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LECTURE 5
RAMANUJAN’S MOCK THETA FUNCTIONS
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S LAST LETTER

S. Ramanujan to G. H. Hardy 12 January 1920
University of Madras

I am extremely sorry for not writing you a single letter up to now
. . . I discovered very interesting functions recently which I call
“Mock” ϑ-functions. Unlike the “False” ϑ-functions (studied
partially by Prof. Rogers in his interesting paper) they enter into
mathematics as beautifully as ordinary ϑ-functions. I am sending
you this letter with some examples . . .
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

RAMANUJAN’S DEFINITION OF A MOCK THETA
FUNCTION

A mock ϑ-function is a function M(q), holomorphic for |q| < 1,
such that

(i) M(q) has infinitely many exponential singularities at roots of
unity,

(ii) under radial approach to every such singularity, M(q) has an
approximation consisting of a finite sum of terms with closed
exponential factors, and an error term O(1),

(iii) there is no ϑ-function T (q) which differs from M(q) by a
“trivial function”, i.e. a function bounded under radial
approach to every root of unity.
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

It seems that by a ϑ-function Ramanujan means a quotient of
series of the form

∞∑
n=−∞

(−1)knqan
2+bn

where k = 0, 1, a, b are rational with a > 0.

RADIAL LIMIT
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

EXAMPLE:

7 / 50



NSF/CBMS Research Conference Ramanujan’s Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Texas Rio Grande Valley

RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

EXAMPLE:

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · · =

∞∑
n=0

qn
2

(−q; q)2n
,

if ξ is a primitive m-th root of unity then

f (q) =


O(1), if m is odd,

−T (q) + O(1), if m ≡ 2 (mod 4),

T (q) + O(1), if m ≡ 0 (mod 4),

radially as q → ξ, where T (q) is ϑ-function

T (q) = (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − 2q9 + · · · )

=

(∑∞
n=−∞(−1)nqn(3n−1)/2

)2∑∞
n=−∞ q2n2+n

=
∞∏
n=1

(1− qn)3

(1− q2n)2

8 / 50



NSF/CBMS Research Conference Ramanujan’s Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Texas Rio Grande Valley

RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

EXAMPLE:

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · · =

∞∑
n=0

qn
2

(−q; q)2n
,

if ξ is a primitive m-th root of unity then

f (q) =


O(1), if m is odd,

−T (q) + O(1), if m ≡ 2 (mod 4),

T (q) + O(1), if m ≡ 0 (mod 4),

radially as q → ξ,

where T (q) is ϑ-function

T (q) = (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − 2q9 + · · · )

=

(∑∞
n=−∞(−1)nqn(3n−1)/2

)2∑∞
n=−∞ q2n2+n

=
∞∏
n=1

(1− qn)3

(1− q2n)2

8 / 50



NSF/CBMS Research Conference Ramanujan’s Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Texas Rio Grande Valley

RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

EXAMPLE:

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · · =

∞∑
n=0

qn
2

(−q; q)2n
,

if ξ is a primitive m-th root of unity then

f (q) =


O(1), if m is odd,

−T (q) + O(1), if m ≡ 2 (mod 4),

T (q) + O(1), if m ≡ 0 (mod 4),

radially as q → ξ, where T (q) is ϑ-function

T (q) = (1− q)(1− q3)(1− q5) · · · (1− 2q + 2q4 − 2q9 + · · · )

=

(∑∞
n=−∞(−1)nqn(3n−1)/2

)2∑∞
n=−∞ q2n2+n

=
∞∏
n=1

(1− qn)3

(1− q2n)2

8 / 50



NSF/CBMS Research Conference Ramanujan’s Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Texas Rio Grande Valley

RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

PROOF SKETCH

2ϕ(−q)− f (q) = f (q) + 4ψ(−q)

=
1− 2q + 2q4 − 2q9 + · · ·
(1 + q)(1 + q2)(1 + q3) · · ·

= T (q)

where

ϕ(q) = 1 +
q

(1 + q2)
+

q4

(1 + q2)(1 + q4)
+ · · · =

∞∑
n=0

qn
2

(−q2; q2)n

ψ(q) =
q

(1− q)
+

q4

(1− q)(1− q3)
+ · · · =

∞∑
n=0

qn
2

(q; q2)n
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

f (q) + T (q) = 2ϕ(−q) =
∞∑
n=0

(−1)nqn
2

(−q2; q2)n
= O(1)

as q → ξ (primitive m-root of unity when m ≡ 2 (mod 4))

f (q)− T (q) = −4ψ(−q) =
∞∑
n=0

(−1)nqn
2

(−q; q2)n
= O(1)

as q → ξ (primitive m-root of unity when m ≡ 0 (mod 4))
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

EXAMPLE:

When q = −e−t and t → 0

f (q) +

√
π

t
exp

(
π2

24t
− t

24

)
→ 4.
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

PROOF SKETCH

THE DEDEKIND ETA FUNCTION

η(τ) := exp(πiτ/12)
∞∏
n=1

(1− exp(2πinτ)),

for Im(τ) > 0. Then

η(24τ) ∈ S1/2(576, χ12),

where χ12(n) =
(
12
n

)
.

η(τ + 1) = exp(πiτ/12)η(τ)

η

(
−1

τ

)
=

√
−iτ η(τ)
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

η

(
aτ + b

cτ + d

)
= νη(A)

√
cτ + d η(τ)

for A =

(
a b
c d

)
∈ SL2(Z)

η

(
τ

2τ + 1

)
= exp

(
−πi
3

) √
2τ + 1 η(τ)

When q = −e−t then

∞∏
n=1

(1− qn) =

√
π

t
exp

(
t

24
− π2

24t

) ∞∏
n=1

(1− qn1),

where q1 = − exp
(
−π2

t

)
.
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

When q = −e−t then

∞∏
n=1

(1− q2n) =

√
π

t
exp

(
− t

12
− π2

12t

) ∞∏
n=1

(1− q2n1 ),

where q1 = − exp
(
−π2

t

)
.

When q = −e−t

T (q) =
∞∏
n=1

(1− qn)3

(1− q2n)2

=

√
π

t
exp

(
3

(
t

24
− π2

24t

)
− 2

(
t

12
− π2

12t

))
T (q1)

=

√
π

t
exp

(
− t

24
+

π2

24t

)
(1 + O(q1))

=

√
π

t
exp

(
− t

24
+

π2

24t

)
+ o(1)
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RAMANUJAN’S LAST LETTER

RAMANUJAN’S DEFINITION OF A MOCK THETA FUNCTION

f (q) + T (q) = 2ϕ(−q) =
∞∑
n=0

(−1)nqn
2

(−q2; q2)n

and
lim

q→1−
2ϕ(q) = 4.

HENCE When q = −e−t and t → 0

f (q) +

√
π

t
exp

(
π2

24t
− t

24

)
→ 4.
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WATSON

GEORGE NEVILLE WATSON (1936)

The Final Problem: An Account of the Mock Theta Functions
16 / 50
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WATSON

THIRD ORDER MOCK THETA FUNCTIONS

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · · =

∞∑
n=0

qn
2

(−q; q)2n
,+ · · · =

∞∑
n=0

qn
2

(q; q2)n

ϕ(q) = 1 +
q

(1 + q2)
+

q4

(1 + q2)(1 + q4)
+ · · · =

∞∑
n=0

qn
2

(−q2; q2)n

ψ(q) =
q

(1− q)
+

q4

(1− q)(1− q3)
+ · · · =

∞∑
n=1

qn
2

(q; q2)n

χ(q) = 1 +
q

(1− q + q2)
+ · · · =

∞∑
n=0

(−q; q)nq
n2

(−q3; q3)n
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WATSON

NOTATION

[b1, b2, . . . , br ; q]∞

= (b1; q)∞(b−1
1 q; q)∞(b2; q)∞(b−1

2 q; q)∞ · · · (br ; q)∞(b−1
r q; q)∞

S(a, b; q) =
∞∑

n=−∞

(−1)nq3n(n+1)/2an

1− bqn

18 / 50
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WATSON

∞∑
n=0

qn
2

(zq; q)n(z−1q; q)n

=
1

(q)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(3n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

)
(A)

(q)2∞
[b1, b2, b3; q]∞

=
S(b21/b2b3, b1; q)

[b2/b1, b3/b1; q]∞

+
S(b22/b3b1, b2; q)

[b3/b2, b1/b2; q]∞
+

S(b23/b1b2, b3; q)

[b1/b3, b2/b3; q]∞
(B)
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WATSON
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WATSON

THIRD ORDER FUNCTIONS IN TERMS OF THE RANK

(A) = R(z , q).

f (q) =
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qn
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(−q; q)2n
= R(−1, q) =
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4χ(q)− f (q) = 3
(1− 2q3 + 2q12 −+ · · · )2

(1− q)(1− q2)(1− q3) · · ·
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PROOF

CRANK GENERATING FUNCTION

C (z , q) =
(q; q)∞
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4χ(q)− f (q)

=
2

(q)∞

∞∑
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WATSON’S MODULAR TRANSFORMATIONS

ω(q) =
∞∑
n=0

q2n(n+1)

(q; q2)n+1

=
1

q

(
−1 +

1

1− q
R(q, q2)

)
=

1

2(q2; q2)∞

∞∑
n=−∞

(−1)nq3n(n+1)(1 + q2n+1)

(1− q2n+1)

q−1/24f (q) = 2

√
2π

α
q
4/3
1 ω(q21)

+ 4

√
3α

2π

∫ ∞

0
e−3αx2/2 sinh(αx)

sinh(3αx/2)
dx

where q = e−α, q1 = e−β, α, β > 0 and αβ = π2.
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This is the modular transformation τ 7→ −1/τ in disguise since if
α = −πiτ then q = exp(πiτ)

q1 = exp(−β) = exp(−π2/α) = exp

(
πi

(
−1

τ

))

THE STARTING POINT

(q)∞f (q) = 2
∞∑

n=−∞

(−1)nqn(3n+1)/2

1 + qn

and CONSTRUCT THE FUNCTION

F (z) =
π

sin(πz)

exp(−3αz2/2)

cosh(αz/2)
,

whose poles are z = n ∈ Z with corresponding residues

2
(−1)n exp

(
−3αn2

2 − αn
2

)
1 + exp(−αn)

= 2
(−1)nqn(3n+1)/2

1 + qn
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(q)∞f (q) =
1

2πi

[∫ ∞−iε

−∞−iε
F (z) dz +

∫ −∞+iε

∞+iε
F (z) dz

]
where 0 < ε < π/(3α).

THE TRICK is to use THE SADDLE POINT METHOD to move
the lines of integration of certain integrals which pick up new
residues corresponding to

q
1/6
1 (q41 ; q

4
1)∞q

4/3
1 ω(q21)

and a remainder term involving

q
1/6
1 (q41 ; q

4
1)∞

∫ ∞

0
e−3αx2/2 sinh(αx)

sinh(3αx/2)
dx
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The result then follows using the transformation

η

(
−1

τ

)
=

√
−iτ η(τ)
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ZWEGERS

Zwegers defines
F (τ) = (f0, f1, f2)

T

by

f0(τ) = q−1/24f (q), f1(τ) = 2q1/3ω(q1/2), f2(τ) = 2q1/3ω(−q1/2),

where q = exp(2πiτ) and τ ∈ h.
WATSON’S TRANSFORMATIONS can be written as

1√
−iτ

F

(
−1

τ

)
=

0 1 0
1 0 0
0 0 0− 1

 F (τ) + R(τ), (WATSON)

where
R(τ) = 4

√
3
√
−iτ (j2(τ),−j1(τ), j3(τ))

T ,
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j1(τ) =

∫ ∞

0
e3πiτx

2 sin(2πτx)

sin(3πτx)
dx , . . . , j3(τ) =

∫ ∞

0
e3πiτx

2 sin(πτx)

sin(3πτx)
dx

If we let τ = i in (WATSON) we have

F (i) =

0 1 0
1 0 0
0 0 −1

 F (i) + R(i),

R(i) =

 1 −1 0
−1 1 0
0 0 2

 F (i)
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Reading off the THIRD component:

4
√
3j3(i) = 4

√
3

∫ ∞

0
e−3πx2 sinh(πx)

sinh(3π)
dx = 4e−2π/3ω(−e−π),

and

∫ ∞

0
e−3πx2 sinh(πx)

sinh(3π)
dx

=
1

e2π/3
√
3

∞∑
n=0

e−2n(n+1)π

(1 + e−π)2(1 + e−3π)2 · · · (1 + e−(2n+1)π))2
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Zwegers constructs three weight 3/2 theta functions

g0(τ) =
∞∑

n=−∞
(−1)n(n + 1/3) exp

(
3πi(n + 1/3)2τ

)
,

g1(τ) = −
∞∑

n=−∞
(−1)n(n + 1/6) exp

(
3πi(n + 1/6)2τ

)
,

g2(τ) =
∞∑

n=−∞
(n + 1/3) exp

(
3πi(n + 1/3)2τ

)

so that R(τ) = −2i
√
3

∫ ∞

0

g(z)√
−i(z + τ)

dz where

g(z) = (g0(z), g1(z), g2(z))
T .
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On crucial ingredients is the result that∫ ∞

−∞

e−πty2

y − ir
dy = πir

∫ ∞

0

e−πr2u

√
u + t

du

for r , t > 0.

Finally ZWEGERS defines

G (τ) = 2i
√
3

∫ i∞

−τ

(g1(z), g0(z),−g2(z))
T√

−i(z + τ)
dz ,

and easiy proves that

1√
−iτ

G

(
−1

τ

)
=

0 1 0
1 0 0
0 0 0− 1

 G (τ) + R(τ),

which is the SAME TRANSFORMATION satisfied by F (τ).
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This implies that the function

H(τ) = F (τ)− G (τ)

satisfies

1√
−iτ

H

(
−1

τ

)
=

0 1 0
1 0 0
0 0 −1

 H(τ)

This means that H(τ) is a vector-valued real analytic modular
form of weight 1/2.
IN ADDITION Each component of F is holomorphic so that

∂H

∂τ
= −∂G

∂τ

=
(g1(−τ), g0(−τ),−g2(−τ))T√

2y
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so that
∂

∂τ

√
y
∂H

∂τ
= 0
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∂

∂τ

√
y
∂

∂τ
=

√
y

∂2

∂τ∂τ
− i

4

1
√
y

∂

∂τ

THUS
∆1/2H = 0

where

∆1/2 = −4y2
∂2

∂τ∂τ
+ iy

∂

∂τ

is the weight 1/2 hyperbolic Laplacian.
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Theorem (S. ZWEGERS (2000))

The function
H(τ) = F (τ)− G (τ)

is a vector-valued modular form of weigth 1/2 satisfying

H(τ + 1) =

ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

 H(τ),

1√
−iτ

H

(
−1

τ

)
=

0 1 0
1 0 0
0 0 −1,

 H(τ)

and
∆1/2H(τ) = 0,

where ∆1/2 = −4y2
∂2

∂τ∂τ
+ iy

∂

∂τ
is the weight 1/2 hyperbolic

Laplacian.
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In his last letter to Hardy, Ramanujan also described two sets of
fifth order mock theta functions and list three seventh order
functions.

In his thesis (2002) Zweger derived similar results for Ramanujan’s
fifth and seventh order mock theta functions. In his second paper
Watson proved the claims for the fifth order functions in the letter
but was unable to find modular transformation properties because
there were no known identities like

f (q) =
2

(q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2

1 + qn

Watson did not consider the seventh order functions. Selberg
(1938) studied the seventh order functions near the unit circle.
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In 1986, George Andrews found new identities for most of the fifth
order functions and all of the seventh order functions in terms of
indefinite theta series. For example Andrews found the following
fifth order indentity using Bailey pair machinery:

f0(q) =
∞∑
n=0

qn
2

(−q; q)n
=

1

(q)∞

∞∑
n=0

n∑
j=−n

(−1)jq(n(5n+1)/2−j2(1−q4n+2)

Zwegers was able to use Andrews’s identities a build a theory of
non-holomorphic theta functions to find transformation formulas
these fifth and seveth order functions, completing them to real
analytic modular forms of weight 1/2 analogous to his third order
result.
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In addition Zwegers considered the Lerch series

µ(u, v , τ) :=
1

θ(ζ, q)

∞∑
n=−∞

(−1)nζn+1/2qn(n+1)/2

1− zqn

where ζ = exp(2πiu), z = exp(2πiv), q = exp(2πiτ), and

θ(z , q) = z1/2q1/8
∞∑

m=−∞
(−1)mzmqm(m+1)/2

He was able this to a function that transform likes a Jacobi form:

µ̂(u, v , τ) = µ(u, v , τ) +
i

2
R(u − v ; τ),

where R(u; τ) =∑
ν∈1

2+Z

{
sgn(ν)− E

(
(ν + a)

√
2y
)}

(−1)ν−1/2e−πiν2τ−2πiνu
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y = ℑ(τ), a = ℑ(u)
ℑ(tau) ,

E (z) = 2

∫ z

0
e−πu2 du
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In the Appendix of this book all of Ramanujan’s mock theta
functions are written in terms of µ(u, v , τ) and thus allso fo
Ramanujan’s mock theta functions can be completed to transform
like modular forms.
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MODERN DEFINITION OF A MOCK THETA
FUNCTION

Following BRUNIER AND FUNKE a
weight k harmonic Maass form f (τ) on a subgroup Γ of SL2(Z)
is a smooth function f :, h −→ C satisying
(i)

f (Aτ) =

{
(cτ + d)k f (τ) if k ∈ Z,(
c
d

)
ε−2k
d (cτ + d)k f (τ) if k ∈ 1

2 + Z,

(ii)
∆k(f ) = 0

where

∆k = −4y2
∂2

∂τ∂τ
+ 2iky

∂

∂τ

(τ = x + iy)
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(iii) There is a polynomial Pf (τ) ∈ C[q−1] such that

f (τ)− Pf (τ) = O(e−εy ),

as y → ∞ for some ε > 0, and analogous conditions at other
cusps.
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Let Hk(Γ) denote the space of such functions.

Let Γ1(N) ⊂ Γ for some positive integer N, and suppose
k ∈ 1

2Z \ {1} If f ∈ Hk(Γ) then f has en expansion

f (τ) =
∑

n≫−∞
c+f (n)qn +

∑
n<0

c−f (n)Γ(1− k ,−4πny)qn,

where q = exp(2πiτ), τ = x + iy ,

Γ(s, z) =

∫ ∞

z
e−tts

dt

t
,

f +(tau) =
∑

n≫−∞
c+f (n)qn

is the holomorphic part of f , and

f −(τ) =
∑
n<0

c−f (n)Γ(1− k,−4πny)qn

is the non-holomorphic part of f
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MODERN DEFINITION OF A MOCK THETA FUNCTION

f −(τ) = 2k−1i

∫ i∞

−τ

g c(z)

(−i(z + τ))k
dz

where g(τ) =
∑∞

n=1 cg (n)q
n ∈ S2−k(Γ), and

g c(τ) =
∞∑
n=1

cg (n)q
n = g(−τ)

The function g(τ) is called the shadow of f .

A mock modular form of weight k is the holomorphic part f + of

some harmonic Maass form of weight k for which f − is non-trivial.
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MODERN DEFINITION OF A MOCK THETA FUNCTION

The modern definition of a mock theta function is a mock
modular for of weight 1/2 or 3/2 whose shadow is a linear
combination of unary theta functions.

Theorem (ZWEGERS)

Ramanujan’s mock theta functions are (up to multiplication by a
power of q and addition of a constant) weight 1/2 mock modular
forms. A Ramanujan mock theta function F (τ) has the form

F (τ) = qαG+(τ) + c ,

for some α ∈ Q, c ∈ C, where G+(τ) is the holomorphic part of a
weight 1/2 harmonic Maass form whose shadow is a weight 3/2
unary theta function.
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