣∣X(t1), . . . , X(tn)
)
≥ c min

1≤k≤n
ρ(u, tk)2. (3.22)

Here are some remarks about (A4) and (A4′).

• The concept of local nondeterminism (LND) of a Gaussian process was first introduced by Berman
(1973) for studying local times of Gaussian processes.

• Pitt (1978) extended Berman’s definition to the setting of random fields.

• Cuzick and DuPreez (1982) introduced strong local φ-nonderterminism for Gaussian processes and
showed its usefulness in studying local times.

• The “sectorial local nondeterminism” was first discovered by Khoshnevisan and Xiao (2007) for the
Brownian sheet; and extended to fractional Brownian sheets by Wu and Xiao (2007).

• Xiao (2009), Luan and Xiao (2012) proved “strong local nondeterminism” for a large class of Gaussian
fields with stationary increments.

Theorem 3.9 [Meerschaert, Wang and Xiao (2013)] If a centered Gaussian field X = {X(t), t ∈ RN}
satisfies

E
[(
X(s)−X(t)

)2] ≤ cρ(s, t)2 for all s, t ∈ T (3.23)

and (A4). Then

lim
r→0

sup
t, s∈T,ρ(s, t)≤r

|X(s)−X(t)|
ρ(s, t)

√
log(1 + ρ(s, t)−1)

= κ3, (3.24)

where κ3 > 0 is a constant.

More precise information on the limit in (3.24) has been obtained by Lee and Xiao (2021) under Condition
(A4′).

Due to the monotonicity in r, the limit in the left-hand side of (3.24) exists a.s. We only need to prove
that the limit is a positive and finite constant. This is done in three parts:

(a). lim
r→0

sup
s, t∈T,ρ(s,t)≤r

|X(s)−X(t)|
ρ(s, t)

√
log(1+ρ(s, t)−1)

≤ c3,8 <∞, a.s.

(b). lim
r→0

sup
s, t∈T,ρ(s, t)≤r

|X(s)−X(t)|
ρ(s, t)

√
log(1+ρ(s, t)−1)

≥ c3,9 > 0, a.s.

(c). Eq. (3.24) follows from (a), (b), and a zero-one law.
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The proof of (a) relies on the following estimate of the tail probability which follows from Lemma 3.3:
For ε > 0 and x ≥ cε

√
log(1 + ε−1),

P
{

sup
s, t ∈ T,
ρ(s, t) ≤ ε

|X(t)−X(s)| ≥ x
}
≤ exp

(
−Kx2

ε2

)
.

and a standard Borel-Cantelli argument.
Or one can apply Theorem 2.2 (after Dudley’s theorem).
Proof of (b). For any n ≥ 2, we choose a sequence of points {tn,k, 1 ≤ k ≤ Ln} in T such that

ρ(tn,k, tn,k−1) = 2−n,

and for some direction i ∈ {1, . . . , N},

|tin,k − tin,k−1| ≥ 2−n/Hi , ∀ 2 ≤ k ≤ Ln.

We take Ln = min{2n/Hi}.
We will prove the following stronger statement:

lim inf
n→∞

max
2≤k≤Ln

|X(tn,k)−X(tn,k−1)|

2−n
√
n

≥ c3,9 > 0, a.s. (3.25)

Let η > 0 be a constant whose value will be chosen later. Consider the events

An =
{

max
2≤k≤Ln

∣∣X(tn,k)−X(tn,k−1)
∣∣ ≤ η2−n

√
n
}

and write

P
(
An
)

= P
{

max
2≤k≤Ln−1

∣∣X(tn,k)−X(tn,k−1)
∣∣ ≤ η2−n

√
n
}

× P
{∣∣X(tn,Ln)−X(tn,Ln−1)

∣∣ ≤ η2−n
√
n
∣∣ÃLn−1}, (3.26)

where
ÃLn−1 =

{
max

2≤k≤Ln−1

∣∣X(tn,k)−X(tn,k−1)
∣∣ ≤ η2−n

√
n
}
.

The conditional distribution of the Gaussian random variable X(tn,Ln) − X(tn,Ln−1) under ÃLn−1 is
still Gaussian and, by (A4), its conditional variance satisfies

Var
(
X(tn,Ln)−X(tn,Ln−1)

∣∣ÃLn−1) ≥ c 2−2n.

This and Anderson’s inequality (1955) imply

P
{∣∣X(tn,Ln)−X(tn,Ln−1)

∣∣ ≤ η2−n
√
n
∣∣ÃLn−1}

≤ P
{∣∣N(0, 1)

∣∣ ≤ c η√n} (use Mill’s ratio)

≤ 1− 1

cη
√
n

exp
(
− c2η2n

2

)
(use 1− x ≤ e−x for x > 0)

≤ exp

(
− 1

cη
√
n

exp
(
− c2η2n

2

))
.
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Iterating this procedure in (3.26) for Ln times, we obtain

P
(
An
)
≤ exp

(
− 1

cη
√
n
Ln exp

(
− c2η2n

2

))
.

By taking η > 0 small enough, we have
∞∑
n=1

P
(
An
)
<∞.

Hence the Borel-Cantelli lemma implies (3.25).
For any λ > 0, define the set of “fast points”

F (λ) =

{
t ∈ [0, 1]N : lim sup

r→0

|X(t+ h)−X(t)|

ρ(0, h)
√

log 1
ρ(0,h)

≥ λ
}
.

We end this section with the following questions:

• What is the Hausdorff dimension of F (λ)?

• For a given set E ⊂ [0, 1]N , when is

P{F (λ) ∩ E 6= ∅} > 0?

3.5 Modulus of non-differentiability

Wang and Xiao (2019) proved the following modulus of non-differentiability for fractional Brownian motion.
For any compact rectangle T ⊆ RN ,

lim
ε→0+

inf
t∈T

sups∈B(t,ε) |BH(s)−BH(t)|
εH | log 1/ε|−H/N

= κ4, a.s.,

where κ4 ∈ (0,∞) is a constant related to the small ball probability of BH .
This result was extended to a large class of (approximately isotropic) Gaussian random fields with

stationary increments by Wang, Su and Xiao (2020). The following theorem is more general and can be
applied to SPDEs.

Theorem 3.10 [Wang and Xiao, 2021] If a centered Gaussian field X = {X(t), t ∈ RN} satisfies Condition
(A1), (A4′) and a regularity condition on the second order derivative of the covariance function K(s, t) =
E
[
X(s)X(t)

]
on T × T\{(s, s), s ∈ T}. Then

lim inf
r→0

inf
t∈T

maxρ(s, t)≤r |X(s)−X(t)|
r(log r−1)−1/Q

= κ5, (3.27)

where κ5 ∈ (0,∞) is a constant. In particular, the sample function of X is almost surely nowhere differen-
tiable in any direction.

The proof of Theorem 3.10 has three parts:

(a). lim inf
r→0

inf
t∈T

max
ρ(s, t)≤r

|X(s)−X(t)|

r(log r−1)−1/Q ≥ c3,10 > 0, a.s.

(b). lim inf
r→0

inf
t∈T

max
ρ(s,t)≤r

|X(s)−X(t)|

r(log r−1)−1/Q ≤ c3,11 <∞, a.s.

(c). A zero-one law for the modulus of non-differentiability [This can be proved under Condition (A1).]

26



The proof of (a) relies on the following small ball probability estimate and the Borel-Cantelli lemma.
Without loss of generality, we assume T = [0, 1]N .

Lemma 3.11 [Xiao, 2009] Let X = {X(t), t ∈ RN} be a centered Gaussian field that satisfies (A1) and
(A4′) on T = [0, 1]N . Then there exist constants C and C ′ such that for every t ∈ T and 0 < ε ≤ r,

exp
(
− C ′

(r
ε

)Q) ≤ P
{

max
s∈T :ρ(s, t)≤r

|X(s)−X(t)| ≤ ε
}
≤ exp

(
− C

(r
ε

)Q)
,

where Q =
∑N
j=1

1
Hj

.

Proof of (a). Let θ > 1 be a constant. For any n ≥ 2, let εn = θ−n. Divide T into Ln rectangles of

sides ε
1/Hj
n (j = 1, . . . , N). Denote these rectangles by Ii, where i = (i1, . . . , iN ) and ij ∈ {1, . . . , ε

−1/Hj
n }.

Denote the lower-left vertex by ti.
Let γ(εn) = εn(log(1/εn))−1/Q. By Lemma 3.8, we have

P
(

min
i

max
s∈Ii
|X(s)−X(ti)| ≤ ηγ(εn)

)
≤
∑
i

P
(

max
s∈Ii
|X(s)−X(ti)| ≤ ηγ(εn)

)
≤ Ln exp

(
− Cη−Q log(1/εn)

)
= θn(Q−Cη

−Q),

which is summable if η > 0 is chosen small enough. This and the Borel-Cantelli lemma yield (a).
Proof of (b). Using the notation in the last page, it is sufficient to prove that

lim inf
n→∞

min
i

max
s, t∈Ii

|X(s)−X(t)|

εn(log ε−1n )−1/Q
≤ c3,11 <∞, a.s.

This is more difficult to prove. Besides small ball probability estimates, we make use of the following tools:

• due to non-stationarity, a general framework on limsup random fractals that extends that of Khosh-
nevisan, Peres, and X. (2000) is needed. This was done by Hu, Li, and X. (2021) for studying random
covering sets.

• a correlation inequality of Shao (2003).

Since the proof quite lengthy, we omit the details here.

4 Lecture 4. Properties of Strong Local Nondeterminism of Gaus-
sian Random Fields

One of the main difficulties in studying sample path properties of anisotropic Gaussian random fields such
as fractional Brownian sheets is the complexity of their dependence structure. For example, unlike frac-
tional Brownian motion which is locally nondeterministic [see Pitt (1978)] or the Brownian sheet which
has independent increments, a fractional Brownian sheet has neither of these properties. The same is true
for anisotropic Gaussian random fields in general. The main technical tool which we will apply to study
anisotropic Gaussian random fields is the properties of strong local nondeterminism [SLND] and sectorial
local nondeterminism.

Recall that the concept of local nondeterminism was first introduced by Berman (1973) to unify and
extend his methods for studying local times of real-valued Gaussian processes, and then extended by Pitt
(1978) to Gaussian random fields.
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A Gaussian process Y = {Y (t), t ∈ R} is called locally nondeterministic on T ⊆ R if for every integer
m ≥ 2,

lim
ε→0

inf
tm−t1≤ε

Vm > 0, (4.1)

where Vm is the relative prediction error:

Vm =
Var
(
Y (tm)− Y (tm−1)|Y (t1), . . . , Y (tm−1)

)
Var
(
Y (tm)− Y (tm−1)

)
and the infimum in (4.1) is taken over all ordered points t1 < t2 < · · · < tm in T with tm − t1 ≤ ε.

(4.1) is equivalent to the following property: For every integer m ≥ 2, there exist positive constants
C(m) and ε (both may depend on m) such that

Var
( m∑
k=1

ak
(
Y (tk)− Y (tk−1)

))
≥ C(m)

m∑
k=1

a2k Var
(
Y (tk)− Y (tk−1)

) (4.2)

for all ordered points t1 < t2 < · · · < tm in T with tm − t1 < ε and ak ∈ R (k = 1, . . . ,m).
Pitt (1978) used (4.2) to define local nondeterminism of a Gaussian random field X = {X(t), t ∈ RN}

with values in R by introducing a partial order among t1, . . . , tm ∈ RN .
Pitt (1978) proved that fractional Brownian motion BH = {BH(t), t ∈ RN} has the following property:

For any u ∈ RN\{0}, and and r ∈ (0, |u|),

Var
(
BH(u)

∣∣BH(t), |t− u| ≥ r
)

= c r2H ,

where c > 0 is a constant. This implies that BH satisfies the strong local nondeterminism on any compact
interval I ⊂ RN\{0}.

Cuzick and DuPreez (1982) introduced strong local φ-nonderterminism and showed its usefulness in
studying local times.

The notion of strong local nondeterminism was later developed to investigate the regularity of local
times, small ball probabilities and other sample path properties of Gaussian processes and Gaussian random
fields. We refer to Xiao (2006, 2007) for more information on the history and applications of the properties
of local nondeterminism.

For Gaussian random fields, the aforementioned properties of local nondeterminism can only be satisfied
by those with approximate isotropy. It is well-known that the Brownian sheet does not satisfy the properties
of local nondeterminism in the senses of Berman or Pitt. Because of this, many problems for fractional
Brownian motion and the Brownian sheet have to be investigated using different methods.

Khoshnevisan and Xiao (2007a) have recently proved that the Brownian sheet satisfies the sectorial local
nondeterminism [i.e., (C3) with H = 〈1/2〉] and applied this property to study various analytic and geometric
properties of the Brownian sheet; see also Khoshnevisan, Wu and Xiao (2006).

Wu and Xiao (2007) extended the result of Khoshnevisan and Xiao (2007a) and proved that fractional
Brownian sheet BH0 satisfies Condition (C3).

Theorem 4.1 Let BH0 = {BH0 (t), t ∈ RN} be an (N, 1)-fractional Brownian sheet with index H = (H1, . . . ,HN ) ∈
(0, 1)N . For any fixed number ε ∈ (0, 1), there exists a positive constant c3,1 , depending on ε,H and N only,
such that for all positive integers n ≥ 1, and all u, t1, . . . , tn ∈ [ε, ∞)N , we have

Var
(
BH0 (u)

∣∣ BH0 (t1), . . . , BH0 (tn)
)
≥ c

3,1

N∑
j=1

min
0≤k≤n

∣∣uj − tkj ∣∣2Hj , (4.3)

where t0j = 0 for j = 1, . . . , N .
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Proof While the argument of Khoshnevisan and Xiao (2007a) relies on the property of independent
increments of the Brownian sheet and its connection to Brownian motion, the proof for BH0 is based on a
Fourier analytic argument in Kahane (1985, Chapter 18) and the harmonizable representation of BH0 . We
refer to Wu and Xiao (2007) for details. �

Now we prove a sufficient condition for an anisotropic Gaussian random field with stationary increments
to satisfy Condition (C3′).

Theorem 4.2 Let X = {X(t), t ∈ RN} be a centered Gaussian random field in R with stationary increments
and spectral density f(λ). Assume that there is a vector H = (H1, . . . ,HN ) ∈ (0, 1)N such that

f(λ) � 1(∑N
j=1 |λj |Hj

)2+Q , ∀λ ∈ RN\{0}, (4.4)

where Q =
∑N
j=1

1
Hj

. Then there exists a constant c
3,2
> 0 such that for all n ≥ 1, and all u, t1, . . . , tn ∈ RN ,

Var
(
X(u) | X(t1), . . . , X(tn)

)
≥ c3,2 min

0≤k≤n
ρ(u, tk)2, (4.5)

where t0 = 0.

Remark 4.3 The following are some comments about Theorem 4.2.

(i) When H1 = · · · = HN , (4.5) is of the same form as the SLND of fractional Brownian motion [cf. Pitt
(1978)]. As shown by Xiao (1997b, 2007) and Shieh and Xiao (2006), many sample path properties of
such Gaussian random fields are similar to those of fractional Brownian motion.

(ii) Condition (4.4) can be significantly weakened. In particular, one can prove that similar results hold for
Gaussian random fields with stationary increments and discrete spectrum measures; see Xiao (2008)
for details.

Proof of Theorem 4.2 Denote r ≡ min
0≤k≤n

ρ(u, tk). Since the conditional variance in (4.5) is the square of

the L2(P)-distance of X(u) from the subspace generated by {X(t1), . . . , X(tn)}, it is sufficient to prove that
for all ak ∈ R (1 ≤ k ≤ n),

E
(
X(u)−

n∑
k=1

akX(tk)

)2

≥ c
3,2
r2 (4.6)

and c
3,2
> 0 is a constant which may only depend on H and N .

By the stochastic integral representation (1.4) of X, the left hand side of (4.6) can be written as

E
(
X(u)−

n∑
k=1

akX(tk)

)2

=

∫
RN

∣∣∣∣ei〈u,λ〉 − 1−
n∑
k=1

ak
(
ei〈t

k, λ〉 − 1
)∣∣∣∣2 f(λ) dλ. (4.7)

Hence, we only need to show ∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk, λ〉

∣∣∣2 f(λ) dλ ≥ c3,2 r2, (4.8)

where t0 = 0 and a0 = −1 +
∑n
k=1 ak.

Let δ(·) : RN → [0, 1] be a function in C∞(RN ) such that δ(0) = 1 and it vanishes outside the open ball

Bρ(0, 1) in the metric ρ. Denote by δ̂ the Fourier transform of δ. Then δ̂(·) ∈ C∞(RN ) as well and δ̂(λ)
decays rapidly as |λ| → ∞.
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Let E be the diagonal matrix with H−11 , . . . ,H−1N on its diagonal and let δr(t) = r−Qδ(r−Et). Then the
inverse Fourier transform and a change of variables yield

δr(t) = (2π)−N
∫
RN

e−i〈t,λ〉 δ̂(rEλ) dλ. (4.9)

Since min{ρ(u, tk) : 0 ≤ k ≤ n} ≥ r, we have δr(u − tk) = 0 for k = 0, 1, . . . , n. This and (4.9) together
imply that

J :=

∫
RN

(
ei〈u,λ〉 −

n∑
k=0

ak e
i〈tk,λ〉

)
e−i〈u,λ〉 δ̂(rEλ) dλ

= (2π)N
(
δr(0)−

n∑
k=0

ak δr(u− tk)

)
= (2π)N r−Q.

(4.10)

On the other hand, by the Cauchy-Schwarz inequality and (4.7), we have

J2 ≤
∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk,λ〉

∣∣∣2 f(λ) dλ ·
∫
RN

1

f(λ)

∣∣∣δ̂(rEλ)
∣∣∣2 dλ

≤ E
(
X(u)−

n∑
k=1

akX(tk)

)2

· r−Q
∫
RN

1

f(r−E λ)

∣∣∣δ̂(λ)
∣∣∣2 dλ

≤ cE
(
X(u)−

n∑
k=1

akX(tk)

)2

· r−2Q−2,

(4.11)

where c > 0 is a constant which may only depend on H and N .
We square both sides of (4.10) and use (4.11) to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E
(
X(u)−

n∑
k=1

akX(tk)

)2

.

Hence (4.8) holds. This finishes the proof of the theorem. �

Given jointly Gaussian random variables Z1, . . . , Zn, we denote by detCov
(
Z1, . . . , Zn

)
the determinant

of their covariance matrix. If detCov
(
Z1, . . . , Zn

)
> 0, then we have the identity

(2π)n/2

detCov
(
Z1, . . . , Zn

) =

∫
Rn

E exp

(
− i

n∑
k=1

uk Zk

)
du1 · · · dun. (4.12)

By using the fact that, for every k, the conditional distribution of Zk given Z1, . . . , Zk−1 is still Gaussian with
mean E(Zk|Z1, . . . , Zk−1) and variance Var(Zk|Z1, . . . , Zk−1), one can evaluate the integral in the right-hand
side of (4.12) and thus verify the following formula:

detCov(Z1, . . . , Zn) = Var(Z1)

n∏
k=2

Var
(
Zk
∣∣Z1, . . . , Zk−1

)
. (4.13)

A little thought reveals that (4.13) still holds when detCov
(
Z1, . . . , Zn

)
= 0. Note that the left-hand side

of (4.13) is permutation invariant for Z1, . . . , Zn, one can represent detCov(Z1, . . . , Zn) in terms of the
conditional variances in n! different ways.
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Combined with (4.3) or (4.5), the identity (4.13) can be applied to estimate the joint distribution of the
Gaussian random variables X(t1), . . . , X(tn), where t1, . . . , tn ∈ RN . This is why the properties of strong
local nondeterminism are not only essential in this paper, but will also be useful in studying self-intersection
local times [see Meerschaert et al. (2007) for results on fractional Brownian sheets], exact Hausdorff measure
of the sample paths and other related problems.

The following simple result will be needed in Section 6.

Lemma 4.4 Let X be a Gaussian random field satisfying Condition (C3′) [resp., (C3)]. Then for all
integers n ≥ 1 and for all distinct points t1, . . . , tn ∈ [ε, 1]N [resp., all points t1, . . . , tn ∈ [ε, 1]N with distinct
coordinates, i.e., tki 6= tlj when (i, k) 6= (j, l) ], the Gaussian random variables X(t1), . . . , X(tn) are linearly
independent.

Proof We assume Condition (C3′) holds and let t1, . . . , tn ∈ [ε, 1]N be n distinct points. Then it follows
from (4.13) that detCov

(
X(t1), . . . , X(tn)

)
> 0. This proves the lemma. Similar conclusion holds when

Condition (C3) is satisfied. �

4.1 Spectral conditions for strong local nondeterminism

Let X = {X(t), t ∈ RN} be a centered Gaussian field with stationary increments and X(0) = 0.
For any h ∈ RN we have

E
(
X(t+ h)−X(t)

)2
= 2

∫
RN

(
1− cos〈h, λ〉

)
∆(dλ),

where ∆(dλ) is the spectral measure of X, which satisfies∫
RN

|λ|2

1 + |λ|2
∆(dλ) <∞.

It follows that X has the stochastic integral representation:

X(t)
d
=

∫
RN

(
ei〈t,λ〉 − 1

)
W̃ (dλ),

where W̃ (dλ) is a centered complex-valued Gaussian random measure with ∆ as its control measure.
Remarks (i). If Y = {Y (t), t ∈ RN} is a stationary Gaussian field, let X(t) = Y (t) − Y (0)

for all t ∈ RN . Then X = {X(t), t ∈ RN} has stationary increments and has the same spectral
measure as that of Y .

(ii). The spectral measure ∆ can be

• absolutely continuous with density f(λ), or

• singular with fractal support, or

• singular with a discrete support.

Theorem 4.5 [Xue and Xiao, 2011] Let X = {X(t), t ∈ RN} be a Gaussian field with stationary
increments and spectral density f(λ). If there are constants H1, · · · , HN ∈ (0, 1]N and K > 0 such
that

f(λ) � 1(∑N
j=1 |λj |Hj

)2+Q
, λ ∈ RN , |λ| ≥ K, (4.14)
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where Q =
∑N

j=1
1
Hj

, then ∃ a constant c > 0 such that for all n ≥ 1 and u, t1, . . . , tn ∈ RN ,

Var
(
X(u)

∣∣X(t1), . . . , X(tn)
)
≥ c min

0≤k≤n
ρ(u, tk)2, where t0 = 0.

Observe from (4.14) that the behavior of f(λ) near 0 is not needed.
For proving Theorem 4.5, we need the following lemma.

Lemma 4.6 Assume (4.14) is satisfied, then for any fixed constant L > 0, there exists a positive
and finite constant c1 such that for all functions g of the form

g(λ) =
n∑
k=1

ak(e
i〈tk,λ〉 − 1), (4.15)

where ak ∈ R and tk ∈ [−L, L]N , we have

|g(λ)| ≤ c1 |λ|
(∫

RN
|g(ξ)|2f(ξ)dξ

)1/2
(4.16)

for all λ ∈ RN that satisfy |λ| ≤ K.

Proof By (4.14), we can find positive constants C and η, such that

f(λ) ≥ C

|λ|η
, ∀λ ∈ RN with |λ| large enough.

Let G be the collection of the functions g(z) defined by (4.15) with ak ∈ R, sk ∈ [−L,L]N and
z ∈ CN . Since each g ∈ G is an entire function, it follows from Proposition 1 of Pitt (1975) that
for any given constant K,

c1 = sup
g∈G

z∈U(0,K)

{
|g(z)| :

∫
RN
|g(λ)|2f(λ) dλ ≤ 1

}
<∞,

where U(0,K) = {z ∈ CN : |z| < K} is the open ball of radius K in CN .
Since g(0) = 0 and g is analytic in U(0,K), Schwartz’s lemma implies

∣∣g(z)
∣∣ ≤ c1K

−1 |z|
(∫

RN
|g(ξ)|2 f(ξ)dξ

)1/2

for all z ∈ U(0,K). This finishes the proof of Lemma 4.6. �

Proof of Theorem 4.5. Denote r ≡ min0≤k≤n ρ(u, tk). It is sufficient to prove that for all
ak ∈ R (1 ≤ k ≤ n),

E
(
X(u)−

n∑
k=1

akX(tk)

)2

≥ c r2. (4.17)
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By the stochastic integral representation of X, the left hand side of (4.17), up to a constant, can
be written as

E
(
X(u)−

n∑
k=1

akX(tk)
)2

=

∫
RN

∣∣∣ei〈u,λ〉 − 1−
n∑
k=1

ak (ei〈t
k, λ〉 − 1)

∣∣∣2 f(λ) dλ.

(4.18)

Hence, we only need to show∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk, λ〉

∣∣∣2 f(λ) dλ ≥ c r2, (4.19)

where t0 = 0 and a0 = −1 +
∑n

k=1 ak.
Let δ(·) : RN → [0, 1] be a function in C∞(RN ) such that δ(0) = 1 and it vanishes outside the

open ball Bρ(0, 1).

Denote by δ̂ the Fourier transform of δ. Then δ̂(·) ∈ C∞(RN ) and decays rapidly as |λ| → ∞.
Let A be the diagonal matrix with H−1

1 , . . . ,H−1
N on its diagonal and let δr(t) = r−Qδ(r−At).

By the inverse Fourier transform,

δr(t) = (2π)−N
∫
RN

e−i〈t,λ〉 δ̂(rAλ) dλ.

Since min{ρ(u, tk) : 0 ≤ k ≤ n} = r, we have

δr(u− tk) = 0 for k = 0, 1, . . . , n.

Hence,

I =

∫
RN

(
ei〈u,λ〉 −

n∑
k=0

ak e
i〈tk,λ〉

)
e−i〈u,λ〉 δ̂(rAλ) dλ

= (2π)N
(
δr(0)−

n∑
k=0

ak δr(u− tk)
)

= (2π)N r−Q.

(4.20)

We split the integral in (4.20) over {λ : |λ| < K} and {λ : |λ| ≥ K} and denote the two integrals
by I1 and I2, respectively. It follows from Lemma 4.1 that

I1 ≤
∫
|λ|<K

∣∣∣ei〈u,λ〉 − n∑
k=0

ake
i〈tk,λ〉

∣∣∣|δ̂(rAλ)|dλ

≤ c1

[ ∫
RN

∣∣∣ei〈u,λ〉 − n∑
k=0

ake
i〈tk,λ〉

∣∣∣2 f(λ) dλ
]1/2

×
∫
|λ|<K

|λ||δ̂(rAλ)|dλ

≤ c2

[
E
(
X(u)−

n∑
k=0

akX(tk)
)2]1/2

.

(4.21)
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On the other hand, the Cauchy-Schwarz inequality gives

I2 ≤
∫
|λ|≥K

∣∣∣ei〈u,λ〉 − n∑
k=0

ak e
i〈tk,λ〉

∣∣∣2 f(λ) dλ

×
∫
|λ|≥K

∣∣δ̂(rAλ)
∣∣2

f(λ)
dλ

≤ E
(
X(u)−

n∑
k=1

akX(tk)
)2
· r−Q

∫
RN

∣∣δ̂(λ)
∣∣2

f(r−A λ)
dλ

≤ cE
(
X(u)−

n∑
k=1

akX(tk)
)2
· r−2Q−2.

We square both sides of (4.20) and use the above to obtain

(2π)2N r−2Q ≤ c r−2Q−2 E
(
X(u)−

n∑
k=1

akX(tk)
)2
.

This proves (4.19) and hence the theorem. �

Remarks

• This method can be modified to prove sectorial local nondeterminism (by choosing appropriate
function δ(·) : RN → [0, 1].

• The method is applied in Lan, Marinucci and Xiao (2018) to prove strong local nondetermin-
ism for isotropic Gaussian random fields on the sphere S2.

4.2 A comparison theorem

Now we consider the case where the spectral measure ∆ may be singular.
For any λ ∈ RN and h > 0, denote by C(λ, h) the cube with side-length 2h and center λ, i.e.,

C(λ, h) =
{
x ∈ RN : |xj − λj | ≤ h, j = 1, · · · , N

}
.

Let L2(C(0, L)) be the subspace of g ∈ L2(RN ) whose support is contained in C(0, L).

Theorem 4.7 [Luan and Xiao, 2012] Let {Y (t), t ∈ RN} be a real, centered Gaussian field with
stationary increments and Y (0) = 0. If for some h > 0 the spectral measure ∆ of Y satisfies

0 < lim inf
|λ|→∞

ρ(0, λ)Q+2∆(C(λ, h))

≤ lim sup
|λ|→∞

ρ(0, λ)Q+2∆(C(λ, h)) <∞,
(4.22)

then for any L > 0 such that LhN < log 2, for all u, t1, . . . , tn ∈ C(0, L),

Var
(
Y (u)

∣∣Y (t1), . . . , Y (tn)
)
≥ c min

0≤k≤n
ρ(u, tk)2.
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In order to prove 4.7, we will make use of the following lemma.

Lemma 4.8 Pitt, 1975] Let ∆̃(dλ) be a positive measure on RN . If, for some constant h > 0,
∆̃(dλ) satisfies

0 < lim inf
|λ|→∞

∆̃(C(λ, h)) ≤ lim sup
|λ|→∞

∆̃(C(λ, h)) <∞.

Then for every L > 0 satisfying LhN < log 2, we have∫
RN
|ψ̂(λ)|2∆̃(dλ) �

∫
RN
|ψ̂(λ)|2dλ

for all ψ ∈ L2(C(0, L)).

Lemma 4.9 Luan and Xiao, 2012] Let ∆1(dλ) be a measure on RN such that for some h > 0,

0 < lim inf
|λ|→∞

ρ(0, λ)Q+2∆1(C(λ, h))

≤ lim sup
|λ|→∞

ρ(0, λ)Q+2∆1(C(λ, h)) <∞.

Then for any L > 0 with LhN < log 2, ∃ constants c3 and c4 such that∫
RN
|g(λ)|2∆1(dλ) �

∫
RN

|g(λ)|2

(
∑N

j=1 |λj |Hj )Q+2
dλ

for all g(λ) as in Lemma 4.1.

Theorem 4.7 follows from Lemma 4.9 and Theorem 4.5.
Example 4.1. Let {ξn, n ∈ ZN} and {ηn, n ∈ ZN} be two independent sequences of i.i.d. N(0, 1)

random variables. Let

Z(t) =
∑
n∈ZN

an
(
ξn cos 〈n, t〉+ ηn sin 〈n, t〉

)
, t ∈ RN ,

where {an, n ∈ ZN} is a sequence of real numbers such that

a2
n �

1(∑N
j=1 |nj |Hj

)Q+2
.

By Theorem 4.7, the Gaussian field Y (t) = Z(t)−Z(0) has the property of strong local nonde-
terminism.

Example 4.2. Let µ be the measure on R obtained by “patching” fractal probability measures
on [n, n+ 1], and let the spectral measure ∆ be given by

dµ(λ)

|λ|1+2H
,

then Theorem 4.7 implies that any Gaussian process X with spectral measure ∆ has the property
of SLND which is similar to that of fBm BH .
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4.3 SLND of linear SHE

Consider the linear stochastic heat equation

∂u

∂t
(t, x) =

1

2
∆u(t, x) + σ Ẇ , t ≥ 0, x ∈ Rk,

u(0, x) ≡ 0,
(4.23)

where ∆ is the Laplacian operator, σ is a constant or a deterministic function, and Ẇ is a Gaussian
noise that is white in time and has a spatially homogeneous covariance [Dalang (1999)] given by
the Riesz kernel with exponent β if k ≥ 1 and β ∈ (0, k ∧ 2), i.e.

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white noise considered by Walsh (1986).
It follows from Dalang (1999) that the mild solution of (4.23) is the mean zero Gaussian random

field u = {u(t, x), t ≥ 0, x ∈ R} defined by

u(t, x) =

∫ t

0

∫
R
G̃t−r(x− y)σW (drdy), t ≥ 0, x ∈ R,

where G̃t(x) is the Green kernel given by

G̃t(x) = (2πt)−1/2 exp
(
− |x|

2

2t

)
, ∀ t > 0, x ∈ Rk.

Dalang, Khoshnevisan, and Nualart (2007) that for any 0 < a < b <∞,

E
(
|u(t, x)− u(s, y)|2

)
� ρ((t, x), (s, y))2 (4.24)

for all (t, x), (s, y) ∈ [a, b]× [−b, b]k, where

ρ((t, x), (s, y)) = |t− s|
2−β
4 + |x− y|

2−β
2 .

Even though the solution {u(t, x), t ≥ 0, x ∈ R} is not stationary nor has stationary increments,
by using the following representation in Dalang, Mueller and Xiao (2017):

u(t, x) =

∫
R

∫
Rk
e−iξx

e−iτt − e−tξ2

|ξ|2 − iτ
|ξ|(β−k)/2W (dτ, dξ),

we can prove

Theorem 4.10 [Khoshnevisan, Lee, and Xiao, 2021] For any 0 < a < b < ∞, there exists a
constant C > 0 such that for all integers n ≥ 1, for all (t, x), (t1, x1), . . . , (tn, xn) ∈ [a, b]× [−b, b]k,

Var
(
u1(t, x)|u1(t1, x1), . . . , u1(tn, xn)

)
≥ C min

1≤i≤n
ρ((t, x), (ti, xi))2.

Consequently, many regularity properties of {u(t, x), t ≥ 0, x ∈ R} can be derived.
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4.4 SLND of linear stochastic wave equation

The linear stochastic wave equation
∂2

∂t2
u(t, x) = ∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0,

(4.25)

where Ẇ is a Gaussian noise as in the previous section with exponent β if k ≥ 1 and β ∈ (0, k∧ 2).
The existence of real-valued process solution to (4.25) was studied by Walsh (1986) for the

space-time while noise and by Dalang (1999) in the more general setting.
Recall that the fundamental solution of the wave equation G is

G(t, x) =
1

2
1{|x|<t} if k = 1;

G(t, x) = ck

(
1

t

∂

∂t

)(k−2)/2

(t2 − |x|2)
−1/2
+ , if k ≥ 2 is even;

and

G(t, x) = ck

(
1

t

∂

∂t

)(k−3)/2 σkt (dx)

t
, if k ≥ 3 is odd,

where σkt is the uniform surface measure on the sphere {x ∈ Rk : |x| = t}.
For any dimension k ≥ 1, the Fourier transform of G in variable x is given by

F (G(t, ·))(ξ) =
sin(t|ξ|)
|ξ|

, t ≥ 0, ξ ∈ Rk. (4.26)

Dalang (1999) proved that the real-valued process solution of equation (4.25) is given by

u(t, x) =

∫ t

0

∫
Rk
G(t− s, x− y)W (ds dy), (4.27)

where W is the martingale measure induced by the noise Ẇ . The range of β has been chosen so
that the stochastic integral exists.

Recall from Dalang (1999) that

E
[( ∫ t

0

∫
Rk
H(s, y)W (ds dy)

)2]
= c

∫ t

0
ds

∫
Rk
|F (H(s, ·))(ξ)|2 dξ

|ξ|k−β
(4.28)

provided that s 7→ H(s, ·) is a deterministic function with values in the space of nonnegative
distributions with rapid decrease and∫ t

0
ds

∫
Rk
|F (H(s, ·)(ξ)|2 dξ

|ξ|k−β
<∞.

In the following, we show that the Gaussian random field {u(t, x), t ≥ 0, x ∈ Rk} satisfies a
form of strong local nondeterminism.

Let 0 < a < a′ < ∞ and 0 < b < ∞ be fixed constants. The following theorem was proved by
Lee and Xiao (2019).
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Theorem 4.11 There exists a constant C > 0 such that for all integers n ≥ 1 and (t, x), (t1, x1), . . . , (tn, xn)
in [a, a′]× [−b, b]k with |t− tj |+ |x− xj | ≤ a/2, we have

Var (u(t, x)|u(t1, x1), . . . , u(tn, xn))

≥ C
∫
Sk−1

min
1≤j≤n

|(t− tj) + (x− xj) · w|2−β dw,
(4.29)

where dw is the surface measure on the unit sphere Sk−1.

When k = 1, the surface measure dw in (4.29) is supported on {−1, 1}. It follows that u(t, x)
satisfies sectorial local nondeterminism:

Var(u(t, x)|u(t1, x1), . . . , u(tn, xn))

≥ C
(

min
1≤j≤n

|(t− tj) + (x− xj)|2−β + min
1≤j≤n

|(t− tj)− (x− xj)|2−β
)
.

Proof of Theorem 4.11. For each w ∈ Sk−1, let

r(w) = min
1≤j≤n

|(tj − t)− (xj − x) · w|.

Since u is a centered Gaussian random field,it suffices to show that there a exist constant C > 0
such that for all (t, x), (t1, x1), . . . , (tn, xn) in [a, a′]× [−b, b]k with |t− tj |+ |x− xj | ≤ a/2,

E
[(
u(t, x)−

n∑
j=1

αju(tj , xj)
)2]
≥ C

∫
Sk−1

r(w)2−β dw (4.30)

for all possible choice of real numbers α1, . . . , αn.
Using (1.13), (4.28) and spherical coordinate ξ = ρw, we have

E
[(
u(t, x)−

n∑
j=1

αju(tj , xj)
)2]

= c

∫ ∞
0

ds

∫
Rk

∣∣∣ sin((t− s)|ξ|)1[0,t](s)

−
n∑
j=1

αje
−i(xj−x)·ξ sin((tj − s)|ξ|)1[0,tj ](s)

∣∣∣2 dξ

|ξ|2+k−β

≥ c
∫ a/2

0
ds

∫ ∞
0

dρ

ρ3−β

∫
Sk−1

∣∣∣ sin((t− s)ρ)

−
n∑
j=1

αje
−iρ(xj−x)·w sin((tj − s)ρ)

∣∣∣2dw
= c

∫ a/2

0
ds

∫ ∞
−∞

dρ

|ρ|3−β

∫
Sk−1

∣∣∣(ei(t−s)ρ − e−i(t−s)ρ)
−

n∑
j=1

αje
−iρ(xj−x)·w(ei(tj−s)ρ − e−i(tj−s)ρ)∣∣∣2 dw

=: c

∫
Sk−1

A(w) dw.
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Let λ = min{1, a/[2(a′ + 2
√
kb)]} and consider the bump function ϕ : R→ R defined by

ϕ(y) =

{
exp

(
1− 1

1−|λ−1y|2

)
, |y| < λ,

0, |y| ≥ λ.

Let ϕr(y) = r−1ϕ(y/r). For each w ∈ Sk−1 such that r(w) > 0, consider the integral

I(w) =

∫ a/2

0
ds

∫ ∞
−∞

[(
ei(t−s)ρ − e−i(t−s)ρ

)
−

n∑
j=1

αje
−iρ(xj−x)·w(ei(tj−s)ρ − e−i(tj−s)ρ)]e−i(t−s)ρϕ̂r(w)(ρ)dρ.

By the inverse Fourier transform, we have

I(w) = 2π

∫ a/2

0

[
ϕr(w)(0)− ϕr(w)

(
2(t− s)

)
−

n∑
j=1

αj
{
ϕr(w)

(
(xj − x) · w − (tj − t)

)
− ϕr(w)

(
(xj − x) · w − (tj − t) + 2(tj − s)

)}]
ds.

Note that r(w) ≤ |tj − t|+ |xj − x| ≤ a′ + 2
√
kb. For any s ∈ [0, a/2], we have 2(t− s)/r(w) ≥

a/[(a′ + 2
√
kb)] and |(xj − x) · w − (tj − t)|/r(w) ≥ 1, thus

ϕr(w)

(
2(t− s)

)
= 0 and ϕr(w)

(
(xj − x) · w − (tj − t)

)
= 0 for j = 1, . . . , n.

Also,
[(xj − x) · w − (tj − t) + 2(tj − s)]/r(w) ≥ (−δ + a)/[(a′ + 2

√
kb)] ≥ λ,

we have
ϕr(w)

(
(xj − x) · w − (tj − t) + 2(tj − s)

)
= 0.

It follows that
I(w) = aπ r(w)−1.

On the other hand, by the Cauchy–Schwarz inequality and scaling, we obtain

(aπ)2r(w)−2 = |I(w)|2 ≤ A(w)×
∫ a/2

0
ds

∫ ∞
−∞
|ϕ̂(r(w)ρ)|2|ρ|3−β dρ

= (a/2)A(w)r(w)β−4

∫ ∞
−∞
|ϕ̂(ρ)|2|ρ|3−β dρ

= CA(w)r(w)β−4

for some finite constant C. Hence we have

A(w) ≥ C ′r(w)2−β (4.31)

and this remains true if r(w) = 0. Integrating both sides of (4.31) over Sk−1 yields (4.30).
As an application of Theorem 4.4., Lee and Xiao (2019) proved the following uniform modulus

of continuity.
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Theorem 4.12 [Lee and Xiao, 2019] There is a positive finite constant K such that

lim
ε→0+

sup
(t,x),(t′,x′)∈I,
|(t,x)−(t′,x′)|≤ε

|u(t, x)− u(t′, x′)|
γ
[
(t, x), (t′, x′)

] = K, a.s., (4.32)

where

γ
[
(t, x), (t′, x′)

]
=
(
|t− t′|+ |x− x|

)2−β√
log
[
|t− t′|+ |x− x|

]−1
.

Remark. Theorems 4.11 and 4.12 have been extended to SWE with fractional-colored noise
by Lee (2021).

5 Lecture 5. Fractal Properties of Gaussian Random Fields

Let X = {X(t), t ∈ RN} be a random field with values in Rd. It generates many random sets, for
example,

• Range X
(
[0, 1]N

)
=
{
X(t) : t ∈ [0, 1]N

}
• Graph GrX

(
[0, 1]N

)
=
{

(t,X(t)) : t ∈ [0, 1]N
}

• Level set X−1(x) =
{
t ∈ RN : X(t) = x

}
• Excursion set X−1(F ) =

{
t ∈ RN : X(t) ∈ F

}
, ∀F ⊆ Rd,

• The set of self-intersections, . . ..

In order to study them, we need some tools such as Hausdorff dimension and packing dimension
from fractal geometry.

5.1 Definitions of Hausdorff measure and dimension

Let Φ be the class of functions ϕ : (0, δ)→ (0,∞) which are right continuous, monotone increasing
with ϕ(0+) = 0 and such that there exists a finite constant K > 0 such that

ϕ(2s)

ϕ(s)
≤ K for 0 < s <

1

2
δ.

A function ϕ in Φ is often called a measure function or gauge function.
For example, ϕ(s) = sα (α > 0) and ϕ(s) = sα log log(1/s) are measure functions.
Given ϕ ∈ Φ, the ϕ-Hausdorff measure of E ⊆ Rd is defined by

ϕ-m(E) = lim
ε→0

inf

{∑
i

ϕ(2ri) : E ⊆
∞⋃
i=1

B(xi, ri), ri < ε

}
, (5.1)

where B(x, r) denotes the open ball of radius r centered at x. The sequence of balls satisfying the
two conditions on the right-hand side of (5.1) is called an ε-covering of E.

It can be shown that ϕ-m is a metric outer measure and all Borel sets in Rd is ϕ-m measurable.
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A function ϕ ∈ Φ is called an exact Hausdorff measure function for E if 0 < ϕ-m(E) <∞.
If ϕ(s) = sα, we write ϕ-m(E) as Hα(E). The Hausdorff dimension of E is defined by

dimHE = inf
{
α > 0 : Hα(E) = 0

}
= sup

{
α > 0 : Hα(E) =∞},

Convention: sup∅ := 0.
Hausdorff dimension has the following properties:

1. E ⊆ F ⊆ Rd ⇒ dimHE ≤ dimHF ≤ d.

2. (σ-stability):

dimH

( ∞⋃
j=1

Ej

)
= sup

j≥1
dimHEj .

For any Borel measure µ on Rd and ϕ ∈ Φ, the upper ϕ-density of µ at x ∈ Rd is defined as

D
ϕ
µ(x) = lim sup

r→0

µ(B(x, r))

ϕ(2r)
.

The following upper density theorem was proved by Rogers and Taylor (1961), which is useful
for proving lower bound for the Hausdorff measure of (random) fractals related to random fields
(see Lectures 5 and 6 below).

Lemma 5.1 [Rogers and Taylor, 1961] Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure µ
on Rd with 0 < ‖µ‖=̂µ(Rd) <∞ and every Borel set E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
D
ϕ
µ(x)

}−1 ≤ ϕ-m(E) ≤ K‖µ‖ sup
x∈E

{
D
ϕ
µ(x)

}−1
.

5.2 Packing measure and packing dimension

They were introduced by Tricot (1982), Taylor and Tricot (1985). For any ϕ ∈ Φ and E ⊆ Rd,
define

ϕ-P (E) = lim
ε→0

sup
{∑

i

ϕ(2ri) : {B(xi, ri)} is an ε-packing
}
.

Here ε-packing means that the balls are disjoint, xi ∈ E and ri ≤ ε.
The packing measure ϕ-p of E is defined as:

ϕ-p(E) = inf
{∑

n

ϕ-P (En) : E ⊆
⋃
n

En

}
.

A function ϕ ∈ Φ is called an exact packing measure function for E for E if 0 < ϕ-p(E) <∞.
If ϕ(s) = sα, we write ϕ-p(E) as Pα(E). The packing dimension of E is defined as:

dimPE = inf{α > 0 : Pα(E) = 0}.

Comparison between dimH and dimP : For any ϕ ∈ Φ and E ⊆ Rd,

ϕ-m(E) ≤ ϕ-p(E), dimHE ≤ dimPE.
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For any Borel measure µ on Rd and ϕ ∈ Φ, the lower ϕ-density of µ at x ∈ Rd is defined as

Dϕ
µ(x) = lim inf

r→0

µ(B(x, r))

ϕ(2r)
.

The following is a dual result to Lemma 5.1 that was proved by Taylor and Tricot (1985).

Lemma 5.2 [Taylor and Tricot, 1985] Given ϕ ∈ Φ, ∃K > 0 such that for any Borel measure µ
on Rd with 0 < ‖µ‖=̂µ(Rd) <∞ and every Borel set E ⊆ Rd, we have

K−1µ(E) inf
x∈E

{
Dϕ
µ(x)

}−1 ≤ ϕ-p(E) ≤ K‖µ‖ sup
x∈E

{
Dϕ
µ(x)

}−1
.

Example. Let C denote the standard ternary Cantor set in [0 , 1]. At the nth stage of its
construction, C is covered by 2n intervals of length/diameter 3−n each.

It can be proved that
dimHC = dimPC = log3 2.

By using the upper and lower density theorems, one can prove that

0 < Hlog3 2(C) ≤ Plog3 2(C) <∞.

Example. Let B([0, 1]) be the image of Brownian motion in Rd. Lévy (1948) and Taylor
(1953) proved that

dimHB([0, 1]) = min{d, 2} a.s.

Ciesielski and Taylor (1962), Ray and Taylor (1964) proved that

0 < ϕd-m
(
B([0, 1])

)
<∞ a.s.,

where

ϕ1(r) = r,

ϕ2(r) = r2 log(1/r) log log log(1/r),

ϕd(r) = r2 log log(1/r), if d ≥ 3.

Taylor and Tricot (1985) proved that

dimPB([0, 1]) = min{d, 2}

and, if d ≥ 3, then
0 < ψ-p

(
B([0, 1])

)
<∞ a.s.,

where ψ(r) = r2/ log log(1/r).
LeGall and Taylor (1986) proved that, if d = 2, then for any measure function ϕ, either

ϕ-p
(
B([0, 1])

)
= 0 or ∞ according to an integral test.

Question: How to extend the above results to Gaussian random fields?
We start with fractional Brownian motion.
For H ∈ (0, 1), the fBm BH = {BH(t), t ∈ RN} with index H is a centered (N, d)-Gaussian

field whose covariance function is

E
[
BH
i (s)BH

j (t)
]

=
1

2
δij
(
|s|2H + |t|2H − |s− t|2H

)
, (5.2)

where δij = 1 if i = j and 0 otherwise.
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• When N = 1 and H = 1/2, BH is Brownian motion.

• BH is H-self-similar and has stationary increments.

Kahane (1985) proved that

dimHB
H([0, 1]N ) = min

{
d,
N

H

}
a.s.

5.3 Exact Hausdorff measure functions for BH([0, 1]N) and GrBH([0, 1]N)

The following theorem was proved by Talagrand (1995, 1998). The random covering method
designed by Talagrand has several important applications.

Theorem 5.3 [Talagrand, 1995, 1998] Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd.

(i). If N < Hd, then
K−1 ≤ ϕ1-m

(
BH([0, 1]N )

)
≤ K, a.s.

where ϕ1(r) = r
N
H log log(1/r).

(ii). If N = Hd, then ϕ2-m
(
BH([0, 1]N )

)
is σ-finite, where ϕ2(r) = rd log(1/r) log log log(1/r).

The following theorem deals with the Hausdorff measure of the graph set of BH .

Theorem 5.4 [Xiao, 1997] Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd.

(i). If N < Hd, then
K−1 ≤ ϕ1-m

(
GrBH([0, 1]N )

)
≤ K, a.s.

where ϕ1(r) = r
N
H log log(1/r).

(ii). If N > Hd, then
K−1 ≤ ϕ3-m

(
GrBH([0, 1]N )

)
≤ K, a.s.,

where ϕ2(r) = rN+(1−H)d
(

log log(1/r)
)Hd/N

.

5.4 Exact packing measure functions for fractional Brownian motion

Theorem 5.5 [Xiao, 1996, 2003] Let BH = {BH(t), t ∈ RN} be a fBm with values in Rd. If
N < Hd, then there exists a finite constant K ≥ 1 such that

K−1 ≤ ϕ4-p(BH([0, 1]N )) ≤ K, a.s.

where ϕ4(r) = r
N
H

(
log log(1/r)

)−N/(2H)
.

For proving Theorem 5.5, one needs to study the liminf behavior of the sojourn measure

T (r) =

∫
RN

1{|BH(t)|≤r}dt.

A key ingredient is the following small ball probability estimate for T (1).
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Lemma 5.6 [Xiao, 1996, 2003] Assume that N < Hd. Then there exists a positive and finite
constant K ≥ 1, depending only on H, N and d such that for any 0 < ε < 1,

exp
(
− K

ε2H/N

)
≤ P{T (1) < ε} ≤ exp

(
− 1

Kε2H/N

)
.

This leads to the following Chung’s LIL for T (r).

Theorem 5.7 [Xiao, 1996, 2003] If N < Hd, then with probability one,

lim inf
r→0

T (r)

ϕ4(r)
= K, (5.3)

where 0 < K <∞ is a constant depending on H, N and d only.

By the stationarity of increments of BH and the lower density theorem, we derive the lower
bound in Theorem 5.5.

The proof of upper bound in Theorem 5.5 requires a different argument and is omitted here.

5.5 Exact Hausdorff measure function for the ranges of Gaussian random fields

Let X = {X(t), t ∈ RN} be a Gaussian field in Rd defined by (6.2) whose components X1, . . . , Xd

are independent copies of a centered Gaussian field X0. We assume that X0 satisfies the following
conditions from Lecture 3.

Assumption (A1) Consider a compact interval T ⊂ RN . There exists a Gaussian random
field {v(A, t) : A ∈ B(R+), t ∈ T} such that

(a) For all t ∈ T , A 7→ v(A, t) is a real-valued Gaussian noise, v(R+, t) = X0(t), and v(A, ·) and
v(B, ·) are independent whenever A and B are disjoint.

(b) There are constants a0 ≥ 0 and γj > 0, j = 1, . . . , N such that for all a0 ≤ a ≤ b ≤ ∞ and
s = (s1, . . . , sN ), t = (t1, . . . , tN ) ∈ T ,∥∥v([a, b), s)−X0(s)− v([a, b), t) +X0(t)

∥∥
L2

≤ C
( N∑
j=1

aγj |sj − tj |+ b−1
)
,

(5.4)

where ‖Y ‖L2 =
[
E(Y 2)

]1/2
for a random variable Y and

∥∥v([0, a0), s)− v([0, a0), t)
∥∥
L2 ≤ C

N∑
j=1

|sj − tj |. (5.5)

Condition (A4′) [strong local nondeterminism]. There exists a constant c > 0 such that
∀ n ≥ 1 and u, t1, . . . , tn ∈ T ,

Var
(
X0(u)

∣∣X0(t1), . . . , X0(tn)
)
≥ c min

1≤k≤n
ρ(u, tk)2, (5.6)
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where ρ(s, t) is the metric on RN defined by

ρ(s, t) =
N∑
j=1

|sj − tj |Hj ,

and where Hj = (γj + 1)−1 (j = 1, . . . , N).
These conditions are weaker than those in Luan and Xiao (2012).

Theorem 5.8 Let X = {X(t), t ∈ RN} be a centered Gaussian field with values in Rd such that
X0 satisfies (A1) and (A4′).

(i). If Q =
N∑
j=1

H−1
j < d, then

K−1 ≤ ϕ5-m
(
X([0, 1]N )

)
≤ K, a.s., (5.7)

where ϕ5(r) = rQ log log(1/r).
(ii). If Q > d, then X([0, 1]N ) has positive d-dimensional Lebesgue measure a.s.

The problem to determine the exact Hausdorff measure function for X([0, 1]N ) in the “critical
case” Q = d is open.

Proof of Theorem 5.8.The lower bound in (5.7) is proved by using the upper density theorem
in Lemma 5.1. A natural measure on X([0, 1]N ) is the sojourn measure

µ(B) = λN
{
t ∈ [0, 1]N : X(t) ∈ B

}
, ∀B ∈ B(Rd),

where λN denotes the Lebesgue measure on RN .
For any 0 < r < 1 and t0 ∈ [0, 1]N := I, we consider

µ
(
B(X(t0), r)

)
=

∫
I
1{|X(t)−X(t0)|≤r} dt,

which is the sojourn time of X in the ball B(X(t0), r).
The following moment estimate is essential for determining the asymptotic behavior of µ

(
B(X(t0), r)

)
as r → 0.

Lemma 5.9 If d > Q, then there is a finite constant C such that for every t0 ∈ I and all integers
n ≥ 1,

E
[
µ
(
B(X(t0), r)

)n] ≤ Cnn! rQn.

Proof F or n = 1, by Fubini’s theorem we have

E
[
µ
(
B(X(t0), r)

)]
=

∫
I
P
{
|X(t)−X(t0)| < r

}
dt

≤
∫
I

min

{
1, c
( r

ρ(t, t0)

)d}
dt

=

∫
{t:ρ(t,t0)≤cr}∩I

dt+ c

∫
{t:ρ(t,t0)>cr}∩I

( r

ρ(t, t0)

)d
dt.
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It is elementary to verify that

E
[
µ
(
B(X(t0), r)

)]
≤ crQ.

For n ≥ 2,

E
[
µ
(
B(X(t0), r)

)n]
=

∫
In

P
{∣∣X(tj)−X(t0)

∣∣ < r, 1 ≤ j ≤ n
}
dt1 · · · dtn.

It is sufficient to consider t1, · · · , tn ∈ I that satisfy

tj 6= t0, for j = 1, · · · , n and tj 6= tk for j 6= k.

By Condition (A4′), we have

Var
(
X0(tn)−X0(t0)

∣∣X0(t1)−X0(t0), · · · , X0(tn−1)−X0(t0)
)

≥ Var
(
X0(tn)

∣∣X0(t0), X0(t1), · · · , X0(tn−1)
)

≥ c min
0≤k≤n−1

ρ(tn, tk)2.

(5.8)

Since conditional distributions in Gaussian processes are still Gaussian, it follows from Ander-
son’s inequality and (5.8) that∫

I
P
{∣∣X(tn)−X(t0)

∣∣ < r
∣∣X(t1)−X(t0), · · · , X(tn−1)−X(t0)

}
dtn

≤ c
∫
I

n−1∑
k=0

min
{

1, c
( r

ρ(tn, tk)

)d}
dtn

≤ c n
∫
I

min
{

1, c
( r

ρ(tn, 0)

)d}
dtn

≤ c nrQ.

Iterating the procedure proves Lemma 5.5. �

From Lemma 5.5 and the Borel-Cantelli lemma, we can prove the following law of the iterated
logarithm for the sojourn measure of X.

Proposition 5.10 For every t0 ∈ I, we have

lim sup
r→0

µ
(
B(X(t0), r)

)
ϕ5(r)

≤ C <∞, a.s.

This and Fubini’s theorem yield: a.s.

lim sup
r→0

µ
(
B(X(t0), r)

)
ϕ5(r)

≤ C a.e. t0 ∈ I.

Hence, the lower bound in (5.7) follows from Lemma 5.1.
For proving the upper bound in (5.7), we need the following small ball probability estimates.
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Lemma 5.11 [Xiao, 2009] Under the conditions of Theorem 5.6, There exist constants c and c′

such that for all t0 ∈ I = [0, 1]N and 0 < ε < r,

exp
(
− c′

(r
ε

)Q)
≤ P

{
sup

t∈I:ρ(t,t0)≤r
|X(t)−X(t0)| ≤ ε

}
≤ exp

(
− c
(r
ε

)Q)
.

The main estimate is given in the following lemma.

Proposition 5.12 Assume that the conditions of Theorem 5.6 hold. There exist positive constants
δ0 and C such that for any t0 ∈ I and 0 < r0 ≤ δ0, we have

P
{
∃ r ∈ [r2

0, r0], sup
t∈I:ρ(t,t0)≤r

|X(t)−X(t0)| ≤ Cr
(

log log(1/r)
)−1/Q

}
≥ 1− exp

(
−
(

log(1/r0

)1/2)
.

Proof The method of proof comes form Talagrand (1995). We provide the main steps. Let
U > 1 be a number whose value will be determined later. For k ≥ 0, let rk = r0U

−2k. Consider
the largest integer k0 such that

k0 ≤
log(1/r0)

2 logU
.

P
{
∃k ≤ k0, sup

t∈I:ρ(t,t0)≤rk
|X(t)−X(t0)| ≤ c rk

(
log log

1

rk

)−1/Q}
≥ 1− exp

(
−
(

log
1

r0

)1/2
)
.

(5.9)

Let ak = r−1
0 U2k−1 and we define for k = 0, 1, · · ·

X0,k(t) = v([ak, ak+1), t)

and
X̂k(t) =

(
X1,k(t), · · · , Xd,k(t)

)
,

where X1,k(t), · · · , Xd,k(t) are independent copies of X0,k(t). It follows that X1−X1,k, · · · , Xd−Xd,k

are independent copies of X0 −X0,k.

The Gaussian random fields X̂0, X̂1, · · · are independent. By Lemma 5.6 we can find a constant
c > 0 such that, if r0 is small enough, then for each k ≥ 0,

P
{

sup
t∈I:ρ(t,t0)≤rk

∣∣X̂k(t)− X̂k(t
0)
∣∣ ≤ c rk( log log(1/rk)

)−1/Q
}

≥ exp
(
− 1

4
log log(1/rk)

)
=

1

(log 1/rk)1/4

≥
(
2 log 1/r0

)−1/4
.
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P
{
∃k ≤ k0, sup

t∈I:ρ(t,t0)≤rk

∣∣X̂k(t)− X̂k(t
0)
∣∣ ≤ c rk( log log(1/rk)

)−1/Q}
≥ 1−

(
1− 1

(2 log 1/r0)1/4

)k0
≥ 1− exp

(
− k0

(2 log 1/r0)1/4

)
,

(5.10)

where the last inequality follows from 1− x ≤ e−x for all x ≥ 0.
To deal with {X(t)−X̂k(t)}, we claim that for any u ≥ crkU−β

√
logU , where β = min{HN

−1−
1, 1},

P
{

sup
t∈I:ρ(t,t0)≤rk

∣∣X(t)− X̂k(t)− (X(t0)− X̂k(t
0))
∣∣ ≥ u} ≤ exp

(
− u2

cr2
kU
−2β

)
. (5.11)

To see this, it’s enough to prove that (5.11) holds for X0, by applying Lemma 3.3.
Consider S = {t ∈ I : ρ(t, t0) ≤ rk} and on S the distance

d(s, t) =
∥∥X0(s)−X0,k(s)− (X0(t)−X0,k(t))

∥∥
L2 .

Then d(s, t) ≤ c
∑N

i=1 |si − ti|Hi and N(S, d, ε) ≤ c
(
rk/ε

)Q
.

Now we estimate the d-diameter D of S. By Condition (A1), we have for any s, t ∈ S,

‖X0(s)−X0,k(s)− (X0(t)−X0,k(t))‖L2

≤ C
( N∑
j=1

a
H−1
j −1

k |sj − tj |+ a−1
k+1

)
≤ CrkU−β,

where β = min{HN
−1 − 1, 1}. Therefore, D ≤ CrkU−β. Notice that∫ D

0

√
logN(S, d, ε)dε ≤ c

∫ CrkU
−β

0

√
log rk/ε dε

≤ crk
∫ CU−β

0

√
log 1/u du ≤ crkU−β

√
logU.

Hence (5.11) follows from Lemma 3.3.
Let U = (log 1/r0)1/β. Then for r0 > 0 small

Uβ (logU)−1/2 ≥
(

log log
1

r0

)1/Q

.

Take u = crk(log log 1/r0)−1/Q. It follows from (5.11) that

P
{

sup
t∈I:ρ(t, t0)≤rk

∣∣X(t)− X̂k(t)−
(
X(t0)− X̂k(t

0)
)∣∣ ≥ c rk( log log

1

r0

)−1/Q
}

≤ exp
(
− cUβ

(log log 1/r0)2/Q

)
.
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Combining this with (5.10), we get

P
{
∃k ≤ k0, sup

ρ(t, t0)≤rk

∣∣X(t)−X(t0)
∣∣ ≤ c rk( log log(1/rk

)−1/Q
}

≥ 1− exp
(
− k0

(2 log 1/r0)1/4

)
− k0 exp

(
− cUβ

(log log 1/r0)2/Q

)
.

This proves (5.9) and Proposition 5.12. �

With Proposition 5.12 in hand, we proceed to construction of an economic covering forX([0, 1]N ).
Proof of Theorem 5.8. (continued) For k ≥ 1, consider the set

Rk =

{
t ∈ [0, 1]N : ∃ r ∈ [2−2k, 2−k] such that

sup
s∈I:ρ(s,t)≤r

∣∣X(s)−X(t)
∣∣ ≤ c r(log log

1

r
)−1/Q

}
.

By Lemma 5.7 we have that for every t ∈ [0, 1]N ,

P{t ∈ Rk} ≥ 1− exp(−
√
k/2).

This and Fubini’s theorem imply that

E[λN (Rk)] ≥ 1− exp(−
√
k/2).

Or
E[λN (I\Rk)] ≤ exp(−

√
k/2).

By Markov’s inequality, we have

P
{
λN (Rk) < 1− exp(−

√
k/2)

}
= P

{
λN (I\Rk) > exp(−

√
k/2)

}
≤ E[λN (I\Rk)]

exp(−
√
k/2)

≤ exp

(
−
( 1√

2
− 1

2

)√
k

)
.

Hence, by the Borel-Cantelli lemma, we have P(Ω1) = 1, where

Ω1 =
{
ω : λN (Rk) ≥ 1− exp(−

√
k/2) for all k large enough

}
.

On the other hand, by Lemma 3.3, we have P(Ω2) = 1, where Ω2 it the event that for every
rectangle In of side-lengths 2−n/Hi(i = 1, · · · , N) that meets [0, 1]N , we have

sup
s,t∈In

∣∣X(t)−X(s)
∣∣ ≤ C2−n

√
n,

where C > 0 is a constant.
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Now we show that for every ω ∈ Ω1 ∩ Ω2, we have

ϕ5-m(X([0, 1]N )) ≤ K <∞, a.s.

For any n ≥ 1, we divide [0, 1]N into 2nQ disjoint (half open and half closed) rectangles of side-
lengths 2−n/Hi (i = 1, · · · , N). Denote by In(x) the unique rectangle of side-lengths 2−n/Hi(i =
1, · · · , N) containing x.

Consider k ≥ 1 such that
λN (Rk) ≥ 1− exp(−

√
k/2).

For any x ∈ Rk we can find the smallest integer n with k ≤ n ≤ 2k such that

sup
s,t∈In(x)

∣∣X(t)−X(s)
∣∣ ≤ c 2−n(log log 2n)−1/Q. (5.12)

Thus we have

Rk ⊆ V =

2k⋃
n=k

Vn

and each Vn is a union of rectangles In(x) satisfying (5.12).
Notice that X(In(x)) can be covered by a ball of radius rn = c2−n(log log 2n)−1/Q.
Since ϕ5(2rn) ≤ c2−nQ = cλN (In), we obtain

2k∑
n=k

∑
In∈Vn

ϕ5(2rn) ≤
∑
n

∑
In∈Vn

cλN (In) = CλN (V ) ≤ C. (5.13)

Thus X(V ) is contained in the union of a family of balls Bn of radius rn with
∑

n ϕ5(2rn) ≤ C.
On the other hand, [0, 1]N\V is contained in a union of rectangles of side-lengths 2−q/Hi(i =

1, · · · , N) where q = 2k + 1, none of which meets Rk. There can be at most

2QqλN ([0, 1]N\V ) ≤ c2Qq exp(−
√
k/2)

such rectangles.
Since ω ∈ Ω2, for each of these rectangles Iq, X(Iq) is contained in a ball of radius c2−q

√
q.

Thus X([0, 1]N\V ) can be covered by a sequence {Bn} of balls of radius rn = c2−q
√
q such that∑

n

ϕ5(2rn) ≤
(
c2Qq exp(−

√
k/2)

)(
c2−qQqQ/2 log log(c2q/

√
q)
)

≤ 1

(5.14)

for all k large enough. Since k can be arbitrarily large, it follows from (5.13) and (5.14) that

ϕ5-m
(
X([0, 1]N )

)
≤ K, a.s.

This finishes the proof of Part (i) of Theorem 5.6.
Part (ii) is related to the existence of local times. A proof based on Fourier analysis will be

given in Lecture 6. �

If Condition (A4′) in Theorem 5.6 is replaced by (A4), then the exact Hausdorff measure function
for X([0, 1]N ) is different. See the recent paper of Lee (2021).
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6 Lecture 6. Local Times of Gaussian Random Fields

Local times of Brownian motion was first studied by P. Lévy (1948), under a different name. The
term of “local times” for general Markov processes was introduced by Blumenthal and Getoor
(1964).

In late 1960’s, Berman started studying local times of Gaussian processes. His work was ex-
tended by Pitt (1978) to random fields, and stimulated a lot of works on local times of random
fields. More information can be found in Geman and Horowitz (1980), Dozzi (2002), Xiao (2009),
etc.

6.1 Local times: existence and joint continuity

Let X = {X(t), t ∈ RN} be an (N, d)-random field. For any Borel set T ⊆ RN , the occupation
measure of X on T defined by

µT (•) = λN{t ∈ T : X(t) ∈ •}.

If µT � λd, then X is said to have a local time on T , which is defined by

L(x, T ) =
dµT
dλd

(x),

where x is the so-called space variable, and T is the time variable. We write L(x, t) instead of
L(x, [0, t]).

L(x, T ) satisfies the following occupation density formula: For every Borel set T ⊆ RN and for
every measurable function f : Rd → R+,∫

T
f(X(t)) dt =

∫
Rd
f(x)L(x, T ) dx. (6.1)

Suppose we fix an interval I =
∏N
`=1[a`, b`] in RN . Let T =

∏N
`=1[a`, t`] ⊂ I. If we can choose

a version of the local time, still denoted by L(x, T ), such that it is continuous in (x, t1, . . . , tN ) ∈
Rd × I, then X is said to have a jointly continuous local time on I.

• The smoother the local time, the rougher the sample path (Berman, 1972).

• When a local time is jointly continuous, L(x, •) can be extended to be a finite Borel measure
supported on the level set

X−1(x) = {t ∈ I : X(t) = x}

[cf. Adler, 1981] and is a useful tool for studying fractal properties of X−1(x).

Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, (6.2)

where X1, . . . , Xd are independent copies of a real-valued Gaussian random field X0.
We study the following questions:

• The existence and joint continuity of local times of X.
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• Hölder conditions for the local times of X and apply these results to study its sample path
properties of X.

The following result [cf. Geman and Horowitz (1980, Theorem 21.9)] is convenient: X has an
L2(P× λd) local time L(x, T ) if and only if∫

Rd

∫
T

∫
T
E
(
ei〈θ,X(s)−X(t)〉

)
dsdtdx <∞.

In particular, we have

Theorem 6.1 Let X = {X(t), t ∈ RN} be a centered Gaussian random field defined by (6.2) such
that

E
[(
X0(s)−X0(t)

)2] � ρ(s, t)2, for s, t ∈ T. (6.3)

Then X has an L2(P× λd) local time if and only if Q > d.

For studying joint continuity of local times, we make use of sectorial local nondeterminism.
Condition (A4) [sectorial local nondeterminism] For a constant vector H = (H1, . . . ,HN ) ∈

(0, 1)N , there exists a constant c > 0 such that for all n ≥ 1 and u, t1, . . . , tn ∈ T ,

Var
(
X0(u)

∣∣X0(t1), . . . , X(tn)
)
≥ c

N∑
j=1

min
1≤k≤n

∣∣∣uj − tkj ∣∣∣2Hj . (6.4)

Theorem 6.2 [Ayache, Wu, and Xiao (2008), Wu and Xiao, 2011] Let X = {X(t), t ∈ RN} be a
centered Gaussian random field defined by (6.2) such that (6.3) and (A4) hold. If Q > d then the
local time of X is jointly continuous on T × Rd.

The proof of this theorem relies on Kolmogorov’s continuity theorem and the moment estimates
for L(t,D) and L(x,D)− L(y,D) in Lemmas 6.1 and 6.2 below. These estimates are more precise
than what are needed for proving joint continuity.

We assume 0 < H1 ≤ . . . ≤ HN < 1. Under the condition that

Q =
N∑
`=1

1

H`
> d,

there exists a unique τ ∈ {1, . . . , N} such that

τ−1∑
`=1

1

H`
≤ d <

τ∑
`=1

1

H`
.

We will distinguish three cases:

Case 1:
τ−1∑
`=1

1

H`
< d <

τ∑
`=1

1

H`
,

Case 2:

τ−1∑
`=1

1

H`
= d <

τ∑
`=1

1

H`
and Hτ−1 = Hτ ,

Case 3:
τ−1∑
`=1

1

H`
= d <

τ∑
`=1

1

H`
and Hτ−1 < Hτ .
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Lemma 6.3 For any D := Bρ(a, r) ⊆ T, we have

E [L(x,D)n] ≤
{
cn
6,1

(n!)ητ rnα Cases 1 & 2,

cn
6,1

(n!)ητ rnα logn
(
1 + n) Case 3,

(6.5)

where

α = Q− d,

ητ = τ +Hτd−
τ∑
`=1

Hτ

H`
.

(6.6)

For proving Lemma 6.3, we will need the following elementary lemma whose proof is omitted.

Lemma 6.4 Let β, γ and p be positive constants such that γβ > p. There exists a constant C > 0
such that for all A ∈ (0, 1), r > 0, u∗ ∈ Rp, all integers n ≥ 1 and distinct u1, . . . , un ∈ Op(u∗, r)
we have ∫

Op(u∗,r)

du[
A+ min

1≤j≤n
|u− uj |γ

]β ≤ C nA p
γ
−β
, (6.7)

where Op(u
∗, r) ⊂ Rp denotes the Euclidean ball.

Proof [ of Lemma 6.3.] Recall that [e.g., Geman and Horowitz (1980)] for all x ∈ Rd, any Borel
set D ⊆ RN and integer n ≥ 1, l

E
[
L(x,D)n

]
= (2π)−nd

∫
Dn

∫
Rnd

exp

(
− i

n∑
j=1

〈uj , x〉
)

× E exp

(
i

n∑
j=1

〈uj , X(tj)〉
)
du dt,

where
u = (u1, . . . , un) ∈ Rnd, t = (t1, . . . , tn) ∈ Dn.

We see that E
[
L(x,D)n

]
is at most

∫
Dn

d∏
k=1

{∫
Rn

exp

[
− 1

2
Var

( n∑
j=1

ujkX0(tj)

)]
duk

}
dt

=

∫
Dn

[
detCov

(
X0(t1), . . . , X0(tn)

) ]− d2
dt,

where uk = (u1
k, . . . , u

n
k) ∈ Rn, t = (t1, . . . , tn) and the equality follows from the fact that for any

positive definite n× n matrix Γ,∫
Rn

[det(Γ)]1/2

(2π)n/2
exp

(
− 1

2
x′Γx

)
dx = 1.
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By using the fact that for any Gaussian vector (Z1, . . . , Zn)

det Cov(Z1, . . . , Zn) = Var(Z1)

n∏
j=1

Var(Zj |Z1, . . . , Zj−1).

and Condition (A4) we derive

E
[
L(x,D)n

]
≤ cn

∫
Dn

n∏
j=1

[ N∑
`=1

min
0≤s≤j−1

|tj` − t
s
` |2H`

]− d
2

dt

≤ cn
∫
Dn

n∏
j=1

[ τ∑
`=1

min
0≤s≤j−1

|tj` − t
s
` |2H`

]− d
2

dt.

To estimate the last integral, we will integrate in the order of dtn1 , . . . , dt
n
N , . . . , dt

1
1, . . . , dt

1
N . In

Case 1, if τ = 1, which implies that H1d < 1, we apply Lemma 6.3 and Lemma 2.3 in Xiao (1997)
to derive ∫

D

dtn1 · · · dtnN(
min

0≤s≤n−1
|tn1 − ts1|2H1

)d/2

= (2r)
∑N
`=2

1
H`

∫ a1+r
1
H1

a1−r
1
H1

dtn1
min

0≤s≤n−1
|tn1 − ts1|H1d

≤ c nH1d r
∑N
`=1

1
H`
−d

= c nη1 rα.

If τ > 1, since H1d > 1, we apply Lemma 6.4 with A =
τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |2H` and p = 1 at

first to derive ∫ a1+r
1
H1

a1−r
1
H1

dtn1(
min

0≤s≤n−1
|tn1 − ts1|2H1 +

τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |2H`
)d/2

≤ c n( τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |H`
)d− 1

H1

.

Since Hτ−1

(
d−

∑τ−2
`=1

1
H`

)
> 1, we can apply Lemma 6.4 repeatedly for τ − 1 many times to get∫

D

dtn1 · · · dtnN( τ∑̀
=1

min
0≤s≤n−1

|tn` − ts` |2H`
)d/2 ≤ c nτ−1r

∑N
`=τ+1

1
H`

×
∫ aτ+r

1
Hτ

aτ−r
1
Hτ

dtnτ(
min

0≤s≤n−1
|tnτ − tsτ |Hτ

)d−∑τ−1
`=1

1
H`

.
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Notice that Hτ

(
d−

∑τ−1
`=1

1
H`

)
< 1, by applying Lemma 2.3 in Xiao (1997), we derive∫

D

dtn1 · · · dtnN( τ∑̀
=1

min
0≤s≤n−1

|tn` − ts` |2H`
)d/2

≤ c nτ−1+Hτ
(
d−

∑τ−1
`=1

1
H`

)
r
∑N
`=1

1
H`
−d

= c nητ rα.

By iterating the procedure for integrating dtn−1
1 , . . . , dtn−1

N and so on, we obtain (6.5) for Case 1.
The rest of the proof (Cases 2 & 3) of Lemma 6.1 is similar and thus omitted. �

Lemma 6.5 For γ ∈ (0, 1) small and all even number n ≥ 2, we have

E
[(
L(x,D)− L(y,D)

)n]
≤

{
cn
6,2

(n!)ητ+(2Hτ+1)γ rn(α−γ) Cases 1 & 2,

cn
6,2

(n!)ητ+(2Hτ+1)γ rn(α−γ) logn(e+ n) Case 3.

(6.8)

The proof of Lemma 6.5 is more complicated, and is omitted here (please see Wu and X. 2011)
Finally, Theorem 6.2 follows from Lemmas 6.1, 6.2, and a multiparameter version of Kol-

mogorov’s continuity theorem.

6.2 Hölder conditions for local times

Lemmas 6.3 and 6.5 can be applied to derive local and uniform Hölder conditions for the maximum
local time L∗(D) = supx∈Rd L(x,D).

Theorem 6.6 [Wu and Xiao, 2011] There exists a constant c6,3 > 0 such that for every a ∈ T ,

lim sup
r→0

L∗(Bρ(a, r))

ϕρ1(r)
≤ c6,3 , a.s. Cases 1 & 2,

lim sup
r→0

L∗(Bρ(a, r))

ϕρ2(r)
≤ c6,3 , a.s. Case 3,

where Bρ(a, r) ⊂ I is the ρ -ball and where

ϕρ1(r) = rα
(

log log(1/r)
)ητ ,

ϕρ2(r) = rα
(

log log(1/r)
)τ−1

log log log
(
1/r
)
.

To state the uniform Hölder condition, let

Φρ
1(r) = rα

(
log(1/r)

)ητ ,
Φρ

2(r) = rα
(

log(1/r)
)τ−1

log log
(
1/r
)
.

The following theorem was proved by Wu and Xiao (2011) and was improved by Lee (2021).
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Theorem 6.7 Under the conditions of Theorem 6.6,

lim sup
r→0

sup
a∈T

L∗(Bρ(a, r))

Φρ
1(r)

≤ c6,4 , a.s. Cases 1 & 2,

lim sup
r→0

sup
a∈T

L∗(Bρ(a, r))

Φρ
2(r)

≤ c6,4 , a.s. Case 3

Theorems 6.6 and ?? can be applied to derive lower bounds for Chung-type LIL and modulus
of non-differentiability for X.

Unless H1 = · · · = HN , it is not known whether the Hölder conditions for the local times are
optimal (even though we believe they are, at lease in Cases 1 & 2).

6.3 Optimal Hölder conditions

We can establish optimal Hölder conditions for the local times under strong local nondeterminism.
This is done in Khoshnevisan, Lee, and Xiao (2021).

Condition (A4′) [strong local nondeterminism] There exists a constant c > 0 such that
∀ n ≥ 1 and u, t1, . . . , tn ∈ T ,

Var
(
X0(u)

∣∣X0(t1), . . . , X0(tn)
)
≥ c min

1≤k≤n
ρ(u, tk)2, (6.9)

where ρ(s, t) =
N∑
j=1
|sj − tj |Hj .

We will use the following two lemmas.

Lemma 6.8 Let X = {X(t), t ∈ RN} be a centered Gaussian random field defined by (6.2) such
that (6.3) and (A4′) hold. If Q > d, then there exists a finite constant C such that for all Borel
subsets S of T , for all x ∈ Rd and all integers n ≥ 1, we have

E
[
L(x,D)n

]
≤ Cn(n!)d/QλN (D)n(1−d/Q).

In particular, for all a ∈ T and r ∈ (0, 1) with Bρ(a, r) ⊂ T , we have

E
[
L(x,Bρ(a, r))

n
]
≤ Cn(n!)d/Qrn(Q−d).

Lemma 6.9 Under the conditions of Lemma 6.4, there exist constants C and K such that for all
γ ∈ (0, 1) small enough, for all Borel sets D ⊆ T , for all x, y ∈ Rd, for all even integers n ≥ 2, we
have

E
[
(L(x,D)− L(y,D))n

]
≤ Cn|x− y|nγ(n!)d/Q+KγλN (D)n(1−(d+γ)/Q).

In particular, for all a ∈ T , 0 < r < 1 with Bρ(a, r) ⊂ T , we have

E
[
(L(x,Bρ(a, r))− L(y,Bρ(a, r)))

n
]
≤ Cn|x− y|nγ(n!)d/Q+Kγrn(Q−d−γ).

Conditions (A4) and (A4′) have different effects on the Hölder conditions for the local times of
X. We can compare the following Hölder conditions with Theorem 6.7.
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Theorem 6.10 [Khoshnevisan, Lee, and Xiao, 2021] Under the conditions of Lemma 6.8, there
exist finite constants C and C ′ such that for any t ∈ T ,

lim sup
r→0

L∗(Bρ(t, r))

ϕρ3(r)
≤ C a.s. (6.10)

and

lim sup
r→0

sup
t∈T

L∗(Bρ(t, r))

Φρ
3(r)

≤ C ′ a.s. (6.11)

where ϕρ3(r) = rα(log log(1/r))d/Q and

Φρ
3(r) = rα(log(1/r))d/Q.

Recall that, under Conditions (A1) and (A4′), Chung’s LIL for X holds at t ∈ T and X has an
exact modulus of non-differentiability.

By using these results and the following inequality: For any t ∈ T ,

λN
(
Bρ(t, r)

)
=

∫
X
(
Bρ(t,r)

) L(x,Bρ(t, r)) dx

≤ L∗(Bρ(t, r)) ·
(

sup
s,t∈Bρ(t,r)

|X(s)−X(t)|
)d
,

we derive that the Hölder conditions in Theorem 6.10 are optimal.

Theorem 6.11 —rm [Khoshnevisan, Lee, and Xiao, 2021] Let X = {X(t), t ∈ RN} be a centered
Gaussian random field defined by (6.2) such that X0 satisfies Conditions (A1) and (A4′). There
exist positive constants K and K ′ such that for any t ∈ T ,

lim sup
r→0

L∗(Bρ(t, r))

ϕρ3(r)
≥ K a.s. (6.12)

lim sup
r→0

sup
t∈T

L∗(Bρ(t, r))

Φρ
3(r)

≥ K ′ a.s. (6.13)

The results in this lecture can be conveniently applied to the solutions of stochastic heat and
wave equations with the Gaussian noise that is white in time and colored in space, as well as some
fractional-colored noises.

7 Lecture 7. Hitting Probabilities and Polarity of Points for Gaus-
sian Random Fields

Let X = {X(t), t ∈ RN} be a random field with values in Rd. Various intersection problems can
be considered:

(1) For Borel sets E ⊆ RN and F ⊆ Rd, when is

P
(
X(E) ∩ F 6= ∅

)
> 0? (7.1)
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(2) [Multiple intersections] Given disjoint sets E1, . . . , Ek ⊆ RN , when does

P
(
X(E1) ∩ · · · ∩X(Ek) ∩ F 6= ∅

)
> 0? (7.2)

Question (1) is quite general, which includes intersections of the graph set and level sets:

• Let GrX(E) = {(t,X(t)) : t ∈ E} be the graph of X on E. Then (1) is equivalent to

P
(
GrX(E) ∩ (E × F ) 6= ∅

)
> 0.

• Take F = {0}, then (1) is equivalent to

P
(
X−1(0) ∩ E 6= ∅

)
> 0.

The following are some known results about Question (1). In the case when E = [a, b],
(a, b ∈ RN ), necessary and sufficient conditions for (1) in terms of certain kind of capacity of F
have been established for X being

• Brownian motion Lévy processes

• Some multiparameter Markov processes (Fitzsimmons and Salisbury, 1989)

• The Brownian sheet (Khoshnevisan and Shi, 1999)

• Additive Lévy processes (Khoshnevisan and X., 2002, 2003, 2009)

• Hyperbolic SPDEs (Dalang and Nualart, 2004)

In the special case when F = {0}, Khoshnevisan and Xiao (2002) for a large class of additive
Lévy processes.

For general E ⊆ RN and F ⊆ Rd, a necessary and sufficient condition in terms of “thermal
capacity” of E × F was established for Brownian motion B by Watson (1978).

The Hausdorff dimension B(E) ∩ F was determined by Khoshnevisan and Xiao (2015).
For Gaussian random fields and the solutions of some SPDEs, some necessary conditions and

sufficient conditions for the hitting probability in (1) with E = [a, b], (a, b ∈ RN ) have been
obtained by Dalang, Khoshnevisan and Nualart (2007, 2009), Biermé, Lacaux and X. (2009), X.
(2009), Dalang and Sanz-Solé (2010), Hinojosa-Calleja and Sanz-Solé (2020, 2021).

In Section 7.1, we will work to extend and strengthen the existing results on the hitting proba-
bility in (1) for Gaussian random fields.

Question (2) is related to existence of self-intersections.

• When F = Rd, then (2) gives existence of k-multiple points.

– Lévy processes (Khoshnevisan and X., 2005): F = Rd, general E1, . . . , Ek

– The Brownian sheet: Dalang et al (2012), Dalang and Mueller (2015), Dalang, Lee,
Mueller, and X. (2021): F = Rd, E1, . . . , Ek are intervals.

• No results for general F , E1, . . . , Ek.

In Section 7.1, we will provide some results on the intersection of independent Gaussian random
fields, which is technically simpler than Question (2).
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7.1 Hitting probabilities of Gaussian random fields

Let X = {X(t), t ∈ RN} be a Gaussian field in Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, t ∈ RN , (7.3)

where X1, . . . , Xd are independent copies of a centered GF X0.
Given E ⊂ RN and F ⊂ Rd, in order to provide necessary condition and sufficient condition for

P{X(E) ∩ F 6= ∅} > 0,

we recall some concepts on fractals.

7.1.1 Hausdorff dimension and Capacity

For any metric ρ̃ on Rp, any β > 0 and E ⊆ Rp, the β-dimensional Hausdorff measure in the metric
ρ̃ of E is defined by

Hβρ̃ (E) = lim
δ→0

inf

{ ∞∑
n=1

(2rn)β : E ⊆
∞⋃
n=1

Bρ̃(rn), rn ≤ δ
}
,

where Bρ̃(r) denotes an open ball of radius r in the metric space (Rp, ρ̃).
The corresponding Hausdorff dimension of E is defined by

dimρ̃
H
E = inf

{
β > 0 : Hβρ̃ (E) = 0

}
.

ρ̃ will be omitted if it is the Euclidean metric.
The Bessel-Riesz type capacity of order α on the metric space (Rp, ρ̃) is defined by

Cαρ̃ (E) =

[
inf

µ∈P(E)

∫ ∫
fα
(
ρ̃(u, v)

)
µ(du)µ(dv)

]−1

,

where P(E) is the family of probability measures carried by E and the function fα : (0,∞)→ (0,∞)
is defined by

fα(r) =


r−α if α > 0,
log
(

e
r∧1

)
if α = 0,

1 if α < 0.
(7.4)

The dimension p and metric ρ̃ can be chosen appropriately based on the hitting probability
problem, as we will show below.

7.1.2 Hitting probabilities

We start by stating the following result which was motivated by Dalang, Khoshnevisan and Nualart
(2007).

Theorem 7.1 [Biermé, Lacaux and Xiao, 2009] If X is defined by (7.3) such that X0 satisfies:

E
[
(X0(s)−X0(t)

)2] � N∑
j=1

|sj − tj |2Hj for all s, t ∈ I(= [ε, 1]N ), (7.5)
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where 0 < Hj ≤ 1 (1 ≤ j ≤ d) are constants, and ∃ c7,1 > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣∣X0(s)
)
≥ c7,1

N∑
j=1

|sj − tj |2Hj . (7.6)

Then ∀ Borel set F ⊂ Rd,

c7,2 Cd−Q(F ) ≤ P
{
X(I) ∩ F 6= ∅

}
≤ c7,3Hd−Q(F ),

where Q =
∑N

j=1
1
Hj

, Cd−Q is (d−Q)-dimensional Riesz capacity and Hd−Q is (d−Q)-dimensional

Hausdorff measure.

It is an open problem if Hd−Q(F ) in the above can be replaced by Cd−Q(F ).

Recently, Dalang, Mueller and X. (2017) proved that, if d = Q, then for every x ∈ Rd,

P
{
X(I) ∩ {x} 6= ∅

}
= P

{
∃t ∈ I : X(t) = x

}
= 0.

We will discuss this result in Section 7.2 below.
For any Borel set F ⊆ Rd, consider the inverse image

X−1(F ) =
{
t ∈ RN : X(t) ∈ F

}
.

Theorem 7.2 [Biermé, Lacaux and Xiao, 2009] Let X be as in Theorem 7.1 and let F ⊆ Rd be a
Borel set such that

∑N
j=1

1
Hj

> d− dimHF . Then with positive probability,

dimH

(
X−1(F ) ∩ I

)
= min

1≤k≤N

{ k∑
j=1

Hk

Hj
+N − k −Hk(d− dimHF )

}

=

k∑
j=1

Hk

Hj
+N − k −Hk(d− dimHF ),

if

k−1∑
j=1

1

Hj
≤ d− dimHF <

k∑
j=1

1

Hj
.

The following extension of Theorem 7.1 from Chen and Xiao (2012) is useful.

Theorem 7.3 Assume that (7.5) and (7.6) hold. Then for all compact sets E ⊆ I and F ⊆ Rd,

c7,4 Cdρ1(E × F ) ≤ P
{
X(E) ∩ F 6= ∅

}
≤ c7,5Hdρ1(E × F ),

where Cdρ1 and Hdρ1 denote respectively the d-dimensional Riesz capacity and d-dimensional Haus-

dorff measure in the metric space (RN+d, ρ1), and where

ρ1

(
(s, x), (t, y)

)
= max

{ N∑
j=1

|sj − tj |Hj , ‖x− y‖
}
.
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Theorem 7.3 implies the following result on hitting probability of X−1({a}):
For every a ∈ Rd and Borel set E ⊆ I, ∃ c7,6 ≥ 1, such that

c−1
7,6 C

d
ρ(E) ≤ P

{
X−1({a}) ∩ E 6= ∅

}
≤ c7,6Hdρ(E).

In the above, Cdρ is the Bessel-Riesz capacity of order d in the metric ρ, and Hdρ(E) is the d-
dimensional Hausdorff measure of E in the metric ρ defined as before by

ρ(s, t) =
N∑
j=1

|sj − tj |Hj .

The proof of Theorem 7.3 makes use of the following two lemmas.

Lemma 7.4 [Biermé, Lacaux and Xiao, 2009] Assume the conditions of Theorem 7.1 hold. For
any constant M > 0, there exist positive constants c and δ0 such that for all r ∈ (0, δ0), t ∈ I and
all x ∈ [−M,M ]d,

P
{

inf
s∈Bρ(t,r)∩I

∥∥X(s)− x
∥∥ ≤ r} ≤ c rd. (7.7)

In the above Bρ(t, r) = {s ∈ RN : ρ(s, t) ≤ r} denotes the closed ball of radius r in the metric ρ in
RN .

Lemma 7.5 [Biermé, Lacaux and Xiao, 2009] There exists a positive and finite constant c such
that for all ε ∈ (0, 1), s, t ∈ I and x, y ∈ Rd, we have∫

R2d

exp

(
− 1

2
(ξ, η)

(
εI2d + Cov

(
X(s), X(t)

))
(ξ, η)T

)
e−i(〈ξ, x〉+〈η, y〉)dξdη ≤ c

ρ1

(
(s, x), (t, y)

)d .
In the above, I2d denotes the identity matrix of order 2d, Cov

(
X(s), X(t)

)
denotes the covariance

matrix of the random vector (X(s), X(t)), and (ξ, η)T is the transpose of the row vector (ξ, η).

Proof of Theorem 7.3. The upper bound in (7.3) can be proved by a covering argument
using Lemma 7.4. The lower bound in (7.3) can be proved by using Lemma 7.5 and a capacity
argument. We omit the details. �

7.2 Intersections of independent Gaussian fields

Let XH = {XH(s), s ∈ RN1} and XK = {XK(t), t ∈ RN2} be two independent Gaussian fields with
values in Rd such that the associate random fields XH

0 and XK
0 satisfy (7.5) and (7.6) respectively

on I1 ⊆ RN1 with H = (H1, . . . ,HN1) and on I2 ⊆ RN2 with K = (K1, . . . ,KN2).

Theorem 7.6 [Chen and Xiao (2012)] There exists a constant C ≥ 1 such that

C−1 Cdρ2(E1 × E2) ≤P
{
XH(E1) ∩XK(E2) 6= ∅

}
≤ CHdρ2(E1 × E2),

where

ρ2

(
(s, t), (s′, t′)

)
=

N1∑
i=1

|si − s′i|Hi +

N2∑
j=1

|tj − t′j |Kj .
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When E1 = I1 and E2 = I2 are two intervals, Theorem 7.4 implies that

(i) If d >
∑N1

j=1
1
Hj

+
∑N2

j=1
1
Kj

, then

P
{
XH(I1) ∩XK(I2) 6= ∅

}
= 0.

(ii) If d <
∑N1

j=1
1
Hj

+
∑N2

j=1
1
Kj

, then

P
{
XH(I1) ∩XK(I2) 6= ∅

}
> 0.

• What happens in the critical case of l

d =

N1∑
j=1

1

Hj
+

N2∑
j=1

1

Kj
? (7.8)

Theorem 7.7 [Chen and Xiao (2012)] If XH (or XK) satisfies the conditions of Theorem 5.8,
then, in the critical case (7.8), P

{
XH(I1) ∩XK(I2) 6= ∅

}
= 0.

Proof By Theorem 5.8, the exact Hausdorff measure function for XH(I1) is

ϕ(r) = r
∑N1
j=1

1
Hj log log

1

r
.

This implies that
H
d−

∑N2
j=1

1
Kj

(XH(I1)) = 0 a.s.

Therefore, the conclusion follows from Theorem 7.1. �

7.3 Polarity of points (the critical case)

In Dalang, Mueller and Xiao (2017), the following assumptions are made.
Condition (A1) Consider a compact interval T ⊂ RN . There exists a Gaussian random field

{v(A, t) : A ∈ B(R+), t ∈ T} such that
(a) For all t ∈ T , A 7→ v(A, t) is a real-valued Gaussian noise, v(R+, t) = X1(t), and v(A, ·) and

v(B, ·) are independent whenever A and B are disjoint.
(b) There are constants a0 ≥ 0 and γj > 0, j = 1, . . . , N such that for all a0 ≤ a ≤ b ≤ ∞ and

s, t ∈ T , ∥∥v([a, b), s)−X1(s)− v([a, b), t) +X1(t)
∥∥
L2

≤ C
( N∑
j=1

aγj |sj − tj |+ b−1
)
,

(7.9)

where ‖Y ‖L2 =
[
E(Y 2)

]1/2
for a random variable Y and

∥∥v([0, a0), s)− v([0, a0), t)
∥∥
L2 ≤ C

N∑
j=1

|sj − tj |. (7.10)
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Recall that ρ(s, t) =
N∑
j=1
|sj − tj |Hj , where Hj = (γj + 1)−1.

We will need another condition.
Condition (A5) (a). There is a constant c > 0 such that ‖X1(t)‖L2 ≥ c for all t ∈ T .
(b). For I ⊂ T and ε > 0 small, let Iε be the ε-neighborhood of I. For every t ∈ I, there is

t′ ∈ ∂I(ε) such that for all x, x̄ ∈ I with ρ(t, x) ≤ 2ε and ρ(t, x̄) ≤ 2ε,

∣∣E((X1(x)−X1(x̄))X1(t′))
∣∣ ≤ C N∑

j=1

|xj − x̄j |δj ,

where δj ∈ (Hj , 1], (j = 1, . . . , N) are constants.
The following is the main result of Dalang, Mueller and Xiao (2017).

Theorem 7.8 Let X = {X(t), t ∈ RN} be a centered Gaussian random field that satisfies Condi-
tions (A1) and (A5). Assume that Q = d. Then for every z ∈ Rd, P{∃t ∈ T : X(t) = z} = 0.

Theorem 7.8 is proved by constructing an economic covering for the image X
(
Bε(t

0)
)

(where
ε > 0 and t0 ∈ T are fixed) by using the method of Talagrand (1998). See also Xiao (1997), where
the exact Hausdorff measure of the level set Lz = {t ∈ T : X(t) = z} was determined.

The main ingredient for proving Theorem 7.8 is the following proposition, which was proved as
Proposition 5.2 in Lecture 5.

Proposition 7.9 Let Assumption (A1) hold. Then there are constants K1 and δ0 such that for
every 0 < r0 < δ0 and t0 ∈ T , we have

P
{
∃r ∈ [r2

0, r0] : sup
t:ρ(t,t0)<r

|X(t)−X(t0)| ≤ K1
r

(log log 1
r )1/Q

}
≥1−exp

[
−
(

log
1

r0

) 1
2

]
.

For t0 ∈ T and ε > 0, set

Bε(t
0) = {t ∈ T : ρ(t, t0) ≤ ε},

B′ε(t
0) = {t ∈ T : ρ(t, t0) ≤ 2ε}.

For proving Theorem 7.8, it is sufficient to prove the following

Proposition 7.10 Assume that (A1) holds and Q = d. Fix t0 ∈ T , and consider the following
(random) subset of Rd:

M(ε, t0) = X
(
Bε(t

0)
)
,

which is the image of Bε(t
0) under the mapping t 7→ X(t). Then for every z ∈ Rd,

P{z ∈M(ε, t0)} = P
{
∃t ∈ Bε(t0) : X(t) = z

}
= 0.

Now we work to prove Proposition 7.10.
Let t′ ∈ Bε(t0) be given by (A5) (b). We define two Rd-valued Gaussian random fields

X2(t) = E(X(t)
∣∣X(t′)), X1(t) = X(t)−X2(t).

Notice that the random fields X1 and X2 are independent. Further, X1 is independent of the
random vector X(t′). The following lemma shows that X2 can be viewed as a perturbation part.
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Lemma 7.11 There is a finite constant C such that for t, t̄ ∈ B′ε(t0),

|X2(t)−X2(t̄)| ≤ C|X(t′)|
N∑
j=1

|tj − t̄j |δj .

For p ≥ 1, consider the random set

Rp =

{
x ∈ B′ε(t0) :∃r ∈ [2−2p, 2−p) with

sup
x̄: ρ(x̄,x)≤r

|X(x̄)−X(x)| ≤ K1 r

(log log 1
r )

1
Q

}
,

and the event

Ωp,1 =

{
λN (Rp) ≥ λ(B′ε(t

0))
(

1− exp
(
−√p/4

))}
.

which can be described as the event “a large portion of B′ε(t
0) consists of points at which X has

minimal oscillation.” As in the proof of the upper bound in Theorem 5.6, we have

P
(
Ωc
p,1

)
≤ E(λN (B′ε(t

0) \Rp))
λN (B′ε(t

0)) exp
(
−√p/4

) ≤ exp

(
−3

4

√
p

)
. (7.11)

This gives
∞∑
p=1

P(Ωc
p,1) < +∞. (7.12)

Fix β ∈ ]0,min(minj=1,...,N (δjH
−1
j − 1), 1)[ (which is possible since δj > Hj , j = 1, . . . , N) and

set
Ωp,2 = {|X(t′)| ≤ 2βp}.

Then
∑

p≥1 P(Ωc
p,2) < +∞.

By Lemma 7.11, we have that, on the event Ωp,2,

|X2(x)−X2(x̄)| ≤ C2βp
N∑
j=1

|xj − x̄j |δj ≤ C̃ 2βp
N∑
j=1

rδjH
−1
j

for all for x, x̄ ∈ B′ε(t0) that satisfy ρ(x, x̄) ≤ cr.
Therefore, there is a constant K2 > K1 such that on the event Ωp,3

def
= Ωp,1 ∩ Ωp,2, for each

x ∈ Rp, there exists r ∈ [2−2p, 2−p] such that

sup
x̄: ρ(x̄,x)≤r

|X1(x̄)−X1(x)| ≤ K2
r

(log log 1
r )1/Q

. (7.13)

An “anisotropic dyadic cubes” of order ` in RN is of the form

N∏
j=1

[ mj

2`H
−1
j

,
mj + 1

2`H
−1
j

]
,
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where mj ∈ N. For x ∈ RN , let C`(x) denote the anisotropic dyadic cube of order ` that contains
x.

The cube C`(x) is called “good” if

sup
x̄∈C`(x)∩Bε(t0)

|X1(y)−X1(x̄)| ≤ d`, (7.14)

where

d` = K2
2−`

(log log 2`)1/Q

By (7.13), when Ωp,3 occurs, we can find a family H1,p of non-overlapping good anisotropic dyadic
cubes (they may have intersecting boundaries) of order ` ∈ [p, 2p] that covers Rp. This family only
depends on the random field X1.

Let H2,p be the family of non-overlapping dyadic cubes of order 2p that meet Bε(t
0) but are

not contained in any cube of H1,p. For p large enough, these cubes are contained in B′ε(t
0), hence

in B′ε(t
0) \Rp.

Therefore, when Ωp,3 occurs, the number of cubes in H2,p is at most Np, where

Np 2−2pQ ≤ λN (B′ε(t
0)) exp

(
−√p/4

)
,

so
Np ≤ K 22pQ exp (−√p/4) , (7.15)

where K does not depend on p.
Let Ωp,4 be the event “the inequality

sup
x,x̄∈C

|X(x)−X(x̄)| ≤ K3 2−2p√p (7.16)

holds for each dyadic cube C of order 2p of RN that meets Bε(t
0).”

We choose K3 large enough so that
∑

p≥1 P
(
Ωc
p,4

)
< +∞. This is possible by Lemma 3.3 in

Lecture 3 [it is Lemma 2.1 from Talagrand (1995)].
Set Hp = H1,p ∪H2,p. This family is well-defined for all p ≥ 1, and it is a non-overlapping cover

of Bε(t
0).

Set

rA = 4d` = 4K22−`(log `)−1/Q if A ∈ H1,p and A is of

order ` ∈ [p, 2p],

rA = K32−2p√p if A ∈ H2,p.

Let f(r) = rd log log 1
r . If Ωp,3 ∩ Ωp,4 occurs, then we can verify that for p large enough,∑

A∈Hp

f(rA) ≤ KλN (Bε(t
0)). (7.17)

For each A ∈ Hp, we pick a distinguished point pA in A (say the lower left corner). Let BA be
the Euclidean ball in Rd centered at X(pA) with radius rA.
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Let Fp be the family of balls {BA, A ∈ Hp}. For p large enough, on Ωp,3 ∩ Ωp,4, Fp covers
M(ε, t0).

Since f(r)/rd → 0 as r → 0+, it follows from (7.17) that λd
(
M(ε, t0)

)
= 0 a.s. This and

Fubini’s theorem imply that for a.e. z ∈ Rd, P
(
z ∈M(ε, t0)

)
= 0.

To prove that for every z ∈ Rd, P
(
z ∈M(ε, t0)

)
= 0, we introduce the random field X3 defined

by

X3(t) =
1

α(t)
(z −X1(t)), ∀ t ∈ RN ,

where

α(t) =
E[X1(t)X1(t′)]

E[X1(t′)2]
.

Notice that E[X(t)|X(t′)] = α(t)X(t′).
It can be verified that 1/2 ≤ α(t) ≤ 3/2 for all t ∈ Bε(t0) when ε is small enough. Moreover,

the function t 7→ α(t) is Hölder continuous by Condition (A5)(b).
For any z ∈ Rd, by the decomposition

X(x) = X1(x) + α(x)X(t′),

we have
X(x) = z ⇐⇒ X3(x) = X(t′). (7.18)

Denote by gX(t′)(w) the density function of X(t′). By the independence of X1(x) and X(t′),
we have l

P
{
z ∈M(ε, t0)

}
= P

{
∃x ∈ Bε(t0) : X3(x) = X(t′)}

=

∫
Rd
dw gX(t′)(w)P{∃x ∈ Bε(t0) : X3(x) = w}.

(7.19)

It can be proved as on the previous page that λd
[
X3(Bε(t

0))
]

= 0 a.s. This implies that for a.e.
w ∈ Rd,

P{∃x ∈ Bε(t0) : X3(x) = w} = 0.

Therefore, (7.19) yields P
{
z ∈M(ε, t0)

}
= 0.

This proves Proposition 7.10 and thus Theorem 7.8.

7.4 Polarity of points for systems of linear stochastic heat and wave equations

Let û = {û(t, x), t ∈ R+, x ∈ Rk} be the mild solution of a linear system of d uncoupled heat
equations: { ∂

∂t ûj(t, x) = ∆ûj(t, x) + Ẇj(t, x), j = 1, . . . , d,

u(0, x) = 0, x ∈ Rk.
(7.20)

Here, û(t, x) = (û1(t, x), . . . , ûd(t, x)) and ∆ is the Laplacian in the spatial variables. The Gaussian
noise Ẇ is white in time and has a spatially homogeneous covariance given by the Riesz kernel
with exponent β ∈ (0, k ∧ 2), i.e.

E(Ẇj(t, x)Ẇj(s, y)) = δ(t− s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time white noise.
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Theorem 7.12 Suppose (4 + 2k)/(2− β) = d. Then d is the critical dimension for hitting points
and points are polar for û. That is, for all z ∈ R(4+2k)/(2−β),

P
{
∃(t, x) ∈ (0,+∞) × Rk : û(t, x) = z

}
= 0.

In particular, in the case when Ŵ is the space-time white noise and d = 6, all points are polar for
û.

Now let v̂ be the solution of the stochastic wave equation in spatial dimension k driven by W
with β ≥ 1. 

∂2

∂t2
v̂j(t, x) = ∆v̂j(t, x) + Ẇj(t, x), j = 1, . . . , d,

v̂(0, x) = 0, ∂
∂t v̂(0, x) = 0, x ∈ Rk.

Theorem 7.13 Suppose k = 1 = β or 1 < β < k ∧ 2, and d = 2(k+1)
2−β . Then d is the critical

dimension for hitting points and points are polar for v̂, that is, for all z ∈ Rd,

P
{
∃(t, x) ∈ (0,+∞) × Rk : v̂(t, x) = z

}
= 0.

In particular, in the case when W is the space-time white noise and d = 4, all points are polar for
v̂.

8 Lecture 8. Multiple Points of Gaussian Random Fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd defined by

X(t) = (X1(t), . . . , Xd(t)), where X1, . . . , Xd are i.i.d.

Let m ≥ 2 be fixed. We consider the question: when is

P
{
∃ distinct t1, . . . , tm s.t. X(t1) = · · · = X(tm)

}
> 0?

Studies on self-intersection have a long history. For Gaussian random fields we mention two ap-
proaches:

• Potential-theoretical approach for the Brownian sheet: R. Dalang, D. Khoshnevisan, E. Nu-
alart, D. Wu and X. (2012), Dalang and Mueller (2015).

• Covering argument for fractional Brownian motion: Talagrand (1998).

8.1 Non-existence of multiple points in the critical dimension

We apply an approach which is based on Talagrand (1998). Our setting is the same as in Dalang,
Mueller and Xiao (2017).
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Lemma 8.1 Consider b > a > 1 and r > 0 small. Set

A =
N∑
j=1

aH
−1
j −1 rH

−1
j + b−1.

There are constants A0, K and c such that if A ≤ A0r and

u ≥ KA log1/2
( r
A

)
, (8.1)

then for S(t0, r) = {t ∈ T : ρ(t, t0) ≤ r},

P
{

sup
t∈S(t0,r)

|X(t)−X(t0)− (v([a, b], t)− v([a, b], t0))| ≥ u
}

≤ exp
(
− u2

cA2

)
.

In addition, we will make use of the following conditions.
Assumption (A5′) (a) ‖X1(t)‖L2 ≥ c > 0 for all t ∈ T and

E
[
(X1(s)−X1(t))2

]
≥ Kρ(s, t)2 for all s, t ∈ T.

(b) For I ⊂ T and ε > 0 small, let Iε be the ε-neighborhood of I. For every t ∈ I, there is
t′ ∈ ∂I(ε) such that for all x, x̄ ∈ I with ρ(t, x) ≤ 2ε and ρ(t, x̄) ≤ 2ε,

∣∣E((X1(x)−X1(x̄))X1(t′))
∣∣ ≤ C N∑

j=1

|xj − x̄j |δj ,

where δj ∈ (Hj , 1], (j = 1, . . . , N) are constants.
Assumption (A6) For any m distinct points t1, . . . , tm ∈ T , X1(t1), . . . , X1(tm) are linearly

independent random variables, or equivalently, the Gaussian vector (X1(t1), . . . , X1(tm)) is non-
degenerate.

This is equivalent to detCov(X1(t1), . . . , X1(tm)) > 0, which holds if {X1(t), t ∈ RN} has a
property of local nondeterminism: for all k ≤ m and all t, t1, . . . , tk ∈ T ,

Var
(
X1(t)

∣∣X1(t1), . . . , X1(tk)
)
≥ cmin{ρ(t, tj)2 : 1 ≤ j ≤ k}.

Hence (A6) is weaker than the property of strong local nondeterminism.
Here is the main theorem of this section.

Theorem 8.2 [Dalang, Lee, Mueller, and Xiao, 2021] Let T ⊂ RN (or, say (0,∞)N ) be a compact
interval such that (A1), (A5′) and (A6) hold. If mQ ≤ (m − 1)d, then {X(t), t ∈ T} has no
m-multiple points almost surely.
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Remark 8.3 : (i). The proof for mQ < (m− 1)d is easy. The case when mQ = (m− 1)d, which
is called the critical (dimension) case, is more difficult.

(ii). If mQ > (m−1)d, then we can show that {X(t), t ∈ T} has m-multiple points with positive
probability.

(iii) Theorem 8.2 is applicable to the Brownian sheet, fractional Brownian sheets, solutions of
systems of stochastic heat and wave equations.

In the following, we provide a sketch of the proof of Theorem 8.2.
Consider m distinct points t1, . . . , tm ∈ T such that

ρ(ti, tj) ≥ η for i 6= j,

where η > 0. For ε > 0 small (say ε < η/4), let

Bi
ε =

( N∏
j=1

[tij − ε1/Hj , tij + ε1/Hj ]

)
∩ T.

Consider the random set Mε := Mt1,...,tm;ε defined by

Mε =
{
z ∈ Rd : ∃ (s1, . . . , sm) ∈ B1

ε × · · · ×Bm
ε

such that z = X(s1) = · · · = X(sm)
}
.

We will prove that under the conditions of Theorem 8.2, Mε = ∅ a.s. By applying the small
ball probability estimate due to Talagrand (1993) [cf. Ledoux, 1994], we have

Lemma 8.4 There exist constants K and 0 < δ0 < 1 such that for all (s1, . . . , sm) ∈ B1
2ε×· · ·×Bm

2ε,
0 < a < b, and 0 < u < r < δ0, we have

P
(

sup
1≤i≤m

sup
xi∈S(si,r)

|v([a, b), xi)− v([a, b), si)| ≤ u
)

≥ exp
(
−K rQ

uQ

)
.

Recall that S(s, r) = {x ∈ T : ρ(x, s) ≤ r}.

The key component for proving Theorem 8.2 is the following:

Proposition 8.5 Suppose (A1) holds for B1
2ρ, . . . , B

m
2ρ. Then there are constants K and 0 < δ < 1

such that for all 0 < r0 < δ and (s1, . . . , sm) ∈ B1
2ρ × · · · ×Bm

2ρ, we have

P
(
∃ r ∈ [r2

0, r0], sup
1≤i≤m

sup
xi∈S(si,r)

|X(xi)−X(si)| ≤ Kr
(

log log 1/r
)−1/Q

)
≥ 1− exp

(
−
(

log 1/r0

)1/2)
.
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Proof Let 1 < a < b, r > 0 small and

A =

N∑
j=1

a1/Hj−1r1/Hj + b−1.

Lemma 8.1 and (A1) imply that there are constants A0, K and c such that for all (s1, . . . , sm) ∈
B1

2ρ × · · · ×Bm
2ρ if A ≤ A0r and u ≥ KA(log(r/A))1/2, then

P
(

sup
1≤i≤m

sup
xi∈S(si,r)

|(X(xi)−X(si))− (v([a, b), xi)− v([a, b), si))| ≥ u
)

≤ m exp
(
− u2

cA2

)
.

Applying Lemma 8.4 to {v([a, b), x)} , we can prove the proposition in a similar way to the
proof of Proposition 7.9 in Lecture 7. The details are omitted here. �

For any integer p ≥ 1, let

Rp =
{

(s1, . . . , sm) ∈ B1
2ρ × · · · ×Bm

2ρ : ∃ r ∈ [2−2p, 2−p] s. t.

sup
1≤i≤m

sup
xi∈S(si,r)

|X(xi)−X(si)| ≤ Kr
(

log log
1

r

)−1/Q
}
.

Proposition 8.5 can be re-stated as ∀ (s1, . . . , sm) ∈ B1
2ε × · · · ×Bm

2ε,

P
{

(s1, . . . , sm) ∈ Rp
}
≥ 1− exp

(
−√p/2

)
.

This and Fubini’s theorem imply that with probability 1,

λ(Rp) ≥ λ
(
B1

2ε × · · · ×Bm
2ε

)(
1− exp

(
−√p/4

))
(8.2)

for all p large enough, where λ denotes Lebesgue measure.
This means that for most of points (s1, . . . , sm) ∈ B1

2ε × · · · × Bm
2ε, the oscillations of X(xi) in

S(si, r) (i = 1, . . . ,m) are characterized by r
(

log log 1
r

)−1/Q
along a sequence of rp → 0.

The points in B1
2ε × · · · ×Bm

2ε where the oscillation is large can be covered by much fewer balls
of ρ-radius r.

The largest such oscillation can be bounded by the uniform modulus of continuity of X on T .
The effect of these points can be shown to be negligible and so we will focus on dealing with

the points in Rp that satisfies (8.2).
Suppose that for each small ε > 0, (A5′) holds for the rectangles B1

2ε, . . . , B
m
2ε and there are

(t̂1, . . . , t̂m) on the boundary of B1
3ε × · · · ×Bm

3ε such that for every i = 1, . . . ,m and all x, y ∈ Bi
2ε,

∣∣E[(X(x)−X(y))X(t̂i)
]∣∣ ≤ C N∑

j=1

|xj − yj |δj .

Let Σ2 denote the σ-field generated by X(t̂1), . . . , X(t̂m). Define

X2(x) = E(X(x)|Σ2), X1(x) = X(x)−X2(x).

The processes X1 and X2 are independent.
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Lemma 8.6 There is a constant K depending on t̂1, . . . , t̂m such that for all i = 1, . . . ,m, for all
x, y ∈ Bi

2ε, ∣∣X2(x)−X2(y)
∣∣ ≤ K N∑

j=1

|xj − yj |δj max
1≤i≤m

∣∣X(t̂i)
∣∣.

This shows that the process X1 is a small perturbation of X, provided max1≤i≤m |X(t̂i)| is not
too big. (We can control is easily using Condition (A5′) (a).)

Lemma 8.7 Suppose (A6) is satisfied. There exists a constant K (depending on t1, . . . , tm) such
that for all ε small, a2, . . . , am ∈ Rd, r > 0, and (x1, . . . , xm) ∈ B1

ε × · · · ×Bm
ε ,

P
{

sup
2≤i≤m

|X2(x1)−X2(xi)− ai| ≤ r
}
≤ Kr(m−1)d.

This is proved by showing X2(x1), . . . , X2(xm) are linearly dependent.
Next, we construct a random covering for Mε.
Denote by C the family of “generalized dyadic cubes” of the form C = Iq,1× · · · × Iq,m of order

q. We say that such a cube C is good if

sup
1≤i≤m

sup
x,y∈Iq,i

|X1(x)−X1(y)| ≤ dq,

where dq = K2−q(log log 2q)−1/Q.
For each x ∈ Rp, we can find a good dyadic cube C containing x of smallest order q, where

p ≤ q ≤ 2p.
We obtain a family G 1

p of disjoint good dyadic cubes of order between p and 2p that meet Rp.
Let G 2

p be the family of dyadic cubes of order 2p that meet B1
ε ×· · ·×Bm

ε but are not contained
in any cube of G 1

p . (These are the bad cubes.)
Let Gp = G 1

p ∪ G 2
p , which covers B1

2ε × · · · ×Bm
2ε.

Note that for each C ∈ C , the events {C ∈ G 1
p } and {C ∈ G 2

p } are in the σ-field Σ1 := σ(X1(x) :
x ∈ T ).

For each p ≥ 1, we construct a family Fp of balls in Rd (depending on ω).
For each C ∈ C , we choose a distinguished point xC = (x1

C , . . . , x
m
C ) in C ∩ (B1

2ε × · · · × Bm
2ε).

Let the ball Bp,C be defined as follows:

(i) If C ∈ G 1
p , take Bp,C as the ball of center X1(x1

C) of radius rp,C = 4dq.

(ii) If C ∈ G 2
p , take Bp,C as the ball of center X1(x1

C) of radius rp,C = K2−2pp1/2.

(iii) Otherwise, take Bp,C = ∅ and rp,C = 0.

Note that for each p ≥ 1, C ∈ C , the random variable rp,C is Σ1-measurable. Consider the event

Ωp,C =
{
ω ∈ Ω : sup

2≤i≤m
|X(x1

C , ω)−X(xiC , ω)| ≤ rp,C(ω)
}
.

Define Fp(ω) = {Bp,C : C ∈ Gp(ω), ω ∈ Ωp,C}.
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Claim 1: There is an event Ω∗ of probability one such that for all p large enough and ω ∈
Ω∗ ∩ Ωp,C , the family Fp(ω) covers Mε.

This is proved by making use of Lemma 8.6.

Claim 2: P
{

Ωp,C |Σ1

}
≤ K r

(m−1)d
p,C .

This is proved by making use of Lemma 8.7.
To finish the proof, we make use of an argument of geometric flavor. Let

φ(r) = rmQ−(m−1)d(log log(1/r))m.

We consider the following quantity related to Mε:

φ-m
(
Mε

)
= lim inf

p→∞

∑
Bp,C∈Fp

φ(rp,C).

Notice that, if mQ − (m − 1)d > 0, then φ-m(Mε) gives an upper bound for the φ-Hausdorff
measure of Mε. However, φ-m(Mε) is well-defined even if mQ− (m− 1)d ≤ 0.

By applying Fatou’s lemma, Claims 1 and 2, we derive

E
[
φ-m(Mε)

]
≤ lim inf

p→∞
E
{ ∑
Bp,C∈Fp

φ(rp,C)
}

= lim inf
p→∞

E
{ ∑
C∈Gp

φ(rp,C)1Ωp,C

}
= lim inf

p→∞
E
{
E
[ ∑
Bp,C∈Gp

φ(rp,C)1Ωp,C

∣∣Σ1

]}
≤ KεmQ.

This implies that φ-m(Mε) <∞ a.s.
However, if mQ ≤ (m − 1)d, then φ(r) → ∞ as r → 0. This implies that Mε is empty and

finishes the proof of Theorem 8.2.

8.2 Self-intersection local times and Hausdorff dimension of the set of multiple
times

In this section, we consider the case when mQ > (m − 1)d. We can show that {X(t), t ∈ T} has
m-multiple points with positive probability and determine the Hausdorff dimension of the set Lm
of m-multiple times

Lm =
{

(t1, . . . , tm) ∈ Tm : t1, . . . , tm are distinct such that

X(t1) = . . . = X(tm)
}
.

(8.3)

The tool for studying this question is the self-intersection local time.
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9 Lecture 9. Propagation of Singularities of the Linear Stochastic
Wave Equation

We consider the linear stochastic wave equation
∂2

∂t2
u(t, x) = ∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rk,

u(0, x) =
∂

∂t
u(0, x) = 0.

(9.1)

Here, Ẇ is a Gaussian noise that is white in time and has a spatially homogeneous covariance given
by the Riesz kernel with exponent β ∈ (0, k ∧ 2), i.e.

E(Ẇ (t, x)Ẇ (s, y)) = δ(t− s)|x− y|−β.

If k = 1 = β, then Ẇ is the space-time Gaussian white noise.
Dalang (1999) proved that the real-valued process solution of equation (9.1) is given by

u(t, x) =

∫ t

0

∫
Rk
G(t− s, x− y)W (ds dy), (9.2)

where G is the fundamental solution of the wave equation and W is the martingale measure induced
by the noise Ẇ .

We only consider the case of k = 1. Hence 0 < β ≤ 1 and

G(t, x) =
1

2
1{|x|<t}.

The mild solution of (9.1) is

u(t, x) =
1

2

∫ t

0

∫
R

1{|x−y|≤t−s}(s, y)W (ds dy) =
1

2
W (∆(t, x)), (9.3)

where ∆(t, x) = {(s, y) ∈ R+ × R : 0 ≤ s ≤ t, |x− y| ≤ t− s}, see Figure 1.
Consider a new coordinate system (τ, λ) obtained by rotating the (t, x)-coordinates by −45◦.

In other words,

(τ, λ) =
( t− x√

2
,
t+ x√

2

)
and (t, x) =

(τ + λ√
2
,
−τ + λ√

2

)
.

For τ ≥ 0, λ ≥ 0, denote

ũ(τ, λ) = u
(τ + λ√

2
,
−τ + λ√

2

)
.

We will study the simultaneous LIL and propagation of singularities for {ũ(τ, λ), τ ≥ 0, λ ≥ 0}.

9.1 The simultaneous law of the iterated logarithm and singularities

Recall that, if B = {B(t), t ≥ 0} is standard Brownian motion, then for every t ≥ 0, the law of the
iterated logarithm states:

lim sup
h→0+

|B(t+ h)−B(t)|√
2h log log 1/h

= 1, a.s.
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Figure 1: 1

By Fubini’s theorem, we have

P
(

lim sup
h→0+

|B(t+ h)−B(t)|√
2h log log 1/h

= 1 for almost all t ≥ 0

)
= 1. (9.4)

In the above, “for almost all t ≥ 0” can not be strengthened to “for all t ≥ 0”.
In fact, Orey and Taylor (1974) proved that the set

S =

{
t ≥ 0 : lim sup

h→0+

|B(t+ h)−B(t)|√
2h log log 1/h

=∞
}

is dense in [0,∞), even though it follows from (9.4) that the Lebesgue measure of S equals 0.
The points in S are called singularities of Brownian motion.
Some geometric properties of S and the λ-fast sets

F (λ) =

{
t ≥ 0 : lim sup

h→0+

|B(t+ h)−B(t)|√
2h log 1/h

≥ λ
}

were studied by Orey and Taylor (1974), Khoshnevisan, Peres and X. (2000), among others.
For a random field X = {X(t), t ∈ RN}, the set of its singularities may have interesting

topological and geometric properties.
This was first studied by Walsh (1982) for the Brownian sheet W = {W (s, t), s ≥ 0, t ≥ 0},

which is a centered Gaussian random field with covariance function

E
(
W (s1, t1)W (s2, t2)

)
= (s1 ∧ s2)(t1 ∧ t2).

For each fixed s > 0, { 1√
s
W (s, t), t ≥ 0} is standard Brownian motion. Hence the LIL states

that for every t ≥ 0,

lim sup
h→0+

|W (s, t+ h)−W (s, t)|√
2h log log 1/h

=
√
s, a.s.
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Zimmerman (1972) proved the following simultaneous LIL: For any t ≥ 0 fixed,

P
(

lim sup
h→0+

|W (s, t+ h)−W (s, t)|√
2h log log 1/h

=
√
s for all s ≥ 0

)
= 1.

However, by the result of Orey and Taylor (1974), for any s > 0 fixed, there is a random time
τ such that

lim sup
h→0+

|W (s, τ + h)−W (s, τ)|√
2h log log 1/h

=∞, a.s.

In this case, we say that (s, τ) is a singularity in the t-direction.
Similarly, we say that (s, t) is a singular point of W in the s-direction if

lim sup
h→0+

|W (s+ h, t)−W (s, t)|√
h log log(1/h)

=∞.

Based on the simultaneous LIL of Zimmerman (1972), Walsh (1982) proved the following sur-
prising result.

Let s0 > 0 be fixed. If τ is any positive and finite σ(W (s0, t) : t ≥ 0)-measurable random
variable, then on an event of probability 1, we have

lim sup
h→0+

|W (s0, τ + h)−W (s0, τ)|√
h log log(1/h)

=∞

⇐⇒ lim sup
h→0+

|W (s, τ + h)−W (s, τ)|√
h log log(1/h)

=∞

for all s > s0 simultaneously.
The existence of a positive and finite σ(W (s0, t) : t ≥ 0)-measurable random variable τ is guar-

anteed by Meyer’s section theorem. Walsh’s theorem shows that the singularities of the Brownian
sheet W propagate in directions parallel to the coordinate axis.

Walsh (1986) studied the singularities of the linear SWE with k = β = 1 and their propaga-
tion. Carmona and Nualart (1988) extended the results of Walsh (1982, 1986) to one-dimensional
nonlinear stochastic wave equations driven by the space-time white noise.

The method of Carmona and Nualart (1988) is based on the general theory of semimartingales
and two-parameter strong martingales. They showed that, in the white noise case, their solution
X(t, x) has the following important properties:

(i). For any x ∈ R,
{
X( h√

2
, x+ h√

2
), h ≥ 0

}
is a continuous semimartingale.

(ii). The increments of X(t, x) over a certain class of rectangles form a two-parameter strong
martingale.

Carmona and Nualart (1988) proved the law of the iterated logarithm for a semimartingale by the
LIL of Brownian motion and a time change.

They also proved that, for a class of two-parameter strong martingales, the law of the iterated
logarithm in one variable holds simultaneously for all values of the other variable.

By applying these results and properties (i) and (ii), Carmona and Nualart proved the existence
and propagation of singularities of the solution.
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In the context of Gaussian random fields, Blath and Martin (2008) extended the result of Walsh
(1982) to the semi-fractional Brownian sheets.

Due to the scaling property of the semi-fractional Brownian sheets, Blath and Martin (2008)
was able to use the following large deviation result to prove their simultaneous LIL: If {Z(t), t ∈ T}
is a continuous centered Gaussian random field which is a.s. bounded, then

lim
γ→∞

1

γ2
logP

(
sup
t∈T

Z(t) > γ

)
= − 1

2 supt∈T E(Z(t)2)
. (9.5)

However, this large deviation result is not enough for proving the following analogous LIL for
{ũ(s, y), s ≥ 0, y ≥ 0}, where

ũ(s, y) = u
(s+ y√

2
,
−s+ y√

2

)
.

Theorem 9.1 [Lee and Xiao, (2021] For any y > 0 fixed, we have

P
(

lim sup
h→0+

|ũ(s, y + h)− ũ(s, y)|√
(s+ y)h2−β log log(1/h)

= Kβ for all s ∈ [0,∞)

)
= 1, (9.6)

where Kβ is

Kβ =

(
2(1−β)/2

(2− β)(1− β)

)1/2

.

To prove the simultaneous LIL, we make use of more precise results on the tail probability
for the supremum of Gaussian random fields based on the metric entropy obtained by Talagrand
(1994).

Lemma 9.2 [Talagrand, 1994] Let {Z(t), t ∈ T} be a mean zero continuous Gaussian process and
σ2
T = supt∈T E[Z(t)2]. Let dZ be the canonical metric defined by dZ(s, t) = E[(Z(s) − Z(t))2]1/2.

Assume that for some constant M > σT , α > 0 and 0 < ε0 ≤ σT ,

N(T, dZ , ε) ≤
(
M

ε

)α
for all ε < ε0,

Then for any γ > σ2
T [(1 +

√
α)/ε0], we have

P
{

sup
t∈T

Z(t) ≥ γ
}
≤
(KMγ√

ασ2
T

)α
Φ
( γ
σT

)
, (9.7)

where Φ(x) = (2π)−1/2
∫∞
x exp(−z2/2) dz and K is a universal constant.

The upper bound in (9.7) is more precise than (9.5) if M/σT is not too large. However, the
upper bound in (9.7) may not be useful when M/σT becomes very large (which will be the case in
one part of the proof of Theorem 9.1).

To deal with the latter case, we use the following lemma, which is more efficient if the variance
of Z(t) attains its maximum at a unique point because the size of the set Tρ can be very small.
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Lemma 9.3 Let {Z(t), t ∈ T} be a mean zero continuous Gaussian process. For ρ > 0, set

Tρ = {t ∈ T : E[Z(t)2] ≥ σ2
T − ρ2}.

Assume that there exist constants v ≥ w ≥ 1 such that for all ρ > 0, and 0 < ε ≤ ρ(1 +
√
v)/
√
w,

we have
N(Tρ, dZ , ε) ≤ Aρwε−v.

Then for any γ > 2σT
√
w, we have

P
{

sup
t∈T

Z(t) ≥ γ
}
≤ Aww/2

vv/2
Kv+w

( γ
σ2
T

)v−w
Φ
( γ
σT

)
.

We will also need the following estimates on the variance of two types of increments.

Lemma 9.4 For any τ, λ, h > 0,

E[(ũ(τ, λ+ h)− ũ(τ, λ))2]

=
1

2
K2
β

[
(τ + λ)h2−β + (3− β)−1h3−β

]
,

where Kβ is the constant defined by

Kβ =

(
2(1−β)/2

(2− β)(1− β)

)1/2

. (9.8)

Lemma 9.5 Fix λ ≥ 0. Then, for any 0 ≤ τ ≤ τ ′ and 0 ≤ h ≤ h′,

E
[
(ũ(τ ′, λ+ h′)− ũ(τ ′, λ+ h)− ũ(τ, λ+ h′) + ũ(τ, λ+ h))2

]
=

{
1
2K

2
β(h′ − h)2−β[(τ ′ − τ)− 1−β

3−β (h′ − h)
]

if h′ − h ≤ τ ′ − τ,
1
2K

2
β(τ ′ − τ)2−β[(h′ − h)− 1−β

3−β (τ ′ − τ)
]

if h′ − h > τ ′ − τ.

9.2 Proof of the upper bound in Theorem 9.1

First we prove that for any fixed λ > 0,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≤ Kβ for all τ ∈ [0,∞)
)

= 1,

where Kβ is the constant in Lemma 9.3.
It suffices to show that for any 0 ≤ a < b <∞ and any 0 < ε < 1,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≤ (1 + ε)Kβ, ∀ τ ∈ [a, b]
)

= 1. (9.9)

Let δ = (c + λ)ε/2. Since we can cover [a, b] by finitely many intervals [c, d] of length δ, we only
need to show that (9.9) holds for all τ ∈ [c, d], where [c, d] ⊂ [a, b] and d = c+ δ.
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Choose a real number q such that 1 < q < (1 + ε)1/(2−β). For every integer n ≥ 1, consider the
event

An =
{

sup
τ∈[c,d]

sup
h∈[0,q−n]

∣∣ũ(τ, λ+ h)− ũ(τ, λ)
∣∣ > γn

}
, (9.10)

where

γn = (1 + ε)Kβ

√
(c+ λ)(q−n−1)2−β log log qn.

To estimate P(An), we will apply Lemma 9.2.
Define T = [c, d] × [0, q−n] and Z(τ, h) = ũ(τ, λ + h) − ũ(τ, λ) for (τ, h) ∈ T . It follows from

Lemma 9.3 that E
[
Z(τ, h)2

]
attains its unique maximum σ2

T at (d, q−n), where

σ2
T =

1

2
K2
β

[
(d+ λ)q−n(2−β) + (3− β)−1q−n(3−β)

]
.

For any (τ, h), (τ ′, h′) ∈ T , without loss of generality, we may assume that τ ≤ τ ′. Then by
Lemma 9.3 and 9.4, we have

dZ((τ, h), (τ ′, h′))

≤ E
[
(Z(τ, h)− Z(τ, h′))2

]1/2
+ E

[
(Z(τ ′, h′)− Z(τ, h′))2

]1/2
= E

[
(ũ(τ, λ+ h)− ũ(τ, λ+ h′))2

]1/2
+ E

[
(ũ(τ ′, λ+ h′)− ũ(τ ′, λ)− ũ(τ, λ+ h′) + ũ(τ, λ))2

]1/2
≤ C(q−n(2−β)/2|τ − τ ′|1/2 + |h− h′|(2−β)/2).

(9.11)

Next, in order to apply Lemma 9.2, we estimate N(Tρ, dZ , ε), where

Tρ = {(τ, h) ∈ T : σ2
T − E[Z(τ, h)2] ≤ ρ2}.

It can be shown that

Tρ ⊂ [d− C1q
n(2−β)ρ2, d]× [q−n − C2ρ

2/(2−β), q−n]

for some constants C1 and C2. This and (9.11) imply that

N(Tρ, dZ , ε) ≤ C0(ρ/ε)
2+ 2

2−β .

By Lemma 9.2 with v = w = 2 + 2
2−β , we have

P(An) ≤ C exp
(
− γ2

n

2σ2
T

)
= (n log q)−pn ,

where

pn =
(1 + ε)2

q2−β
[
d+λ
c+λ + (3− β)−1(c+ λ)−1q−n

]
which is eventually bigger than 1. Hence

∑∞
n=1 P(An) <∞. This is enough for proving (9.9).
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9.3 Proof of the lower bound in Theorem 9.1

Next, we prove the corresponding lower bound: For any λ > 0,

P
(

lim sup
h→0+

|ũ(τ, λ+ h)− ũ(τ, λ)|√
(τ + λ)h2−β log log(1/h)

≥ Kβ, ∀τ ∈ [a, b]
)

= 1, (9.12)

where Kβ is the constant in (9.8).
Similarly to the previous section, we only need to show that (9.12) holds for all τ ∈ [c, d], where

[c, d] ⊂ [a, b] and d = c+ δ.
The following are the main ingredients.

Lemma 9.6 Let τ > 0, λ > 0 and q > 1. Then for all 0 < ε < 1,

P
( ũ(τ, λ+ q−n)− ũ(τ, λ+ q−n−1)

σ̃[(τ, λ+ q−n), (τ, λ+ q−n−1)]
≥ (1− ε)

√
2 log log qn i.o.

)
= 1,

where
σ̃[(τ, λ), (τ ′, λ′)] = E[(ũ(τ, λ)− ũ(τ ′, λ′))2]1/2.

This is proved by an extended Borel-Cantelli lemma.
For all τ ∈ [c, d] we write

ũ(τ, λ+ q−n)−ũ(τ, λ) = ũ(d, λ+ q−n)− ũ(d, λ+ q−n−1)

+ ũ(τ, λ+ q−n−1)− ũ(τ, λ)

−∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n]),

where the last term is the the increment of ũ over the rectangle (τ, d]× (λ+ q−n−1, λ+ q−n].
The first difference in the right hand side of (9.3) is dealt by Lemma 9.5.
For the second difference, (9.9) says that for all τ ∈ [c, d] simultaneously,

|ũ(τ, λ+ q−n−1)− ũ(τ, λ)|

≤ Kβ

√
(τ + λ+ q−n−1)(q−n−1)2−β log log qn.

eventually for all large n.
To derive a bound for the term ∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n]), we consider the event

An =
{

sup
τ∈[c,d]

|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
,

where

γn = Kβ φn(d)
√

(q−n)2−β log log qn

and

φn(τ) = (1− ε/4)

(
q − 1

q

) 2−β
2

(d+ λ)1/2

− q−
2−β
2 (τ + λ+ q−n−1)1/2 − (1− ε)(τ + λ)1/2.
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Consider n large enough such that q−n − q−n−1 ≤ d− c. Then

P(An) ≤ P(A1
n) + P(A2

n),

where

A1
n =

{
sup

τ∈[c,d−(q−n−q−n−1)]

|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
,

A2
n =

{
sup

τ∈[d−(q−n−q−n−1),d]

|∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])| > γn

}
.

By Lemma 9.3,

P(A1
n) ≤ C exp

(
− γ2

n

2σ2
T

)
≤ (n log q)−pn ,

where

pn =
1

d− c

(
q

q − 1

)2−β
φn(d)2.

We can check that
∑∞

n=1 P(A1
n) <∞.

Since the size of [d− (q−n− q−n−1), d] is small, we can apply Lemma 9.1 to see that for n large,

P(A2
n) ≤ Cφn(d)2(qn log n) exp(−C ′φn(d)2qn log n)

which also yields
∑∞

n=1 P(A2
n) <∞.

Combing the three parts, we derive that for all τ ∈ [c, d] simultaneously,∣∣ũ(τ, λ+ q−n)− ũ(τ, λ)
∣∣

≥
∣∣ũ(d, λ+ q−n)− ũ(d, λ+ q−n−1)

∣∣
−
∣∣ũ(τ, λ+ q−n−1)− ũ(τ, λ)

∣∣
−
∣∣∆ũ((τ, d]× (λ+ q−n−1, λ+ q−n])

∣∣
≥ (1− ε)Kβ

√
(τ + λ)(q−n)2−β log log qn,

where the last inequality holds infinitely often in n. This concludes the proof.

9.4 Propagation of singularities

For s0 > 0, denote by Fs0 be the σ-field generated by {W
(
B∩Π(s0)

)
: B ∈ B(R2)} and the P-null

sets, where Π(s0) =
{

(s, y) : 0 ≤ s < s0/
√

2, y ∈ R
}

.
The following theorem shows that the singularities of u(t, x) propagate along the straight lines

curves s+ y = c and s− y = −c.

Theorem 9.7 [Lee and Xiao, 2021] Let s0 > 0. The following statements hold.

(i) There exists a positive and finite Fs0-measurable r.v. Λ such that

lim sup
h→0+

|ũ(s0,Λ + h)− ũ(s0,Λ)|√
h2−β log log(1/h)

=∞ a.s.

80



(ii) For any positive and finite Fs0-measurable r.v. Λ, with probability 1,

lim sup
h→0+

|ũ(s0,Λ + h)− ũ(s0,Λ)|√
h2−β log log(1/h)

=∞

⇐⇒ lim sup
h→0+

|ũ(s,Λ + h)− ũ(s,Λ)|√
h2−β log log(1/h)

=∞

for all s > s0 simultaneously.

Part (i) of Theorem 9.7 is proved by using Meyer’s section theorem [Dellacherie (1972, p.18)]:
Let (Ω,G ,P) be a complete probability space and S be a B(R+) × G -measurable subset of

R+ × Ω. Then there exists a G -measurable random variable Λ with values in (0,∞] such that

(a) the graph of Λ, denoted by [Λ] := {(t, ω) ∈ R+ × Ω : Λ(ω) = t}, is contained in S;

(b) {Λ <∞} is equal to the projection π(S) of S onto Ω.

For fixed s0 > 0, we decompose ũ into ũ1 + ũ2, where

ũi(τ, λ) = ui

(τ + λ√
2
,
−τ + λ√

2

)
, i = 1, 2,

and

u1(t, x) =
1

2
W
(
∆(t, x) ∩Π(s0)

)
,

u2(t, x) =
1

2
W
(
∆(t, x) ∩Π(s0)c

)
.

It can be proven that there exists a positive, finite, Fτ0-measurable random variable Λ such
that

lim sup
h→0+

|ũ1(s0,Λ + h)− ũ1(s0,Λ)|√
h2−β log log(1/h)

=∞ a.s.

This is proved by taking

S =

{
(λ, ω) : lim sup

h→0+

|ũ1(s0, λ+ h)(ω)− ũ1(s0, λ)(ω)|√
h2−β log log(1/h)

=∞
}

and applying Meyer’s section theorem.
Moreover, for λ > 0,

P
(

lim sup
h→0+

|ũ2(τ, λ+ h)− ũ2(τ, λ)|√
h2−β log log(1/h)

= Kβ(τ − s0 + λ)1/2 for all τ ≥ s0

)
= 1.

Combining the above ingredients yields Theorem 9.7.
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10 Lecture 10. Local Properties of A Nonlinear Stochastic Heat
Equation

Consider a parabolic SPDE of the following form:

∂

∂t
ut(x) = 1

2∆α/2ut(x) + σ(ut(x)) Ẇt(x), (10.1)

subject to u0(x) := U0 for all x ∈ R, for some non-negative constant U0.
In the above ∆α/2 = −(−∆)α/2 denotes the fractional Laplacian of index α/2, σ : R → R is

non random and Lipschitz continuous, and Ẇ denotes space-time white noise.
We assume 1 < α ≤ 2. According to Dalang (1999), this is a sufficient and necessary condition

for (10.1) to have a mild solution that is a random field.
Let pt(x) denote the fundamental solution to the fractional heat operator (∂/∂t)− 1

2∆α/2. Then

p̂t(ξ) = exp (−t|ξ|α/2) (t ≥ 0, ξ ∈ R). (10.2)

The Plancherel theorem implies that: For all t > 0,

‖pt‖2L2(R) =
1

2π
‖p̂t‖2L2(R) =

Γ(1/α)

απt1/α
. (10.3)

Let us mention also the following variation: By the symmetry of the heat kernel, ‖pt‖2L2(R) =

(pt ∗ pt)(0) = p2t(0). The Fourier inversion theorem shows that

pt(0) = sup
x∈R

pt(x) =
21/αΓ(1/α)

απt1/α
(t > 0).

When σ ≡ 1 and U0 ≡ 0, the mild solution to (10.1) is given by

vt(x) =

∫
(0,t)×R

pt−s(y − x)W (ds dy). (10.4)

Then {vt(x)} is a continuous, centered Gaussian random field. Many of its properties (such as LIL,
Chungs’s LIL, variation, etc) can be established (e.g., when α = 2, Swanson (2007), Tudor and X.
(2007), Lai and Nualart (2009), etc).

We will relate some of the local properties of {vt(x)} to those of the solution to (10.1).

10.1 General case: moment estimates

In general (10.1) is interpreted as

ut(x) = U0 +

∫
(0,t)×R

pt−s(y − x)σ(us(y))W (ds dy). (10.5)

When t > 0 is fixed, Foondun, Khoshnevisan and Mahboubi (2015) have studied some properties
of the function x 7→ ut(x) by relating it to a fractional Brownian motion through the Gaussian
process {vt(x), x ∈ R}.
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Khoshnevisan, Swanson, Xiao, and Zhang (2014) have considered some properties of the func-
tion t 7→ ut(x), when x ∈ R is fixed.

By combining the results of the two papers, one can derive some local properties of the sample
function (t, x) 7→ ut(x).

In the following, we will focus on the behavior of t 7→ ut(x), when x ∈ R is fixed, and present
some results in Khoshnevisan, Swanson, Xiao and Zhang (2014).

We will make use of the following Lemmas 10.1 and 10.2

Lemma 10.1 [Dalang, 1999; Foondun and Khoshnevisan, 2009] For all k ∈ [2 ,∞) there exists a
constant Ak,T such that:

E
(
|ut(x)|k

)
≤ Ak,T ; and

E
(∣∣ut(x)− ut′(x′)

∣∣k) ≤ Ak,T (|x− x′|(α−1)k/2 + |t− t′|(α−1)k/(2α)
) (10.6)

uniformly for all t, t′ ∈ [0 , T ] and x, x′ ∈ R.

For every t ≥ 0, let F 0
t denote the σ-algebra generated by

∫
(0,t)×R ϕs(y)W (ds dy) as ϕ ranges

over all elements of L2(R+×R). We complete every such σ-algebra, and make the filtration {Ft}t≥0

right continuous.
The following BDG Inequality is Proposition 4.4 in Khoshnevisan (2014).

Lemma 10.2 If h ∈ L2([0, t]×R) for all t > 0 and Φ ∈ Lβ,2 for some β > 0. Then, for every real
number k ∈ [2 ,∞), we have∥∥∥∥∥

∫
(0,t)×R

hs(y)Φs(y)W (ds dy)

∥∥∥∥∥
2

k

≤ 4k

∫ t

0
ds

∫ ∞
−∞

dy [hs(y)]2‖Φs(y)‖2k. (10.7)

10.2 Approximation theorems

Notation Dε: For any ε > 0 and random field {Xt(x)}t≥0,x∈R, denote

(DεX)t(x) := Xt+ε(x)−Xt(x) (t ≥ 0, x ∈ R).

The following theorem was proved in Khoshnevisan, Swanson, Xiao, and Zhang (2014).

Theorem 10.3 For every k ∈ [2 ,∞) there exists a finite constant Ak,T such that uniformly for all
ε ∈ (0 , 1), x ∈ R, and t ∈ [0 , T ],

E
(∣∣(Dεu)t(x)− σ(ut(x)) (Dεv)t(x)

∣∣k) ≤ Ak,T εGαk, (10.8)

where

Gα :=
2(α− 1)

3α− 1
. (10.9)
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Proof For x ∈ R fixed, we write the increment of t 7→ ut(x) as

ut+ε(x)− ut(x) := J1 + J2, (10.10)

where

J1 :=

∫
(0,t)×R

[pt+ε−s(y − x)− pt−s(y − x)]σ(us(y))W (ds dy);

J2 :=

∫
(t,t+ε)×R

pt+ε−s(y − x)σ(us(y))W (ds dy).

(10.11)

Define

J̃2 := σ(ut(x))

∫
(t,t+ε)×R

pt+ε−s(y − x)W (ds dy). (10.12)

Lemma 10.4 For every k ∈ [2 ,∞) there exists a finite constant Ak,T such that for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E
(∣∣∣J2 − J̃2

∣∣∣k) ≤ Ak,T ε(α−1)k/α. (10.13)

To prove (10.13), we first consider

J2 −J ′
2 =

∫
(t,t+ε)×R

pt+ε−s(y − x)[σ(us(y))− σ(us(x))]W (ds dy).

By the BDG inequality and Lemma 10.1, we have∥∥J2 −J ′
2

∥∥2

Lk(Ω)

≤ 4k

∫ t+ε

t
ds

∫ ∞
−∞

dy [pt+ε−s(y − x)]2 ‖σ(us(y))− σ(us(x))‖2k

≤ A
∫ t+ε

t
ds

∫ ∞
−∞

dy [pt+ε−s(y − x)]2 ‖us(y)− us(x)‖2k

≤ A
∫ ε

0
ds

∫ ∞
−∞

dy [ps(y)]2
(
|y|α−1 ∧ 1

)
≤ Aε2(α−1)/α.

Next we consider J ′
2 − J̃2. The same argument gives:∥∥∥J ′

2 − J̃2

∥∥∥2

Lk(Ω)

≤ A
∫ t+ε

t
ds

∫ ∞
−∞

dy [pt+ε−s(y)]2 ‖us(x)− ut(x)‖2Lk(Ω)

≤ A
∫ t+ε

t
‖pt+ε−s‖2L2(R) |s− t|

(α−1)/α ds

≤ Aε2(α−1)/α.
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Let a = 2α/(3α− 1) ∈ (0 , 1), and write

J1 = J1,a + J ′
1,a,

where

J1,a :=

∫
(0,t−εa)×R

[pt+ε−s(y − x)− pt−s(y − x)]σ(us(y))W (ds dy),

J ′
1,a :=

∫
(t−εa,t)×R

[pt+ε−s(y − x)− pt−s(y − x)]σ(us(y))W (ds dy).

By applying the BDG inequality and Lemma 10.1, one can verify that

sup
x∈R

sup
t∈[0,T ]

E
(
|J1,a|k

)
≤ Aε

(
Gα+ 1

3α−1

)
k,

which is a lot smaller than AεGαk.
To estimate J ′

1,a, we use the same strategy and introduce

J ′′
1,a :=

∫
(t−εa,t)×R

[pt+ε−s(y − x)− pt−s(y − x)]σ(ut−εa(y))W (ds dy),

J̃1,a := σ(ut−εa(x))

∫
(t−εa,t)×R

[pt+ε−s(y − x)− pt−s(y − x)]W (ds dy).

Note that the moments of ut−εa(x)− ut(x) is negligible compared with the main term.
By the BDG inequality and Lemma 10.1, we can prove

Lemma 10.5 For every T > 0 and k ∈ [2 ,∞) there exists a finite constant Ak,T such that uni-
formly for all ε ∈ (0 , 1), x ∈ R, and t ∈ [0 , T ],

E

(∣∣∣J1 − σ(ut(x))

∫
(0,t)×R

[pt+ε−s(y − x)− pt−s(y − x)]W (ds dy)
∣∣∣k)

≤ Ak,T εGαk.

Theorem 10.3 follows from Lemmas 10.4 and 10.5. �

From Theorem 10.3 and an interpolation argument, we can derive the following result, which
is useful for deriving local properties of t 7→ ut(x) from those of the Gaussian process t 7→ vt(x).

Theorem 10.6 For all T > 0, M > 0, and q ∈ (0 ,Gα),

E
(

sup
t∈[0,T ]

sup
ε∈[0,η]

sup
x∈[−M,M ]

∣∣(Dεu)t(x)− σ(ut(x))(Dεv)t(x)
∣∣k) = o

(
ηkq
)
,

as η → 0+.
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By a Borel-Cantelli argument, we obtain the following a.s. uniform approximation bound:

Corollary 10.7 For all T > 0, M > 0, and q ∈ (0 ,Gα),

sup
t∈[0,T ]

sup
ε∈[0,η]

sup
x∈[−M,M ]

|(Dεu)t(x)− σ(ut(x))(Dεv)t(x)| = o (ηq) ,

as η → 0+, almost surely.

Notice that Gα > (α−1)(2α), we derive from Corollary 10.7 and local properties of the Gaussian
process t 7→ vt(x) the following results.

Theorem 10.8 [Law of the iterated logarithm] Let x ∈ R be fixed. The following hold almost
surely:

1. If t > 0, then

lim sup
ε→0+

ut+ε(x)− ut(x)

ε(α−1)/(2α)
√

2 log | log ε|
= σ(ut(x))

√
21/αΓ(1/α)

(α− 1)π
.

2. If t = 0, then

lim sup
ε→0+

uε(x)− U0

ε(α−1)/(2α)
√

2 log | log ε|
= σ(U0)

√
Γ(1/α)

(α− 1)π
.

Next we consider the weighted variation of the solution.
For any t > 0 fixed and some integer n > 1, consider a partition {tj:n}knj=0 of [0 , t] by letting

tj:n := jtεn (0 ≤ j < kn := bε−1
n c), tkn:n := t,

with “mesh size” εn.
For a fixed x ∈ R, we consider the following function

V
(n,ϕ)
t (x) :=

kn−1∑
j=0

ϕ
(
utj:n(x)

)
·
∣∣utj+1:n(x)− utj:n(x)

∣∣2α/(α−1)
.

Here, ϕ : R→ R is a non random and Lipschitz continuous function. When ϕ ≡ 1, V
(n,ϕ)
t (x) is the

“β-variation” of the function s 7→ us(x), in [0 , t], where β := 2α/(α− 1).

Theorem 10.9 [KSXZ, 2018] Choose and fix x ∈ R, t > 0, and a non random and Lipschitz
continuous function ϕ : R→ R. Then,

lim
n→∞

V
(n,ϕ)
t (x) = V(α)

∫ t

0
ϕ(us(x)) |σ(us(x))|2α/(α−1) ds

in L2(Ω) as n→∞, where V(α) is an explicit constant depending on α. Moreover, if

∞∑
n=1

ε(α−1)/(3α−1)
n <∞,

then the preceding can be strengthened to almost-sure convergence.
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10.3 Polarity of a.e. point

Let σ : Rd → Rd ×Rd be a matrix function. We are dealing with solutions u(t, x) to the system of
d nonlinear stochastic heat equations

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + σ(u(t, x))Ẇ (t, x), t > 0, x ∈ R, (10.14)

where Ẇ (t, x) = (Ẇ1(t, x), . . . , Ẇd(t, x)) is a d-dimensional space-time white noise (cf. Khosh-
nevisan (2009)) defined on a probability space (Ω,F , P ), with i.i.d. components, subject to the
initial condition

u(0, x) = u0(x), x ∈ R, (10.15)

where u0 : R → Rd is Borel. We associate to the white noise its natural filtration (Ft, t ∈ R+),
where Ft is the σ-field generated by the white noise on [0, t]×R (and completed with P -null sets).

Building on the methods of Talagrand (1995, 1998), Dalang, Mueller, and Xiao (2021) proved
that for a broad class of Gaussian random fields, points are not hit in the critical dimension.

For the linear heat equation, where σ ≡ 1 and the solution of (10.14) is a Gaussian random
field, the extra step that allows to go from “almost all points are polar” to “all points are polar”
involves taking the conditional expectation of the random field given its value at a specific point
(see Lecture 7). In the Gaussian case, conditional expectations can be computed explicitly, but in
the nonlinear SPDE where σ 6≡ 1, this is no longer true and a new argument seems to be needed.

In this section, we extend the main result in Dalang, Mueller, and Xiao (2021) to the solution
of the nonlinear heat equation of the form (10.1).

We use the same notation for a matrix σ0 ∈ Rd×d ∼= Rd2 .
Assumption 10.1 (a) The function σ : Rd → Rd×d is Lipschitz continuous with Lipschitz

constant L: for all v1, v2 ∈ Rd,

|σ(v1)− σ(v2)| ≤ L|v1 − v2|.

(b) There is a finite constant σ1 ∈ R such that for all v ∈ Rd,

|σ(v)| ≤ σ1.

(c) The initial function u0 is bounded: there is K0 ∈ R+ such that, for all x ∈ R,

|u0(x)| ≤ K0.

We note that (10.14) has a rigorous formulation in terms of the mild form, (u(t, x), (t, x) ∈
R+ × R) is a jointly measurable and (Ft)-adapted process such that, for all (t, x) ∈ R+ × R,

u(t, x) =

∫ ∞
−∞

G(t, x− y)u0(y)dy +

∫ t

0

∫ ∞
−∞

G(t− s, x− y)σ(u(s, y))W (dy, ds),

where

G(t, x) =
1√
4πt

exp

(
−x

2

4t

)
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is the heat kernel on R. Existence and uniqueness is proved in Chapter 3 of Walsh (1986) in the
case d = 1, and this proof extends directly to d ≥ 1 (see Section 2 of Dalang, Khoshnevisan,
and Nualart (2009)). The random field (u(t, x)) has a continuous version on ]0,∞[×R, and if the
initial condition u0 is continuous (which we do not assume here), then this version of (u(t, x)) is
continuous on R+ × R, see Theorem 3.1 of Chen and Dalang (2014). We will work only with this
continuous version.

The main result of this paper is the following.

Theorem 10.10 Assume that d ≥ 6. Almost surely, the range of u = (u(t, x), (t, x) ∈ ]0,∞[×R)
has 6-dimensional Hausdorff-measure 0. In particular, if d ≥ 6, then (Lebesgue) almost all points
in Rd are polar for u.

10.4 Local decomposition

In this section, our goal is to study the range of (t, x) 7→ u(t, x) when (t, x) belongs to a small
rectangle with center (t0, x0) ∈ R0 := [1, 2]× [0, 1], where t0 and x0 are fixed. Throughout most of
the paper, we will be working on sub-rectangles of R0.

For ρ ∈ (0, 1/2], define

Rρ = Rρ(t0, x0) := {(t, x) ∈ R+ × R : |t− t0| < ρ4, |x− x0| < ρ2}. (10.16)

This rectangle has side-lengths that are compatible with the metric

d((t, x); (s, y)) = ∆(t− s, x− y) := max(|t− s|1/4, |x− y|1/2).

We define a first stopping time τK,1 that will help with Hölder-continuity properties of the
solution, then a stopping time τK,2 that will deal with growth as x → ±∞, and a third stopping
time τK,3 that will help with an associated Gaussian process.

First stopping time τK,1
Fix T0 > 3 and a large constant K > 0. From Theorem 3.1 of Chen and Dalang (2014), we

know that u(t, x) is locally (1− δ)/4-Hölder continuous in t and (1− δ)/2-Hölder continuous in x
on (0,∞) × R. More precisely, for each δ ∈ (0, 1), there is an almost surely finite positive random
variable Z such that for all s, t ∈ [1/2, T0] and x, y ∈ [−2, 2],

|u(t, x)− u(s, y)| ≤ Z∆(t− s, x− y)1−δ. (10.17)

Now we define the stopping time τK,1 to be the first time t ∈ [1/2, T0] such that there exist
s < t, x, y ∈ [−2, 2] with

|u(t, x)− u(s, y)| ≥ K∆(t− s, x− y)1−δ;

if there is no such time t, let τK,1 = T0.
Now (10.17) shows that

lim
K→∞

P {τK,1 < T0} = 0. (10.18)

Also note that u(t ∧ τK,1, x) satisfies

|u(t1 ∧ τK,1, x1)− u(t2 ∧ τK,1, x2)| ≤ K∆
(
t1 − t2, x1 − x2

)1−δ
, (10.19)

for (ti, xi) ∈ [1/2, T0]× [−2, 2].
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Modified solution ũ
We will modify the random field u using τK,1. We define ũ(t, x) = ũK(t, x) as the (continuous

version on (0,∞[×R of the) solution of

∂

∂t
ũ(t, x) =

∂2

∂x2
ũ(t, x) + σ(u(t ∧ τK,1, x))Ẇ (t, x), t > 0, x ∈ R,

ũ(0, x) = u0(x), x ∈ R.

Note that on the right-hand side of the equation for ũ, σ is evaluated at u, not at ũ. In terms of
the mild form,

ũ(t, x) =

∫ ∞
−∞

G(t, x− y)u0(y)dy

+

∫ t

0

∫ ∞
−∞

G(t− s, x− y)σ(u(s ∧ τK,1, y))W (dy, ds). (10.20)

Finally, note that on {τK,1 = T0}, we have that u(t, x) = ũ(t, x) for all (t, x) ∈ [0, T0]× R. Thus,

lim
K→∞

P {u(t, x) = ũK(t, x) for all (t, x) ∈ [0, T0]× R} = 1. (10.21)

For the time being, we will work with ũ.
Second stopping time τK,2
We also want to control the growth of our solution ũ as x → ±∞. Let τK,2 be the first time

t ∈ [0, T0] such that there exists x ∈ R with

|ũ(t, x)| ≥ K(1 + |x|).

If there is no such time t, let τK,2 = T0.
Since we are assuming that σ and our initial function u0(x) are bounded (Assumption 10.1 (b)

and (c)), it is a consequence of Lemma 10.12 below (taking φ(r, z) = σ(u(r ∧ τK,1, z)) in (10.24)
and φ1 = σ1 in (10.25)) that

lim
K→∞

P {τK,2 < T0} = 0. (10.22)

Third stopping time τK,3
We also work with the (continuous version on (0,∞[×R of the) following linear system of

stochastic heat equations with additive noise:

∂

∂t
v(t, x) =

∂2

∂x2
v(t, x) + Ẇ (t, x), t > 0, x ∈ R, (10.23)

v(0, x) = u0(x), x ∈ R.

Now we define τK,3 in the same way as τK,2, but with respect to v rather than ũ:

τK,3 = inf{t ∈ [0, T0] : ∃x ∈ R with |v(t, x)| ≥ K(1 + |x|)}.

As with the stopping time τK,2, since we are assuming that our initial function u0(x) is bounded,
it is a consequence of Lemma 10.12 (taking φ(r, z) ≡ 1 in (10.24) and φ1 = 1 in (10.25)) below that

lim
K→∞

P {τK,3 < T0} = 0.
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We will need some lemmas.
Probability bounds for the modulus of continuity
In this section, we get the probability bound in Lemma 10.11 below. For this section, let

N (3)(t, x) = N (3)(t, x, φ) =

∫ t

0

∫ ∞
−∞

G(t− r, x− z)φ(r, z)W (dz, dr), (10.24)

where φ(r, z) is a jointly measurable and (Ft)-adapted Rd×d-valued process, and for some φ1 ∈ R+,

sup
r,z
|φ(r, z)| ≤ φ1, a.s. (10.25)

We will be using the jointly continuous version of N (3) (which exists by Propositions 4.3 & 4.4 of
Chen and Dalang (2014)).

Lemma 10.11 Fix λ0 > 0. There exist constants C0 and C1 such that the following holds. For
ρ ∈ (0, 1] and λ ≥ λ0, for each rectangle R ⊂ R0 = [1, 2]× [0, 1] of dimensions ρ4 × ρ2, let Aλ(R)
be the event that for all p(1), p(2) ∈ R,∣∣N (3)(p(1))−N (3)(p(2))

∣∣ ≤ λ∆(p(1) − p(2)) log+

(
1/∆(p(1) − p(2))

)
,

where for γ > 0, log+(γ) := max(1, log2(γ)). Then

P(Aλ(R)c) ≤ C0 exp
(
−C1λ

2φ−2
1 log2

+(1/ρ)
)
.

Let N (3)(t, x) be the jointly continuous version of the process defined in (10.24).

Lemma 10.12 Fix T > 0. There exists an almost surely finite random variable Z such that with
probability one, for all x ∈ R,

sup
t≤T

∣∣N (3)(t, x)
∣∣ ≤ Z(|x|+ 1).

For each A ∈ Hq, we pick a distinguished point (sA, yA) ∈ A (say, the lower left corner). Let BA
be the Euclidean ball in Rd centered at ũ(sA, yA) with radius rA.

Lemma 10.13 Let Fq be the family of balls (BA, A ∈ Hq). For q large enough, on Ωq ∩ {τK,2 ∧
τK,3 = T0}, Fq covers the random set

M̃ = {ũ(s, y) : (s, y) ∈ R0}.

Notice that M̃ ⊂ Rd is the range of ũ as (s, y) varies in R0 = [1, 2]× [0, 1].

Proposition 10.14 Let λ6 denote 6-dimensional Hausdorff measure. Then λ6(M̃) = 0 a.s.
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Proof of Theorem 10.10. We first prove that λ6(M) = 0, where

M = {u(s, y) : (s, y) ∈ R0}.

On the event {τK,1 = T0}, u and ũ coincide on [0, T0] × R, so M = M̃ , where M̃ is defined in
Lemma 10.13, and therefore, by Proposition 10.14,

λ6(M) = 0 a.s. on {τK,1 = T0}.

Since limK↑∞ P{τK,1 = T0} = 1, we conclude that λ6(M) = 0 a.s.
Let u(]0,∞[×R) denote the random set {u(s, y) : (s, y) ∈ (0, ∞) × R}. Since in the entire

paper, the rectangle R0 could have been replaced by any other compact rectangle in (0, ∞) × R,
we deduce that λ6(u((0, ∞) × R)) = 0. Therefore, for d ≥ 6, λd(u((0, ∞) × R)) = 0, where λd
denotes Lebesgue-measure on Rd. By Fubini’s theorem,

0 = E
[∫

Rd
1u((0,∞)×R)(z)λd(dz)

]
=

∫
Rd

P{z ∈ u((0, ∞) × R)}λd(dz),

that is, for Lebesgue-almost all z ∈ Rd, P{z ∈ u((0, ∞) ×R)} = 0. This proves Theorem 10.10. �
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Nagoya Math. J. 46, 63–86.

[21] S. M. Berman (1973), Local nondeterminism and local times of Gaussian processes. Indiana Univ.
Math. J. 23, 69–94.

[22] H. Biermé, A. Estrade, M. M. Meerschaert and Y. Xiao (2008), Sample path properties of operator
scaling Gaussian random fields. In Preparation.
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Springer, Berlin, Heidelberg.

92



[33] D. Conus and R. C. Dalang (2008), The non-linear stochastic wave equation in high dimensions.
Electron. J. Probab. 13, 629–670.

[34] D. Conus, M. Joseph and D. Khoshnevisan (2012), Correlation-length bounds, and estimates for
intermittent islands in parabolic SPDEs. Electron. J. Probab. 17, no. 102, 15 pp.

[35] D. Conus, M. Joseph and D. Khoshnevisan (2013). On the chaotic character of the stochastic heat
equation, before the onset of intermittency. Annals Probab. 41, 2225–2260.

[36] Cramér, H. and Leadbetter, M. R., Stationary and Related Stochastic Processes. John Wiley & Sons,
Inc., New York, 1967.

[37] Cressie, N., Statistics for Spatial Data. (rev. ed.), Wiley, New York, 1993.

[38] J, Cuzick and J. DuPreez (1982), Joint continuity of Gaussian local times. Ann. Probab. 10, 810–817.

[39] R. C. Dalang (1999), Extending martingale measure stochastic integral with applications to spatially
homogeneous s.p.d.e.’s. Electron. J. Probab. 4, no. 6, 1–29. Erratum in Electron. J. Probab. 6 (2001),
no. 6, 1–5.

[40] R. C. Dalang (2009), The stochastic wave equation. In: A Minicourse on Stochastic Partial Differen-
tial Equations, (D. Khoshnevisan and F. Rassoul-Agha, Ed.s), Lect. Notes in Math. 1962, pp. 39–71,
Springer, New York.

[41] R. C. Dalang and N. E. Frangos (1998), The stochastic wave equation in two spatial dimensions. Ann.
Probab. 26, 187–212.

[42] Dalang, R. C., Khoshnevisan, D., Mueller, C., Nualart, D. and Xiao, Y., A Minicourse on Stochas-
tic Partial Differential Equations. (Davar Khoshnevisan and Firas Rassoul-Agha, editors) Springer-
Verlag, Berlin, 2009.

[43] R. C. Dalang, D. Khoshnevisan and E. Nualart (2007), Hitting probabilities for systems of non-linear
stochastic heat equations with additive noise. Latin Amer. J. Probab. Statist. (Alea) 3, 231–271.

[44] R. C. Dalang, D. Khoshnevisan and E. Nualart (2009), Hitting probabilities for the non-linear stochas-
tic heat equation with multiplicative noise. Probab. Th. Rel. Fields 177, 371-427.

[45] Dalang, R.C., Khoshnevisan, D., Nualart, E., Wu, D. and Xiao, Y., Critical Brownian sheet does not
have double points. Ann. Probab. 40 (2012), 1829–1859.

[46] Dalang, R. C., Lee, C-Y., Mueller, C. and Xiao, Y. (2021), Multiple points of Gaussian random fields.
Electron. J. Probab. 26, paper no. 17, 1–25.

[47] R. C. Dalang and C. Mueller (2003), Some non-linear s.p.e.e.’s that are second order in time. Electron.
J. Probab. 8, No. 1, 1–21.

[48] R. C. Dalang and C. Mueller (2015), Multiple points of the Brownian sheet in critical dimensions.
Ann. Probab. 43, 1577–1593.

[49] R. C. Dalang, C. Mueller and Y. Xiao (2017), Polarity of points for Gaussian random fields. Ann.
Probab. 45, 4700–4751.

[50] R. C. Dalang, C. Mueller and Y. Xiao (2021), Polarity of almost all points for systems of non-linear
stochastic heat equations in the critical dimension. Ann. Probab., 49, no. 5, 2573–2598.

[51] R. C. Dalang, C. Mueller and L. Zambotti, (2006), Hitting properties of parabolic s.p.d.e.’s with
reflection. Ann. Probab. 34, 1423–1450.

[52] R. C. Dalang and E. Nualart (2004), Potential theory for hyperbolic SPDEs. Ann. Probab. 32, 2099–
2148.

93
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[89] K. Itô (1954), Stationary random distributions. Mem. Coll. Sci., Univ. Kyoto, Ser. 1: Math 28,
291–326.

[90] A. Jaramillo and D. Nualart (2020), Collision of eigenvalues for matrix-valued processes. Random
Matrices Theory Appl. 9, no. 4, 2030001, 26 pp.
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potential theory of additive Lévy processes. Proc. Amer. Math. Soc. 131, 2611–2616.
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York.

[187] Xue, Y. and Xiao, Y., Fractal and smoothness properties of anisotropic Gaussian models. Frontiers
Math. China 6 (2011), 1217–1246.

[188] Y. Xiao and T. Zhang (2002), Local times of fractional Brownian sheets. Probab. Theory Relat. Fields
124, 204–226.

[189] A. M. Yaglom (1957), Some classes of random fields in n-dimensional space, related to stationary
random processes. Th. Probab. Appl. 2, 273–320.

[190] A. M. Yaglom (1987), Correlation Theory of Stationary and Related Random Functions, Vol. 1.
Springer-Verlag, New York.

[191] B. Yakir (2013), Extremes in Random Fields. Higher Education Press, Beijing.

[192] Y. Zhou and Y. Xiao (2017), Tail asymptotics of extremes for bivariate isotropic Gaussian random
fields. Bernoulli 23, 1566–1598.

Yimin Xiao. Department of Statistics and Probability, A-413 Wells Hall, Michigan State Uni-

versity, East Lansing, MI 48824, U.S.A.

E-mail: xiao@stt.msu.edu

URL: http://www.stt.msu.edu/~xiaoyimi

100


