NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022
 The University of Texas Rio Grande Valley

Frank Garvan
url: qseries.org/fgarvan
University of Florida

May 16, 2022

LECTURE 2
 THE COMBINATORICS OF PARTITION CONGRUENCES

RAMANUJAN'S IDENTITY IMPLIES ATKIN AND SWINNERTON-DYER'S RESULT

THE VECTOR CRANK

SOLUTION OF DYSON'S CRANK CONJECTURE

CRANKS AND t-CORES
A FIVE-CYCLE AND CRANK FOR 5-CORES OF $5 n+4$

RAMANUJAN'S IDENTITY IMPLIES ATKIN AND SWINNERTON-DYER'S RESULT

RECALL

$$
\begin{aligned}
R\left(\zeta_{5}, q\right) & =A\left(q^{5}\right)+\left(3-\zeta_{5}^{2}-\zeta_{5}^{3}\right) \phi\left(q^{5}\right) \\
& +q B\left(q^{5}\right) \\
& +q^{2}\left(\zeta_{5}+\zeta_{5}^{4}\right) C\left(q^{5}\right) \\
& +q^{3}\left(\left(1+\zeta_{5}^{2}+\zeta_{5}^{3}\right) D\left(q^{5}\right)+\left(1+2 \zeta_{5}^{2}+2 \zeta_{5}^{3}\right) \frac{\psi\left(q^{5}\right)}{q^{5}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A(q)=\frac{1-q-q^{3}+q^{9}+\cdots}{(1-q)^{2}\left(1-q^{4}\right)^{2}\left(1-q^{6}\right)^{2} \cdots} \\
& \phi(q)=-1+\frac{1}{1-q}+\frac{q^{5}}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)}
\end{aligned}
$$

RECALL

$$
\begin{aligned}
R\left(\zeta_{5}, q\right) & =A\left(q^{5}\right)+\left(3-\zeta_{5}^{2}-\zeta_{5}^{3}\right) \phi\left(q^{5}\right) \\
& +q B\left(q^{5}\right) \\
& +q^{2}\left(\zeta_{5}+\zeta_{5}^{4}\right) C\left(q^{5}\right) \\
& +q^{3}\left(\left(1+\zeta_{5}^{2}+\zeta_{5}^{3}\right) D\left(q^{5}\right)+\left(1+2 \zeta_{5}^{2}+2 \zeta_{5}^{3}\right) \frac{\psi\left(q^{5}\right)}{q^{5}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A(q)=\frac{1-q-q^{3}+q^{9}+\cdots}{(1-q)^{2}\left(1-q^{4}\right)^{2}\left(1-q^{6}\right)^{2} \cdots} \\
& \phi(q)=-1+\frac{1}{1-q}+\frac{q^{5}}{(1-q)\left(1-q^{4}\right)\left(1-q^{6}\right)}+\cdots
\end{aligned}
$$

Next we define

$$
r_{a}(d)=r_{a}(d, t)=\sum_{n=0}^{\infty} N(a, t, t n+d) q^{n}
$$

and

$$
\begin{aligned}
r_{a, b}(d) & =r_{a, b}(d, t)=r_{a}(d)-r_{b}(d) \\
& =\sum_{n=0}^{\infty}(N(a, t, t n+d)-N(b, t, t n+d)) q^{n}
\end{aligned}
$$

Theorem (ATKIN AND SWINNERTON-DYER)

Let $t=5$. Then

$$
\begin{aligned}
r_{1,2}(0) & =\frac{q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+1}}, \\
r_{0,2}(0)+2 r_{1,2}(0) & =A(q), \\
r_{0,2}(1) & =B(q), \\
r_{1,2}(1) & =r_{0,2}(2)=0, \\
r_{1,2}(2) & =C(q), \\
r_{0,2}(3) & =\frac{-q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+2}}, \\
r_{0,1}(3)+r_{0,2}(3) & =D(q), \\
r_{0,2}(4) & =r_{1,2}(4)=0
\end{aligned}
$$

WATSON-WHIPPLE

$-1+\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(z ; q)_{n+1}\left(z^{-1} q ; q\right)_{n}}=\frac{z}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{3 n(n+1) / 2}}{1-z q^{n}}$ $\phi(q)=-1+\sum_{n=0}^{\infty} \frac{q^{5 n^{2}}}{\left(q ; q^{5}\right)_{n+1}\left(q^{4} ; q^{5}\right)_{n}}=\frac{q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+1}}$

WATSON-WHIPPLE

$$
-1+\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(z ; q)_{n+1}\left(z^{-1} q ; q\right)_{n}}=\frac{z}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{3 n(n+1) / 2}}{1-z q^{n}}
$$

$$
\phi(q)=-1+\sum_{n=0}^{\infty} \frac{q^{5 n^{2}}}{\left(q ; q^{5}\right)_{n+1}\left(q^{4} ; q^{5}\right)_{n}}=\frac{q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+1}}
$$

WATSON-WHIPPLE

$$
\begin{gathered}
-1+\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(z ; q)_{n+1}\left(z^{-1} q ; q\right)_{n}}=\frac{z}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{3 n(n+1) / 2}}{1-z q^{n}} \\
\phi(q)=-1+\sum_{n=0}^{\infty} \frac{q^{5 n^{2}}}{\left(q ; q^{5}\right)_{n+1}\left(q^{4} ; q^{5}\right)_{n}}=\frac{q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+1}} \\
\frac{\psi(q)}{q}=\frac{1}{q}\left(-1+\sum_{n=0}^{\infty} \frac{q^{5 n^{2}}}{\left(q^{2} ; q^{5}\right)_{n+1}\left(q^{3} ; q^{5}\right)_{n}}\right) \\
=\frac{q}{\left(q^{5} ; q^{5}\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} q^{15 n(n+1) / 2}}{1-q^{5 n+2}}
\end{gathered}
$$

$$
\begin{aligned}
& R\left(\zeta_{5}, q\right)=\sum_{n=0}^{\infty} \sum_{r=0}^{4} N(r, 5, n) \zeta_{5}^{r} q^{n} \\
& =\sum_{n=0}^{\infty}\left(\left(N(0,5, n)-N(1,5, n)+\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)(N(2,5, n)-N(1,5, n)) q^{n}\right.\right.
\end{aligned}
$$

Considering coefficients of $q^{5 n}$ in Ramanujan's identity gives

$$
A(q)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}+3\right) \phi(q)=r_{0,1}(0)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right) r_{1,2}(0)
$$

$$
\begin{aligned}
& R\left(\zeta_{5}, q\right)=\sum_{n=0}^{\infty} \sum_{r=0}^{4} N(r, 5, n) \zeta_{5}^{r} q^{n} \\
& =\sum_{n=0}^{\infty}\left(\left(N(0,5, n)-N(1,5, n)+\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)(N(2,5, n)-N(1,5, n)) q^{n}\right.\right.
\end{aligned}
$$

Considering coefficients of $q^{5 n}$ in Ramanujan's identity gives

$$
A(q)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}+3\right) \phi(q)=r_{0,1}(0)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right) r_{1,2}(0)
$$

Since the coefficients of $A(q), \phi(q)$ and each $r_{a, b}(d)$ are rational
integers we have

$$
\begin{aligned}
& r_{0,1}(0)=A(q)-3 \phi(q), \quad r_{1,2}(0)=\phi(q) \\
& r_{0,2}(0)+2 r_{1,2}(0)=r_{0,1}(0)+3 r_{1,2}(0)=A(q)
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\zeta_{5}, q\right)=\sum_{n=0}^{\infty} \sum_{r=0}^{4} N(r, 5, n) \zeta_{5}^{r} q^{n} \\
& =\sum_{n=0}^{\infty}\left(\left(N(0,5, n)-N(1,5, n)+\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)(N(2,5, n)-N(1,5, n)) q^{n}\right.\right.
\end{aligned}
$$

Considering coefficients of $q^{5 n}$ in Ramanujan's identity gives

$$
A(q)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}+3\right) \phi(q)=r_{0,1}(0)-\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right) r_{1,2}(0)
$$

Since the coefficients of $A(q), \phi(q)$ and each $r_{a, b}(d)$ are rational integers we have

$$
\begin{aligned}
& r_{0,1}(0)=A(q)-3 \phi(q), \quad r_{1,2}(0)=\phi(q) \\
& r_{0,2}(0)+2 r_{1,2}(0)=r_{0,1}(0)+3 r_{1,2}(0)=A(q)
\end{aligned}
$$

RAMANUJAN's function

$$
F(q)=\frac{(q ; q)_{\infty}}{\left(\zeta_{5} q ; q\right)_{\infty}\left(\zeta_{5}^{-1} q ; q\right)_{\infty}}
$$

$$
C(z, q)=\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)}{\left(1-z q^{n}\right)\left(1-z^{-1} q^{n}\right)}
$$

\mathcal{P} denote the set of partitions

\mathcal{D} the set of partitions into distinct parts
$|\pi|$ denote the sum of parts of partition π $\#(\pi)$ denote the number of parts of π

RAMANUJAN's function

$$
\begin{aligned}
F(q) & =\frac{(q ; q)_{\infty}}{\left(\zeta_{5} q ; q\right)_{\infty}\left(\zeta_{5}^{-1} q ; q\right)_{\infty}} \\
C(z, q) & =\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)}{\left(1-z q^{n}\right)\left(1-z^{-1} q^{n}\right)}
\end{aligned}
$$

\mathcal{P} denote the set of partitions
\mathcal{D} the set of partitions into distinct parts
$|\pi|$ denote the sum of parts of partition π $\#(\pi)$ denote the number of parts of π

A vector partition is a triple

$$
\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \in \mathcal{D} \times \mathcal{P} \times \mathcal{P}
$$

RAMANUJAN's function

$$
\begin{aligned}
F(q) & =\frac{(q ; q)_{\infty}}{\left(\zeta_{5} q ; q\right)_{\infty}\left(\zeta_{5}^{-1} q ; q\right)_{\infty}} \\
C(z, q) & =\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)}{\left(1-z q^{n}\right)\left(1-z^{-1} q^{n}\right)}
\end{aligned}
$$

\mathcal{P} denote the set of partitions
\mathcal{D} the set of partitions into distinct parts
$|\pi|$ denote the sum of parts of partition π $\#(\pi)$ denote the number of parts of π

A vector partition is a triple

$$
\vec{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \in \mathcal{D} \times \mathcal{P} \times \mathcal{P}
$$

$$
V=\mathcal{D} \times \mathcal{P} \times \mathcal{P}
$$

$$
\begin{aligned}
|\vec{\pi}| & =\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right| \\
\omega(\vec{\pi}) & =(-1)^{\#\left(\pi_{1}\right)} \\
\operatorname{crank}(\vec{\pi}) & =\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right)
\end{aligned}
$$

$$
V=\mathcal{D} \times \mathcal{P} \times \mathcal{P}
$$

$$
\begin{aligned}
|\vec{\pi}| & =\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right|, \\
\omega(\vec{\pi}) & =(-1)^{\#\left(\pi_{1}\right)}, \\
\operatorname{crank}(\vec{\pi}) & =\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right) .
\end{aligned}
$$

$$
V=\mathcal{D} \times \mathcal{P} \times \mathcal{P}
$$

$$
\begin{aligned}
|\vec{\pi}| & =\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right|, \\
\omega(\vec{\pi}) & =(-1)^{\#\left(\pi_{1}\right)}, \\
\operatorname{crank}(\vec{\pi}) & =\#\left(\pi_{2}\right)-\#\left(\pi_{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\vec{\pi} \in V} \omega(\vec{\pi}) z^{\operatorname{crank}(\vec{\pi})} q^{|\vec{\pi}|} \\
& =\sum_{\pi_{1} \in \mathcal{D}}(-1)^{\#\left(\pi_{1}\right)} q^{\left|\pi_{1}\right|} \sum_{\pi_{2} \in \mathcal{P}} z^{\#\left(\pi_{2}\right)} q^{\left|\pi_{2}\right|} \sum_{\pi_{3} \in \mathcal{P}} z^{-\#\left(\pi_{2}\right)} q^{\left|\pi_{3}\right|} \\
& =(q ; q)_{\infty} \frac{1}{(z q ; q)_{\infty}} \frac{1}{\left(z^{-1} q ; q\right)_{\infty}} \\
& =C(z, q)
\end{aligned}
$$

$$
N_{V}(m, n)=\sum_{\substack{\vec{\pi} \in V \\|\vec{\pi}|=n \\ \operatorname{crank}(\vec{\pi})=m}} \omega(\vec{\pi})
$$

$$
C(z, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n) z^{m}\right) q^{n}
$$

$$
N_{V}(m, n)=\sum_{\substack{\vec{\pi} \in V \\|\vec{\pi}|=n \\ \operatorname{crank}(\vec{\pi})=m}} \omega(\vec{\pi})
$$

so that

$$
\begin{gathered}
C(z, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n) z^{m}\right) q^{n} \\
N_{V}(m, n)=N_{V}(-m, n)
\end{gathered}
$$

$$
N_{V}(m, n)=\sum_{\substack{\vec{\pi} \in V \\|\vec{\pi}|=n \\ \operatorname{crank}(\vec{\pi})=m}} \omega(\vec{\pi})
$$

so that

$$
\begin{gathered}
C(z, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n) z^{m}\right) q^{n} \\
N_{V}(m, n)=N_{V}(-m, n)
\end{gathered}
$$

DEFINE

$$
N_{V}(k, t, n)=\sum_{m \equiv k} N_{V}(m, n)
$$

$$
N_{V}(m, n)=\sum_{\substack{\vec{\pi} \in V \\|\vec{\pi}|=n \\ \operatorname{crank}(\vec{\pi})=m}} \omega(\vec{\pi})
$$

so that

$$
\begin{gathered}
C(z, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n) z^{m}\right) q^{n} \\
N_{V}(m, n)=N_{V}(-m, n)
\end{gathered}
$$

DEFINE

$$
N_{V}(k, t, n)=\sum_{m \equiv k}^{(\bmod t)} N_{V}(m, n)
$$

$$
\begin{gathered}
C(1, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n)\right) q^{n}=\frac{1}{(q)_{\infty}}=\sum_{n=0}^{\infty} p(n) q^{n} \\
\sum_{m} N_{V}(m, n)=p(n)
\end{gathered}
$$

$$
\begin{aligned}
N_{V}(k, 5,5 n+4) & =\frac{1}{5} p(5 n+4), \quad 0 \leq k \leq 4 \\
N_{V}(k, 7,7 n+5) & =\frac{1}{7} p(7 n+5), \quad 0 \leq k \leq 6 \\
N_{V}(k, 11,11 n+6) & =\frac{1}{11} p(11 n+6), \quad 0 \leq k \leq 10
\end{aligned}
$$

$$
\begin{gathered}
C(1, q)=\sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n)\right) q^{n}=\frac{1}{(q)_{\infty}}=\sum_{n=0}^{\infty} p(n) q^{n} \\
\sum_{m} N_{V}(m, n)=p(n)
\end{gathered}
$$

Theorem (G.)

$$
\begin{aligned}
N_{V}(k, 5,5 n+4) & =\frac{1}{5} p(5 n+4), \quad 0 \leq k \leq 4 \\
N_{V}(k, 7,7 n+5) & =\frac{1}{7} p(7 n+5), \quad 0 \leq k \leq 6 \\
N_{V}(k, 11,11 n+6) & =\frac{1}{11} p(11 n+6), \quad 0 \leq k \leq 10
\end{aligned}
$$

$F(q)$ - Identity in RLN

$F(q)$ - Identity in RLN

$$
\begin{gathered}
\Downarrow \\
\text { Coeff of } q^{5 n+4} \text { in } C\left(\zeta_{5}, q\right) \text { equals } 0 \\
\Downarrow \\
N_{V}(k, 5,5 n+4) \text { are equal }
\end{gathered}
$$

EXAMPLE The 41 vector partitions of 4 are given in the table below. From the this table we have

$$
\begin{array}{rl}
N_{V}(0,5,4)= & \omega\left(\vec{\pi}_{6}\right)+\omega\left(\vec{\pi}_{9}\right)+\omega\left(\vec{\pi}_{12}\right)+\omega\left(\vec{\pi}_{13}\right)+\omega\left(\vec{\pi}_{24}\right) \\
& \quad+\omega\left(\vec{\pi}_{26}\right)+\omega\left(\vec{\pi}_{33}\right)+\omega\left(\vec{\pi}_{40}\right)+\omega\left(\vec{\pi}_{41}\right) \\
=1 & 1+1+1+1-1-1-1-1+1 \\
= & 1 .
\end{array}
$$

Similarly

$$
N_{V}(0,5,4)=N_{V}(1,5,4)=\cdots=N_{V}(4,5,4)=1=\frac{p(4)}{5}
$$

Weight Crank

$\vec{\pi}_{1}=(\phi, \phi, 4)$	+1	-1	$\vec{\pi}_{22}=(1, \phi, 2+1)$	-1	-2
$\vec{\pi}_{2}=(\phi, \phi, 3+1)$	+1	-2	$\vec{\pi}_{23}=(1, \phi, 1+1+1)$	-1	-3
$\vec{\pi}_{3}=(\phi, \phi, 2+2)$	+1	-2	$\vec{\pi}_{24}=(1,1,2)$	-1	0
$\vec{\pi}_{4}=(\phi, \phi, 2+1+1)$	+1	-3	$\vec{\pi}_{25}=(1,1,1+1)$	-1	-1
$\vec{\pi}_{5}=(\phi, \phi, 1+1+1+1)$	+1	-4	$\vec{\pi}_{26}=(1,2,1)$	-1	0
$\vec{\pi}_{6}=(\phi, 1,3)$	+1	0	$\vec{\pi}_{27}=(1,1+1,1)$	-1	1
$\vec{\pi}_{7}=(\phi, 1,2+1)$	+1	-1	$\vec{\pi}_{28}=(1,3, \phi)$	-1	1
$\vec{\pi}_{8}=(\phi, 1,1+1+1)$	+1	-2	$\vec{\pi}_{29}=(1,2+1, \phi)$	-1	2
$\vec{\pi}_{9}=(\phi, 2,2)$	+1	0	$\vec{\pi}_{30}=(1,1+1+1, \phi)$	-1	3
$\vec{\pi}_{10}=(\phi, 2,1+1)$	+1	-1	$\vec{\pi}_{31}=(2, \phi, 2)$	-1	1
$\vec{\pi}_{11}=(\phi, 1+1,2)$	+1	1	$\vec{\pi}_{32}=(2, \phi, 1+1)$	-1	-2
$\vec{\pi}_{12}=(\phi, 1+1,1+1)$	+1	0	$\vec{\pi}_{33}=(2,1,1)$	-1	0
$\vec{\pi}_{13}=(\phi, 3,1)$	+1	0	$\vec{\pi}_{34}=(2,2, \phi)$	-1	1
$\vec{\pi}_{14}=(\phi, 2+1,1)$	+1	1	$\vec{\pi}_{35}=(2,1+1, \phi)$	-1	2
$\vec{\pi}_{15}=(\phi, 1+1+1,1)$	+1	2	$\vec{\pi}_{36}=(3, \phi, 1)$	-1	-1
$\vec{\pi}_{16}=(\phi, 4, \phi)$	+1	1	$\vec{\pi}_{37}=(2+1, \phi, 1)$	+1	1
$\vec{\pi}_{17}=(\phi, 3+1, \phi)$	+1	2	$\vec{\pi}_{38}=(3,1, \phi)$	-1	1
$\vec{\pi}_{18}=(\phi, 2+2, \phi)$	+1	2	$\vec{\pi}_{39}=(2+1,1, \phi)$	+1	1
$\vec{\pi}_{19}=(\phi, 2+1+1, \phi)$	+1	3	$\vec{\pi}_{40}=(4, \phi, \phi)$	-1	0
$\vec{\pi}_{20}=(\phi, 1+1+1+1, \phi)$	+1	4	$\vec{\pi}_{41}=(3+1, \phi, \phi)$	+1	0
$\vec{\pi}_{21}=(1, \phi, 3)$	-1	-1			

sOLUTION OF DYSON'S CRANK CONJECTURE

$$
\begin{aligned}
C(z, q)= & \sum_{n=0}^{\infty}\left(\sum_{m} N_{V}(m, n) z^{m}\right) q^{n} \\
= & \prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)}{\left(1-z q^{n}\right)\left(1-z^{-1} q^{n}\right)} \\
= & 1+\left(z^{-1}-1+z\right) q+\left(z^{-2}+z^{2}\right) q^{2} \\
& +\left(z^{-3}+1+z^{3}\right) q^{3}++\left(z^{-4}+z^{-2}+1+z^{2}+z^{4}\right) q^{4}+\cdots
\end{aligned}
$$

Theorem (CAUCHY'S q-BINOMIAL THEOREM)

$$
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} \zeta^{n}=\frac{(a \zeta ; q)_{\infty}}{(\zeta ; q)_{\infty}}
$$

$$
\text { for }|q|<1,|\zeta|<1
$$

Theorem (ANDREWS AND G.)

$$
N_{V}(m, n) \geq 0, \quad \text { for all } n>1
$$

Theorem (CAUCHY'S q-BINOMIAL THEOREM)

$$
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} \zeta^{n}=\frac{(a \zeta ; q)_{\infty}}{(\zeta ; q)_{\infty}}
$$

$$
\text { for }|q|<1,|\zeta|<1 \text {. }
$$

Theorem (ANDREWS AND G.)

$$
N_{V}(m, n) \geq 0, \quad \text { for all } n>1
$$

Proof

$$
\begin{aligned}
& C(z, q)=\frac{(q)_{\infty}}{(z q)_{\infty}\left(z^{-1} q\right)_{\infty}}=\frac{(1-q)\left(q^{2} ; q\right)_{\infty}}{(z q)_{\infty}\left(z^{-1} q\right)_{\infty}} \\
& =\frac{(1-q)}{(z q)_{\infty}} \sum_{n=0}^{\infty} \frac{(z q)_{n}}{(q)_{n}}\left(z^{-1} q\right)^{n}
\end{aligned}
$$

(by Cauchy with $\zeta=z^{-1} q, a=z q$)
$=\frac{(1-q)}{(z q)_{\infty}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}$
$=(1-q) \sum_{n=0}^{\infty} \frac{z^{n} q^{n}}{(q)_{n}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}$
(again by Cauchy with $\zeta=z q, a=0$)

$$
\begin{aligned}
& =(1-q)+\sum_{n=1}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& =1+(-1+z) q+\sum_{n=2}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}
\end{aligned}
$$

THIS GIVES A CLUE TO THE PARTITION CRANK

$$
\begin{aligned}
& =(1-q)+\sum_{n=1}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& =1+(-1+z) q+\sum_{n=2}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}
\end{aligned}
$$

THIS GIVES A CLUE TO THE PARTITION CRANK

$$
\begin{aligned}
& =(1-q)+\sum_{n=1}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& =1+(-1+z) q+\sum_{n=2}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}
\end{aligned}
$$

THIS GIVES A CLUE TO THE PARTITION CRANK

$$
\frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}=\frac{z^{n} q^{n}}{\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

is the generating function for partitions with no ones (assuming $n>1$)and whose largest part is n.

$$
\begin{aligned}
& =(1-q)+\sum_{n=1}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& =1+(-1+z) q+\sum_{n=2}^{\infty} \frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}+\sum_{n=1}^{\infty} \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}}
\end{aligned}
$$

THIS GIVES A CLUE TO THE PARTITION CRANK

$$
\frac{z^{n} q^{n}}{\left(q^{2} ; q\right)_{n-1}}=\frac{z^{n} q^{n}}{\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

is the generating function for partitions with no ones (assuming $n>1$) and whose largest part is n.

$$
\begin{aligned}
& \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& \quad=\frac{z^{-n} q^{1+1+\cdots+1}}{\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)\left(1-z q^{n+1}\right)\left(1-z q^{n+2}\right) \cdots}
\end{aligned}
$$

is the generating function for partitions with exactly n one and the coefficient of z^{k} is the number of partitions in which

$$
k=(\# \text { of parts }>n)-n
$$

$$
\begin{aligned}
& \frac{z^{-n} q^{n}}{\left(q^{2} ; q\right)_{n-1}\left(z q^{n+1} ; q\right)_{\infty}} \\
& \quad=\frac{z^{-n} q^{1+1+\cdots+1}}{\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)\left(1-z q^{n+1}\right)\left(1-z q^{n+2}\right) \cdots}
\end{aligned}
$$

is the generating function for partitions with exactly n one and the coefficient of z^{k} is the number of partitions in which

$$
k=(\# \text { of parts }>n)-n
$$

The CRANK of a partition as
$\left\{\begin{array}{l}\text { largest part if partition has no ones } \\ (\# \text { of parts larger number of ones })-(\# \text { of ones }), \text { otherwise }\end{array}\right.$

Let $M(m, n)$ denote the number of partitions of n with crank m.

Theorem (ANDREWS AND G.)

$$
N_{V}(m, n)=M(m, n)
$$

for $n>1$.

SOLUTION OF CRANK CONJECTURE

Theorem (ANDREWS and G.)

$$
\begin{aligned}
M(k, 5,5 n+4) & =\frac{1}{5} p(5 n+4), \quad 0 \leq k \leq 4 \\
M(k, 7,7 n+5) & =\frac{1}{7} p(7 n+5), \quad 0 \leq k \leq 6 \\
M(k, 11,11 n+6) & =\frac{1}{11} p(11 n+6), \quad 0 \leq k \leq 10
\end{aligned}
$$

CRANKS AND t-CORES [G., KIM and STANTON]

Let (i, j) be a node in the i-th row and j-th column in the diagram of a partition α.

The hook $H_{i j}^{\alpha}$ is the set of nodes to the right of (i, j) and below (i, j) in the diagram including (i, j) (marked " x "). A hook of length t is called a t-hook. The length of a hook in a partition is called a hook number.

EXAMPLE The partition

$$
\alpha=6+6+6+5+5+2+1+1
$$

has a 9-hook $H_{2,2}^{\alpha}$. To each t-hook $H_{i j}^{\alpha}$ in a partition α there is a t-rim hook $R_{i j}^{\alpha}$ where

$$
\left|H_{i j}^{\alpha}\right|=\left|R_{i j}^{\alpha}\right|=t
$$

$R_{2,2}^{\alpha}$ is marked by • Removal of a rim-hook gives rise to a partition. A partition is a t-core if it has no hook numbers that are multiples of t.

Theorem
Given any partition α and any integer $t \geq 1$, sucessive removal of t-rim hooks gives rise to a unique t-core partition.

EXAMPLE The 3 -core of the partition $\alpha=7+5+4+3+2$ is $\widetilde{\alpha}=4+2$.

Let $a_{t}(n)$ denote the number of partitions of n which are t-cores.

Theorem

Let $t>1$. Then

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{\left(q^{t} ; q^{t}\right)_{\infty}^{t}} \sum_{n=0}^{\infty} a_{t}(n) q^{n}
$$

Proof Sketch Let $t>0$. We construct a bijection

$$
\Phi: \mathcal{P} \longrightarrow \mathcal{P} \times \mathcal{P} \times \cdots \mathcal{P} \times \mathcal{P}_{t-\text { core }}
$$

where \mathcal{P} is the set of partitions and $\mathcal{P}_{t-c o r e}$ is the set of t-cores, such that

$$
\Phi(\pi)=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t-1}, \tilde{\pi}\right)
$$

where $\tilde{\pi}$ is the t-core of π and

$$
|\pi|=\sum_{j=0}^{t-1} t\left|\pi_{j}\right|+|\tilde{\pi}|
$$

Given a partition π we label cell in i-row and j-column by $(j-i)$ $(\bmod t)($ for each $(i, j))$. The resulting diagram is called the t-residue diagram . We add an infinite row 0 and column 0 and
label in the same way to form the extended t-residue diagram

Proof Sketch Let $t>0$. We construct a bijection

$$
\Phi: \mathcal{P} \longrightarrow \mathcal{P} \times \mathcal{P} \times \cdots \mathcal{P} \times \mathcal{P}_{t-\text { core }}
$$

where \mathcal{P} is the set of partitions and $\mathcal{P}_{t-c o r e}$ is the set of t-cores, such that

$$
\Phi(\pi)=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t-1}, \tilde{\pi}\right)
$$

where $\tilde{\pi}$ is the t-core of π and

$$
|\pi|=\sum_{j=0}^{t-1} t\left|\pi_{j}\right|+|\tilde{\pi}|
$$

Given a partition π we label cell in i-row and j-column by $(j-i)$ $(\bmod t)$ (for each (i, j)). The resulting diagram is called the t-residue diagram. We add an infinite row 0 and column 0 and label in the same way to form the extended t-residue diagram. region r of the extended diagram is the set of cells (i, j) with

Proof Sketch Let $t>0$. We construct a bijection

$$
\Phi: \mathcal{P} \longrightarrow \mathcal{P} \times \mathcal{P} \times \cdots \mathcal{P} \times \mathcal{P}_{t-\text { core }}
$$

where \mathcal{P} is the set of partitions and $\mathcal{P}_{t \text {-core }}$ is the set of t-cores, such that

$$
\Phi(\pi)=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t-1}, \tilde{\pi}\right)
$$

where $\tilde{\pi}$ is the t-core of π and

$$
|\pi|=\sum_{j=0}^{t-1} t\left|\pi_{j}\right|+|\tilde{\pi}|
$$

Given a partition π we label cell in i-row and j-column by $(j-i)$ $(\bmod t)($ for each $(i, j))$. The resulting diagram is called the t-residue diagram. We add an infinite row 0 and column 0 and label in the same way to form the extended t-residue diagram. A region r of the extended diagram is the set of cells (i, j) with

$$
t(r-1) \leq j-i<t r
$$

A cell is exposed if it is at the end of a row. A partition is a t-core if and only if any exposed cell labelled i in region r has exposed cells labelled i in each region $<r$.

We construct t bi-infinite words

$$
W_{0}, W_{1}, \ldots, W_{t-1}
$$

A cell is exposed if it is at the end of a row. A partition is a t-core if and only if any exposed cell labelled i in region r has exposed cells labelled i in each region $<r$.

We construct t bi-infinite words

$$
W_{0}, W_{1}, \ldots, W_{t-1}
$$

of $N \mathrm{~s}$ (not exposed) and Es (exposed).

$$
j \text {-th element of } W_{i}= \begin{cases}\mathrm{N} & i \text { is not exposed in region } j \\ \mathrm{E} & i \text { is exposed in region } j\end{cases}
$$

t-cores have W_{i} of the form

$$
j \text {-th element of } W_{i}= \begin{cases}\mathrm{N} & i \text { is not exposed in region } j \\ \mathrm{E} & i \text { is exposed in region } j\end{cases}
$$

t-cores have W_{i} of the form

$$
\cdots E \cdots E N N \cdots
$$

We now describe the bijection. We initialize

$$
\vec{\pi}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t-1}, \tilde{\pi}\right)(-,-, \ldots,-,-)
$$

For each i we do the following steps:

STEP 2. Find the right most N the left of E.
STEP 3. Remove the rim hook whose head is at E and whose tail is one cell to the right of N . Place a part of size $\frac{1}{t}$ (length of rim hook removed) into π_{i}.

$$
j \text {-th element of } W_{i}= \begin{cases}\mathrm{N} & i \text { is not exposed in region } j \\ \mathrm{E} & i \text { is exposed in region } j\end{cases}
$$

t-cores have W_{i} of the form

$$
\ldots \text {....ENN... }
$$

We now describe the bijection. We initialize

$$
\vec{\pi}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{t-1}, \tilde{\pi}\right)(-,-, \ldots,-,-)
$$

For each i we do the following steps:
STEP 1. Find the right most E.
STEP 2. Find the right most N the left of E.
STEP 3. Remove the rim hook whose head is at E and whose tail is one cell to the right of N . Place a part of size $\frac{1}{t}$ (length of rim hook removed) into π_{i}.
STEP 4. Go to STEP 1 and repeat untill t-core is obtained.

NOTE: The operation in STEP 3 changes W_{i} from a string of the form
...NEE...EEN...
to
...EEE...ENN...
i.e. N is pushed to the right and the other W_{j} are unchanged by the removal of this rim hook.

NOTE: The operation in STEP 3 changes W_{i} from a string of the form
...NEE...EEN...
to
...EEE...ENN...
i.e. N is pushed to the right and the other W_{j} are unchanged by the removal of this rim hook.

Corollary

$$
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\frac{\left(q^{t} ; q^{t}\right)_{\infty}^{t}}{(q)_{\infty}}
$$

Theorem

$$
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\sum_{\substack{\vec{n} \in \mathbb{Z}^{t} \\ \vec{n} \cdot \overrightarrow{1}=0}} q^{\frac{t}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}}
$$

where

$$
\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right), \quad \overrightarrow{1}=(1,1, \ldots, 1), \quad \vec{b}=(0,1, \ldots, t-1)
$$

Proof Sketch Let $t>1$. There is a bijection

$$
\Psi: \mathcal{P}_{t-\operatorname{core}} \longrightarrow\left\{\vec{n} \in \mathbb{Z}^{t}: \vec{n} \cdot \overrightarrow{1}=0\right\}
$$

such that

$$
\Psi(\tilde{\pi})=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

Theorem

$$
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\sum_{\substack{\vec{n} \in \mathbb{Z}^{t} \\ \vec{n} \cdot \overrightarrow{1}=0}} q^{\frac{t}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}}
$$

where

$$
\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right), \quad \overrightarrow{1}=(1,1, \ldots, 1), \quad \vec{b}=(0,1, \ldots, t-1)
$$

Proof Sketch Let $t>1$. There is a bijection

$$
\Psi: \mathcal{P}_{t-\text { core }} \longrightarrow\left\{\vec{n} \in \mathbb{Z}^{t}: \vec{n} \cdot \overrightarrow{1}=0\right\}
$$

such that

$$
\Psi(\tilde{\pi})=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

$$
\Psi(\tilde{\pi})=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

where

$$
|\tilde{\pi}|=\frac{t}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}
$$

For $0 \leq i \leq t-1$ let

$$
n_{i}=\begin{aligned}
& \text { max. region of the extended } t \text {-residue } \\
& \text { diagram of } \tilde{\pi} \text { which contains } \\
& \text { an exposed cell labelled } i
\end{aligned}
$$

$$
\Psi(\tilde{\pi})=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

where

$$
|\tilde{\pi}|=\frac{t}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}
$$

For $0 \leq i \leq t-1$ let

$$
n_{i}=\begin{aligned}
& \text { max. region of the extended } t \text {-residue } \\
& \text { diagram of } \tilde{\pi} \text { which contains } \\
& \text { an exposed cell labelled } i
\end{aligned}
$$

Theorem

Let $t=5,7,11$, and $\delta_{t}=4,5,6$ (resp.). Then

$$
\sum_{n=0}^{\infty} p\left(t n+\delta_{t}\right) q^{n}=\frac{1}{(q)_{\infty}^{t}} \sum_{\substack{\vec{a} \in \mathbb{Z}^{t} \\ \vec{n} \cdot \hat{1}=1}} q^{Q(\vec{a})}
$$

where

$$
\begin{aligned}
& Q(\vec{a})=Q\left(a_{1}, a_{2}, \ldots, a_{t}\right) \\
& =a_{1}^{2}+a_{2}^{2}+\cdots a_{t}^{2}-\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{t} a_{1}\right)-1
\end{aligned}
$$

Corollary

For $t=5,7,11$

$$
p\left(t n+\delta_{t}\right) \equiv 0 \quad(\bmod t)
$$

Proof Sketch for $t=5$ For a t-core $\tilde{\pi}$ we call

$$
\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)=\psi(\tilde{\pi})
$$

the n-vector of $\tilde{\pi}$. The 5 partitions of 4 are 5 -cores:

\[

\]

Corollary

For $t=5,7,11$

$$
p\left(t n+\delta_{t}\right) \equiv 0 \quad(\bmod t)
$$

Proof Sketch for $t=5$ For a t-core $\tilde{\pi}$ we call

$$
\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)=\Psi(\tilde{\pi})
$$

the n-vector of $\tilde{\pi}$. The 5 partitions of 4 are 5 -cores:

\[

\]

Let

$$
\begin{aligned}
\vec{b} & =(0,1,2,3,4) \\
\vec{c} & =(2 / 5,1 / 5,0,-1 / 5,-2 / 5)
\end{aligned}
$$

$$
5 \vec{c}+\vec{b}=2 \overrightarrow{1}
$$

Let

$$
\begin{aligned}
\vec{b} & =(0,1,2,3,4) \\
\vec{c} & =(2 / 5,1 / 5,0,-1 / 5,-2 / 5)
\end{aligned}
$$

Then

$$
5 \vec{c}+\vec{b}=2 \overrightarrow{1}
$$

For each $\vec{v}_{j}=\vec{n}$

Let

$$
\begin{aligned}
\vec{b} & =(0,1,2,3,4) \\
\vec{c} & =(2 / 5,1 / 5,0,-1 / 5,-2 / 5)
\end{aligned}
$$

Then

$$
5 \vec{c}+\vec{b}=2 \overrightarrow{1}
$$

For each $\vec{v}_{j}=\vec{n}$

$$
(5 \vec{c}+\vec{b}) \cdot \vec{n}=0 \quad \text { and } \quad \frac{5}{2} \vec{c} \cdot \vec{c}=1
$$

Each $\vec{n}=\vec{v}_{j}$ satisfies

$$
\begin{aligned}
4 & =\frac{5}{2} \vec{n} \cdot \vec{n}+\vec{b} \cdot \vec{n} \\
& =\frac{5}{2} \vec{n} \cdot \vec{n}-5 \vec{c} \cdot \vec{n} \\
& =\frac{5}{2}(\vec{n} \cdot \vec{n}-2 \vec{c} \cdot \vec{n}+\vec{c} \cdot \vec{c})-1
\end{aligned}
$$

Let

$$
\begin{aligned}
\vec{b} & =(0,1,2,3,4) \\
\vec{c} & =(2 / 5,1 / 5,0,-1 / 5,-2 / 5)
\end{aligned}
$$

Then

$$
5 \vec{c}+\vec{b}=2 \overrightarrow{1}
$$

For each $\vec{v}_{j}=\vec{n}$

$$
(5 \vec{c}+\vec{b}) \cdot \vec{n}=0 \quad \text { and } \quad \frac{5}{2} \vec{c} \cdot \vec{c}=1
$$

Each $\vec{n}=\vec{v}_{j}$ satisfies

$$
\begin{aligned}
4 & =\frac{5}{2} \vec{n} \cdot \vec{n}+\vec{b} \cdot \vec{n} \\
& =\frac{5}{2} \vec{n} \cdot \vec{n}-5 \vec{c} \cdot \vec{n} \\
& =\frac{5}{2}(\vec{n} \cdot \vec{n}-2 \vec{c} \cdot \vec{n}+\vec{c} \cdot \vec{c})-1
\end{aligned}
$$

and

$$
\frac{5}{2}\|\vec{n}-\vec{c}\|^{2}=5
$$

The five vectors \vec{v}_{j} for a non-planar pentagon with center \vec{c}

```
CHANGE OF VARIABLES:
Each \vec{n}\in\mp@subsup{\mathbb{Z}}{}{5}\mathrm{ satisifies }\vec{n}\cdot\vec{1}=0\mathrm{ and }\vec{n}\cdot\vec{b}\equiv4(\operatorname{mod}5)
if and only if \vec{n}=\mp@subsup{a}{1}{}\vec{\mp@subsup{v}{1}{}}+\mp@subsup{a}{2}{}\mp@subsup{\vec{v}}{2}{}+\mp@subsup{a}{3}{}\vec{\mp@subsup{v}{3}{}}+\mp@subsup{a}{4}{}\vec{\mp@subsup{v}{4}{}}+\mp@subsup{a}{5}{}\mp@subsup{\vec{v}}{5}{}
for some }\vec{a}\in\mp@subsup{\mathbb{Z}}{}{5}\mathrm{ satisfying }\vec{a}\cdot\vec{1}=
```

and

$$
\frac{5}{2}\|\vec{n}-\vec{c}\|^{2}=5
$$

The five vectors \vec{v}_{j} for a non-planar pentagon with center \vec{c}

CHANGE OF VARIABLES:
Each $\vec{n} \in \mathbb{Z}^{5}$ satisifies $\vec{n} \cdot \overrightarrow{1}=0$ and $\vec{n} \cdot \vec{b} \equiv 4(\bmod 5)$ if and only if $\vec{n}=a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+a_{3} \overrightarrow{v_{3}}+a_{4} \overrightarrow{v_{4}}+a_{5} \vec{v}_{5}$ for some $\vec{a} \in \mathbb{Z}^{5}$ satisfying $\vec{a} \cdot \overrightarrow{1}=1$

Under this correspondence

$$
\begin{aligned}
& \frac{5}{2} \vec{n} \cdot \vec{n}+\vec{b} \cdot \vec{n}=5 Q(\vec{a})+4 \\
& =5\left(a_{1}^{2}+a_{2}^{2}+\cdots a_{5}^{2}-\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{5} a_{1}\right)-1\right)+4
\end{aligned}
$$

and

$$
\frac{5}{2}\|\vec{n}-\vec{c}\|^{2}=5
$$

The five vectors \vec{v}_{j} for a non-planar pentagon with center \vec{c}

CHANGE OF VARIABLES:
Each $\vec{n} \in \mathbb{Z}^{5}$ satisifies $\vec{n} \cdot \overrightarrow{1}=0$ and $\vec{n} \cdot \vec{b} \equiv 4(\bmod 5)$ if and only if $\vec{n}=a_{1} \vec{v}_{1}+a_{2} \overrightarrow{v_{2}}+a_{3} \vec{v}_{3}+a_{4} \overrightarrow{V_{4}}+a_{5} \vec{v}_{5}$ for some $\vec{a} \in \mathbb{Z}^{5}$ satisfying $\vec{a} \cdot \overrightarrow{1}=1$

Under this correspondence

$$
\begin{aligned}
& \frac{5}{2} \vec{n} \cdot \vec{n}+\vec{b} \cdot \vec{n}=5 Q(\vec{a})+4 \\
& =5\left(a_{1}^{2}+a_{2}^{2}+\cdots a_{5}^{2}-\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{5} a_{1}\right)-1\right)+4
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{5 n+4}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\ \vec{n} \cdot \overrightarrow{1}=1}} q^{5 Q(\vec{a})+4}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{5 n+4}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{5 Q(\vec{a})+4} \\
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{n}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{Q(\vec{a})} \\
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{5}} \sum_{n=0}^{\infty} a_{5}(n) q^{n}
\end{gathered}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{5 n+4}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{5 Q(\vec{a})+4} \\
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{n}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{Q(\vec{a})} \\
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{5}} \sum_{n=0}^{\infty} a_{5}(n) q^{n}
\end{gathered}
$$

$$
\sum_{n=0}^{\infty} p(5 n+4) q^{n}=\frac{1}{(q ; q)_{\infty}^{5}} \sum_{n=0}^{\infty} a_{5}(5 n+4) q^{n}
$$

$$
=\frac{1}{(q ; q)_{\infty}^{5}} \sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\ \vec{n} \cdot \overrightarrow{1}=1}} q^{Q(\vec{a})}
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{5 n+4}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{5 Q(\vec{a})+4} \\
\sum_{n=0}^{\infty} a_{5}(5 n+4) q^{n}=\sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{Q(\vec{a})} \\
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{5}} \sum_{n=0}^{\infty} a_{5}(n) q^{n} \\
\begin{array}{c}
\sum_{n=0}^{\infty} p(5 n+4) q^{n}
\end{array}=\frac{1}{(q ; q)_{\infty}^{5}} \sum_{n=0}^{\infty} a_{5}(5 n+4) q^{n} \\
=\frac{1}{(q ; q)_{\infty}^{5}} \sum_{\substack{\vec{a} \in \mathbb{Z}^{5} \\
\vec{n} \cdot \overrightarrow{1}=1}} q^{Q(\vec{a})}
\end{gathered}
$$

Theorem (G., STANTON and KIM)

(i) There is a five-cycle with no fixed points that acts on 5-cores of $5 n+4$
(ii) There is a five-cycle with no fixed points that acts on partitions of $5 n+4$

DEFINITION: Let $t>1$ be given. For a partition λ we define the r-vector of λ by

$$
\vec{r}=\left(r_{0}, r_{1}, \ldots, r_{t-1}\right)
$$

where r_{i} is the number of cells of λ labelled i in the t-residue diagram.

Theorem (G., STANTON and KIM)

(i) There is a five-cycle with no fixed points that acts on 5-cores of $5 n+4$
(ii) There is a five-cycle with no fixed points that acts on partitions of $5 n+4$

DEFINITION: Let $t>1$ be given. For a partition λ we define the r-vector of λ by

$$
\vec{r}=\left(r_{0}, r_{1}, \ldots, r_{t-1}\right)
$$

where r_{i} is the number of cells of λ labelled i in the t-residue diagram.

For a statement A define $\chi(A)=1 / 2$ is A is true, and $\chi(A)=-1 / 2$ if A is false.

Proposition

Let $t>1$ be given and suppose λ is a t-core with r-vector \vec{r} and n-vector \vec{n}. Then
(i) For $0<k \leq t-1$

$$
r_{k}=\sum_{n_{i}>0}\left(1 / 2 n_{i}^{2}+\chi(i \geq b) n_{i}\right)+\sum_{n_{j}<0}\left(1 / 2 n_{j}^{2}-\chi(j<b) n_{j}\right)
$$

(ii)

$$
r_{0}=\sum_{i}\binom{n_{i}+1}{2}
$$

(iii) $n_{k}=r_{k}-r_{k-1}$ for $0 \leq k \leq t-1$

Corollary

λ is a t-core if and only if

$$
r_{0}=\sum_{i} r_{i}\left(r_{i}-r_{i+1}\right)
$$

A FIVE-CYCLE AND CRANK FOR 5-CORES OF $5 n+4$

Suppose $m=5 n+4$

$$
\mathcal{P}_{5-c o r e}(m)=\text { set of } 5 \text {-cores of } m
$$

$$
N(m)=\left\{\vec{n} \in \mathbb{Z}^{5}: \vec{n} \cdot \overrightarrow{1}=0, \frac{5}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=m\right\}
$$

A FIVE-CYCLE AND CRANK FOR 5-CORES OF $5 n+4$

Suppose $m=5 n+4$

$$
\mathcal{P}_{5-c o r e}(m)=\text { set of 5-cores of } m
$$

$$
N(m)=\left\{\vec{n} \in \mathbb{Z}^{5}: \vec{n} \cdot \overrightarrow{1}=0, \frac{5}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=m\right\}
$$

$$
A(m)=\left\{\vec{a} \in \mathbb{Z}^{5}: \vec{a} \cdot \overrightarrow{1}=1,\right.
$$

$$
\left.Q(\vec{a})=5\left(a_{1}^{2}+\cdots a_{5}^{2}-a_{1} a_{2}-\cdots-a_{5} a_{1}\right)-1=m\right\}
$$

A FIVE-CYCLE AND CRANK FOR 5 -CORES OF $5 n+4$

Suppose $m=5 n+4$

$$
\mathcal{P}_{5-c o r e}(m)=\text { set of 5-cores of } m
$$

$$
\begin{gathered}
N(m)=\left\{\vec{n} \in \mathbb{Z}^{5}: \vec{n} \cdot \overrightarrow{1}=0, \frac{5}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=m\right\} \\
A(m)=\left\{\vec{a} \in \mathbb{Z}^{5}: \vec{a} \cdot \overrightarrow{1}=1,\right. \\
\\
\left.\quad Q(\vec{a})=5\left(a_{1}^{2}+\cdots a_{5}^{2}-a_{1} a_{2}-\cdots-a_{5} a_{1}\right)-1=m\right\}
\end{gathered}
$$

BIJECTIONS:

$$
\mathcal{P}_{5-\text { core }}(m) \longrightarrow N(m) \longrightarrow A(m)
$$

This five-cycle on $A(m)$ has NO fixed points
This induces a five-cycle on $N(m)$ with $N O$ fixed points

BIJECTIONS:

$$
\mathcal{P}_{5-\text { core }}(m) \longrightarrow N(m) \longrightarrow A(m)
$$

This five-cycle on $A(m)$ has NO fixed points
This induces a five-cycle on $N(m)$ with NO fixed points
This induces a five-cycle on $\mathcal{P}_{5-c o r e}(m)$ with NO fixed points

BIJECTIONS:

$$
\mathcal{P}_{5-\text { core }}(m) \longrightarrow N(m) \longrightarrow A(m)
$$

This five-cycle on $A(m)$ has NO fixed points
This induces a five-cycle on $N(m)$ with NO fixed points
This induces a five-cycle on $\mathcal{P}_{5 \text {-core }}(m)$ with NO fixed points

CONSTRUCTING FIVE-CORE CRANK

For \vec{a} in $A(m)$ define

$$
\omega(\vec{a})=a_{1}+2 a_{2}+3 a_{3}+4 a_{4}
$$

For the five cycle $\sigma=(12345)$ we have

$$
\begin{aligned}
\omega(\sigma(\vec{a})) & =\omega\left(a_{2} a_{3} a_{4} a_{5} a_{1}\right) \\
& =a_{2}+2 a_{3}+3 a_{4}+4 a_{5} \\
& =a_{1}+2 a_{2}+3 a_{3}+4 a_{4}-\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right)+5 a_{5} \\
& \equiv \omega(\vec{a})-1 \quad(\bmod 5)
\end{aligned}
$$

CONSTRUCTING FIVE-CORE CRANK

For \vec{a} in $A(m)$ define

$$
\omega(\vec{a})=a_{1}+2 a_{2}+3 a_{3}+4 a_{4}
$$

For the five cycle $\sigma=(12345)$ we have

$$
\begin{aligned}
\omega(\sigma(\vec{a})) & =\omega\left(a_{2} a_{3} a_{4} a_{5} a_{1}\right) \\
& =a_{2}+2 a_{3}+3 a_{4}+4 a_{5} \\
& =a_{1}+2 a_{2}+3 a_{3}+4 a_{4}-\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right)+5 a_{5} \\
& \equiv \omega(\vec{a})-1 \quad(\bmod 5)
\end{aligned}
$$

> | $\omega(\vec{a})(\bmod 5)$ divides the elements |
| :--- |
| of $A(m)$ in five equal classes |

CONSTRUCTING FIVE-CORE CRANK

For \vec{a} in $A(m)$ define

$$
\omega(\vec{a})=a_{1}+2 a_{2}+3 a_{3}+4 a_{4}
$$

For the five cycle $\sigma=(12345)$ we have

$$
\begin{aligned}
\omega(\sigma(\vec{a})) & =\omega\left(a_{2} a_{3} a_{4} a_{5} a_{1}\right) \\
& =a_{2}+2 a_{3}+3 a_{4}+4 a_{5} \\
& =a_{1}+2 a_{2}+3 a_{3}+4 a_{4}-\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right)+5 a_{5} \\
& \equiv \omega(\vec{a})-1 \quad(\bmod 5)
\end{aligned}
$$

$\omega(\vec{a})(\bmod 5)$ divides the elements of $A(m)$ in five equal classes

$$
\begin{aligned}
\omega(\vec{a}) & =a_{1}+2 a_{2}+3 a_{3}+4 a_{4} \\
& =10 n_{0}+9 n_{1}+7 n_{2}+4 n_{3}-15 n_{4} \\
& \equiv 4 n_{1}+2 n_{2}+4 n_{3} \quad(\bmod 5) \\
& \equiv 4\left(r_{1}-r_{2}\right)+2\left(r_{2}-r_{3}\right)+4\left(r_{3}-r_{4}\right) \quad(\bmod 5) \\
& \equiv 4 r_{1}-2 r_{2}+2 r_{3}-4 r_{4} \quad(\bmod 5) \\
& \equiv(-1)\left(r_{1}+2 r_{2}+3 r_{3}+4 r_{4}\right) \quad(\bmod 5)
\end{aligned}
$$

A crank for 5 -cores λ of $5 n+4$ is $\omega(\lambda) \equiv r_{1}+2 r_{2}+3 r_{3}+4 r_{4}(\bmod 5)$ where $\vec{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right)$ is the r-vectorof λ

$$
\begin{aligned}
\omega(\vec{a}) & =a_{1}+2 a_{2}+3 a_{3}+4 a_{4} \\
& =10 n_{0}+9 n_{1}+7 n_{2}+4 n_{3}-15 n_{4} \\
& \equiv 4 n_{1}+2 n_{2}+4 n_{3} \quad(\bmod 5) \\
& \equiv 4\left(r_{1}-r_{2}\right)+2\left(r_{2}-r_{3}\right)+4\left(r_{3}-r_{4}\right) \quad(\bmod 5) \\
& \equiv 4 r_{1}-2 r_{2}+2 r_{3}-4 r_{4} \quad(\bmod 5) \\
& \equiv(-1)\left(r_{1}+2 r_{2}+3 r_{3}+4 r_{4}\right) \quad(\bmod 5)
\end{aligned}
$$

A crank for 5 -cores λ of $5 n+4$ is $\omega(\lambda) \equiv r_{1}+2 r_{2}+3 r_{3}+4 r_{4}(\bmod 5)$ where $\vec{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right)$ is the r-vectorof λ

CONSTRUCTING FIVE-CORE CRANK FOR PARTITIONS OF

 $5 n+4$Recall the bijection

$$
\Phi: \mathcal{P} \longrightarrow \mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \times \mathcal{P}_{5 \text {-core }}
$$

where

$$
\Phi(\pi)=\left(\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \tilde{\pi}\right)
$$

where $\tilde{\pi}$ is the 5 -core of π and

$$
|\pi|=5 \sum_{j=0}^{4}\left|\pi_{j}\right|+|\tilde{\pi}|
$$

Let $\mathcal{P}(5 n+4)$ denote the set of partitions of $5 n+4$. For $\ell \geq 0$ let

$$
\mathcal{Q}(\ell)=\left\{\vec{\pi} \in \mathcal{P}^{5}: \sum_{j=0}^{4}\left|\pi_{j}\right|=\ell\right\}
$$

The map Φ gives a bijection

$$
\mathcal{P}(5 n+4) \longrightarrow \bigcup_{\ell+m=n}\left(\mathcal{Q}(\ell) \times \mathcal{P}_{5-\operatorname{core}(5 m+4))}\right.
$$

Let $\mathcal{P}(5 n+4)$ denote the set of partitions of $5 n+4$. For $\ell \geq 0$ let

$$
\mathcal{Q}(\ell)=\left\{\vec{\pi} \in \mathcal{P}^{5}: \sum_{j=0}^{4}\left|\pi_{j}\right|=\ell\right\}
$$

The map Φ gives a bijection

$$
\mathcal{P}(5 n+4) \longrightarrow \bigcup_{\ell+m=n}\left(\mathcal{Q}(\ell) \times \mathcal{P}_{5-\operatorname{core}(5 m+4))}\right.
$$

For a partition π of $5 n+4$ we let

$$
\vec{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

be its r-vector, and let

$$
\vec{r}^{\prime}=\left(r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\right)
$$

be the r-vector of its 5 -core $\tilde{\pi}$. Let k be the number of 5 -rim hooks
removed from π to obtains its 5 -core $\tilde{\pi}$. Then

$$
r_{j}^{\prime}=r_{j}-k
$$

for $0 \leq j \leq 4$.

For a partition π of $5 n+4$ we let

$$
\vec{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

be its r-vector, and let

$$
\vec{r}^{\prime}=\left(r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\right)
$$

be the r-vector of its 5 -core $\tilde{\pi}$. Let k be the number of 5 -rim hooks removed from π to obtains its 5 -core $\tilde{\pi}$. Then

$$
r_{j}^{\prime}=r_{j}-k
$$

for $0 \leq j \leq 4$.

For the partition π we define

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}
$$

Then

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}=\sum_{j=1}^{4} j\left(r_{j}^{\prime}+k\right)=\sum_{j=1}^{4} j r_{j}^{\prime}+10 k \equiv \omega(\tilde{\pi})
$$

For the partition π we define

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}
$$

Then

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}=\sum_{j=1}^{4} j\left(r_{j}^{\prime}+k\right)=\sum_{j=1}^{4} j r_{j}^{\prime}+10 k \equiv \omega(\tilde{\pi}) \quad(\bmod 5)
$$

Since $\omega(\pi)(\bmod 5)$ divides the 5 -cores of $5 m+4$ into 5 equal classes for $m=0,1, \ldots, n$, it is clear that $\omega(\pi)(\bmod 5)$ divides the partitions of $5 n+4$ into 5 equal classes.

For the partition π we define

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}
$$

Then

$$
\omega(\pi)=\sum_{j=1}^{4} j r_{j}=\sum_{j=1}^{4} j\left(r_{j}^{\prime}+k\right)=\sum_{j=1}^{4} j r_{j}^{\prime}+10 k \equiv \omega(\tilde{\pi}) \quad(\bmod 5)
$$

Since $\omega(\tilde{\pi})(\bmod 5)$ divides the 5 -cores of $5 m+4$ into 5 equal classes for $m=0,1, \ldots, n$, it is clear that $\omega(\pi)(\bmod 5)$ divides the partitions of $5 n+4$ into 5 equal classes.

These FIVE CLASSES are

$$
\bigcup_{\ell+m=n}\left(\mathcal{Q}(\ell) \times \mathcal{P}_{5-\operatorname{core}(5 m+4, j))}\right.
$$

where $0 \leq j \leq 4$ and
$\mathcal{P}_{5-\operatorname{core}(5 m+4, j)}=\left\{\tilde{\pi} \in \mathcal{P}_{5-\operatorname{core}(5 m+4)}: \omega(\tilde{\pi}) \equiv j(\bmod 5)\right\}$

$$
\begin{aligned}
& \text { A crank for partitions } \lambda \text { of } 5 n+4 \text { is } \\
& \omega(\lambda) \equiv r_{1}+2 r_{2}+3 r_{3}+4 r_{4}(\bmod 5) \\
& \text { where } \vec{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right) \text { is the } r \text {-vector of } \lambda \\
& \hline
\end{aligned}
$$

Theorem

For partitions

$$
\lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}
$$

the function

$$
\omega(\lambda) \equiv \sum_{i<j} \lambda_{i} \lambda_{j}+\sum_{i} i \lambda_{i} \quad(\bmod 5)
$$

divides the partitions of $5 n+4$ into 5 equal classes.

