NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Texas Rio Grande Valley

> Frank Garvan url: qseries.org/fgarvan

> > University of Florida

May 20, 2022

LECTURE 9 (under construction) THE HURWITZ CLASS NUMBER, MOCK THETA FUNCTIONS AND THE UNIMODAL SEQUENCE CONJECTURES (Includes joint work with Rong Chen, Shanghai)

THE SMALLEST PARTS FUNCTION

SPT-Congruences SPT mod 2 and 3 SPT mod 4

THE UNIMODAL SEQUENCE CONJECTURES STRONG UNIMODAL SEQUENCES ODD-BALANCED UNIMODAL SEQUENCES

WEIGHT 3/2 ETA-PRODUCTS

THE HURWITZ CLASS NUMBER

PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURES PROOF OF BRYSON, ONO, PITMAN AND RHOADES CONJECTURES

REFERENCES

THE SMALLEST PARTS PARTITION FUNCTION

THE SMALLEST PARTS PARTITION FUNCTION

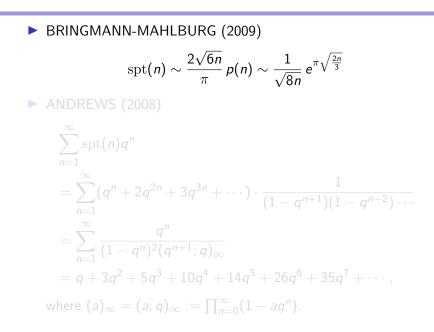
GEORGE ANDREWS

spt-function

 Andrews (2008) defined the function spt(n) as the total number of appearances of the smallest parts in the partitions of n. For example,

$$\dot{4}, \quad 3{+}\dot{1}, \quad \dot{2}{+}\dot{2}, \quad 2{+}\dot{1}{+}\dot{1}, \quad \dot{1}{+}\dot{1}{+}\dot{1}{+}\dot{1}.$$
 Hence, ${\rm spt}(4)=10.$

п	$\operatorname{spt}(n)$
1	1
2	3
3	5
4	10
5	14
6	26
÷	
10	119
÷	
100	1545832615
:	
1000	600656570957882248155746472836274
÷	



• BRINGMANN-MAHLBURG (2009)

$$\operatorname{spt}(n) \sim \frac{2\sqrt{6n}}{\pi} p(n) \sim \frac{1}{\sqrt{8n}} e^{\pi \sqrt{\frac{2n}{3}}}$$

• ANDREWS (2008)
 $\sum_{n=1}^{\infty} \operatorname{spt}(n)q^n$
 $= \sum_{n=1}^{\infty} (q^n + 2q^{2n} + 3q^{3n} + \cdots) \cdot \frac{1}{(1 - q^{n+1})(1 - q^{n+2}) \cdots}$
 $= \sum_{n=1}^{\infty} \frac{q^n}{(1 - q^n)^2 (q^{n+1}; q)_{\infty}}$
 $= q + 3q^2 + 5q^3 + 10q^4 + 14q^5 + 26q^6 + 35q^7 + \cdots,$
where $(a)_{\infty} = (a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n).$

NOTATION

$$(a)_0 := (a; q)_0 := 1, \ (a)_n := (a; q)_n := (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{n-1})$$

when n is a nonnegative integer.

$$(a)_\infty:=(a;q)_\infty:=\prod_{m=1}^\infty(1-aq^{m-1})$$

if |q| < 1.

SPT and Maass Forms BRINGMANN (2008)

$$\mathcal{M}(z) := \sum_{n=0}^{\infty} \left(12 \operatorname{spt}(n) + (24n-1)p(n) \right) q^{n-1/24} \\ - \frac{3\sqrt{3}i}{\pi} \int_{-\overline{z}}^{i\infty} \frac{\eta(\tau) \, d\tau}{(-i(z+\tau))^{3/2}}$$

Then

$$\mathcal{M}\left(rac{az+b}{cz+d}
ight)=rac{(cz+d)^{3/2}}{
u_{\eta}(A)}\,\mathcal{M}(z).$$

M(24z) is a weight ³/₂ weak Maass form M(z) on Γ₀(576) with Nebentypus χ₁₂.

SPT and Maass Forms BRINGMANN (2008)

$$\mathcal{M}(z) := \sum_{n=0}^{\infty} \left(12 \operatorname{spt}(n) + (24n-1)p(n) \right) q^{n-1/24} \\ - \frac{3\sqrt{3}i}{\pi} \int_{-\overline{z}}^{i\infty} \frac{\eta(\tau) \, d\tau}{(-i(z+\tau))^{3/2}}$$

Then

$$\mathcal{M}\left(rac{eta z+b}{cz+d}
ight)=rac{(cz+d)^{3/2}}{
u_\eta(\mathcal{A})}\,\mathcal{M}(z).$$

M(24z) is a weight ³/₂ weak Maass form M(z) on Γ₀(576) with Nebentypus χ₁₂.

SPT-Congruences

Andrews (2008) proved that

$$spt(5n+4) \equiv 0 \pmod{5},$$
 (1)

$$spt(7n+5) \equiv 0 \pmod{7},$$
 (2)

$$spt(13n+6) \equiv 0 \pmod{13}.$$
 (3)

• G. (unpublished) $\sum_{n=1}^{\infty} \operatorname{spt}(5n-1)q^{n} + 5\sum_{n=1}^{\infty} \operatorname{spt}(n)q^{5n}$ $= \frac{5}{2}\sum_{n=1}^{\infty} (\sigma(5n) - \sigma(n))q^{n} \times \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n})}$ $+ \frac{25q}{2} \left(1 + \sum_{n=1}^{\infty} (\sigma(n) - 5\sigma(5n))q^{n}\right) \times \prod_{n=1}^{\infty} \frac{(1-q^{5n})^{5}}{(1-q^{n})^{6}}$

SPT-Congruences

Andrews (2008) proved that

$$spt(5n+4) \equiv 0 \pmod{5},$$
 (1)

$$spt(7n+5) \equiv 0 \pmod{7},$$
 (2)

$$spt(13n+6) \equiv 0 \pmod{13}.$$
 (3)

► G. (unpublished)

$$\begin{split} &\sum_{n=1}^{\infty} \operatorname{spt}(5n-1)q^n + 5\sum_{n=1}^{\infty} \operatorname{spt}(n)q^{5n} \\ &= \frac{5}{2}\sum_{n=1}^{\infty} (\sigma(5n) - \sigma(n))q^n \times \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n})} \\ &+ \frac{25q}{2} \left(1 + \sum_{n=1}^{\infty} (\sigma(n) - 5\sigma(5n))q^n \right) \times \prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^n)^6} \end{split}$$

SPT-Congruences

► G. (2012): For a, b, c ≥ 3, $\operatorname{spt}(5^{a}n + \delta_{a}) + 5\operatorname{spt}(5^{a-2}n + \delta_{a-2}) \equiv 0 \pmod{5^{2a-3}},$ $\operatorname{spt}(7^b n + \lambda_b) + 7 \operatorname{spt}(7^{b-2} n + \lambda_{b-2}) \equiv 0 \pmod{7^{\lfloor \frac{1}{2}(3b-2) \rfloor}},$ $\operatorname{spt}(13^{c}n + \gamma_{c}) - 13\operatorname{spt}(13^{c-2}n + \gamma_{c-2}) \equiv 0 \pmod{13^{c-1}}.$ where δ_a , λ_b and γ_c are the least nonnegative residues of the reciprocals of 24 mod 5^a . 7^b and 13^c respectively. • G. (2008); ONO (2011): If $\left(\frac{1-24n}{a}\right) = 1$ then AHLGREN, BRINGMANN and LOVEJOY (2011) If

$$\operatorname{spt}(\ell^{2m}n+d_{\ell,2m})\equiv 0 \pmod{\ell^m},$$

for any prime $\ell \geq 5$.

SPT-Congruences

$$\operatorname{spt}(\ell^{2m}n+d_{\ell,2m})\equiv 0 \pmod{\ell^m},$$

for any prime $\ell \geq 5$.

SPT-Congruences

for any prime $\ell \geq 5$.

SPT mod 2 and 3

FOLSOM and ONO (2008); ANDREWS, G. and LIANG (2013): spt(n) is odd and if and only if 24n − 1 = p^{4a+1}m² for some prime p ≡ 23 (mod 24) and some integers a, m, where (p, m) = 1.

FOLSOM and ONO (2008) If $\ell \ge 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{3}.$$

▶ G. (2013) If $\ell \ge 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{72}.$$

SPT mod 2 and 3

- FOLSOM and ONO (2008); ANDREWS, G. and LIANG (2013): spt(n) is odd and if and only if 24n − 1 = p^{4a+1}m² for some prime p ≡ 23 (mod 24) and some integers a, m, where (p, m) = 1.
- ▶ FOLSOM and ONO (2008) If $\ell \ge 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{3}.$$

▶ G. (2013) If $\ell \ge 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{72}.$$

SPT mod 2 and 3

FOLSOM and ONO (2008); ANDREWS, G. and LIANG (2013): spt(n) is odd and if and only if 24n − 1 = p^{4a+1}m² for some prime p ≡ 23 (mod 24) and some integers a, m, where (p, m) = 1.

FOLSOM and ONO (2008) If $\ell \ge 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{3}.$$

• G. (2013) If $\ell \geq 5$ is prime then

$$\operatorname{spt}(\ell^2 n - s_{\ell}) + \chi_{12}(\ell) \left(\frac{1 - 24n}{\ell}\right) \operatorname{spt}(n) + \ell \operatorname{spt}\left(\frac{n + s_{\ell}}{\ell^2}\right)$$
$$\equiv \chi_{12}(\ell) (1 + \ell) \operatorname{spt}(n) \pmod{72}.$$

SPT mod 4

G. CONJECTURE (? and 2017)

Conjecture

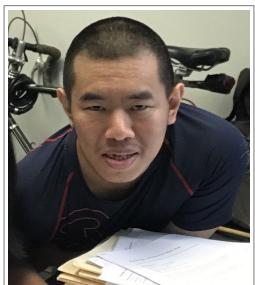
¹ Suppose $\ell > 3$ is prime and $\ell \not\equiv 23 \pmod{24}$. Let $\widetilde{\varepsilon} = \widetilde{\varepsilon}(\ell) = 1$ if $\ell \equiv 1 \pmod{24}$ and -1 otherwise. Then

 $\operatorname{spt}(\ell n - s(\ell)) \equiv 0 \pmod{4}, \quad (where \ s(\ell) = \frac{1}{24}(\ell^2 - 1)),$

when $\left(\frac{n}{\ell}\right) = \widetilde{\varepsilon}$.

¹This conjecture was presented in a talk, entitled *The Andrews spt-function mod 4*, at the AMS Special Session on Arithmetic Properties of Sequences from Number Theory and Combinatorics, AMS Annual Meeting, Atlanta, January 4, 2017.

RONG CHEN



ANDREWS, G. and LIANG (2013) spt(n) is odd and if and only if 24n - 1 has the form

$$24n - 1 = p^{4a+1}m^2,$$

for some prime $p \equiv 23 \pmod{24}$ and some integers *a*, *m*, where (p, m) = 1.

RONG CHEN'S OBSERVATION For n > 0 be an integer, spt $(n) \equiv 2 \pmod{4}$ if and only if 24n - 1 has the form

$$24n - 1 = p_1^{4a+1} p_2^{4b+1} m^2,$$

where p_1 and p_2 are primes such that $\binom{p_1}{p_2} = -\varepsilon(p_2)$ for $\varepsilon(p) = -1$ if $p \equiv \pm 5 \pmod{24}$ and $\varepsilon(p) = 1$ otherwise, $(m, p_1 p_2) = 1$ and $a, b \ge 0$ are integers.

THE UNIMODAL SEQUENCE CONJECTURES

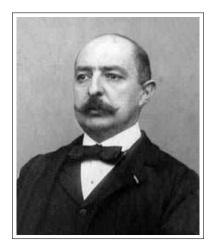
THE UNIMODAL SEQUENCE CONJECTURES

BRYSON, ONO, PITMAN AND RHOADES

LIM, KIM AND LOVEJOY

ADOLF HURWITZ (1859 – 1919)

GEORGES HUMBERT (1859 – 1921)



RAMANUJAN (1887 – 1920)

L.J. ROGERS (1862 – 1933) E. HECKE (1887 – 1947)



A sequence of integers $\{a_j\}_{j=1}^s$ is a **strongly unimodal sequence** of size *n* if it satisfies

 $0 < a_1 < a_2 < \cdots < a_k > a_{k+1} > \cdots > a_s > 0$ and $a_1 + a_2 + \cdots + a_s = n$,

for some k. Let u(n) be the number of such sequences.

A sequence of integers $\{a_j\}_{j=1}^s$ is a **strongly unimodal sequence** of size *n* if it satisfies

 $0 < a_1 < a_2 < \cdots < a_k > a_{k+1} > \cdots > a_s > 0 \quad \text{and} \quad a_1 + a_2 + \cdots + a_s = n,$

for some *k*. Let u(n) be the number of such sequences. EXAMPLE: n = 5:

$$0 < 1 < 4 > 0$$

$$0 < 1 < 3 > 1 > 0$$

$$0 < 2 < 3 > 0$$

$$0 < 3 > 2 > 0$$

$$0 < 4 > 1 > 0$$

$$0 < 5 > 0$$

A sequence of integers $\{a_j\}_{j=1}^s$ is a **strongly unimodal sequence** of size *n* if it satisfies

 $0 < a_1 < a_2 < \cdots < a_k > a_{k+1} > \cdots > a_s > 0$ and $a_1 + a_2 + \cdots + a_s = n$,

for some k. Let u(n) be the number of such sequences. EXAMPLE: n = 5:

$$\begin{array}{l} 0 < 1 < 4 > 0 \\ 0 < 1 < 3 > 1 > 0 \\ 0 < 2 < 3 > 0 \\ 0 < 3 > 2 > 0 \\ 0 < 4 > 1 > 0 \\ 0 < 5 > 0 \end{array}$$

u(5) = 6

A sequence of integers $\{a_j\}_{j=1}^s$ is a **strongly unimodal sequence** of size *n* if it satisfies

 $0 < a_1 < a_2 < \cdots < a_k > a_{k+1} > \cdots > a_s > 0$ and $a_1 + a_2 + \cdots + a_s = n$,

for some k. Let u(n) be the number of such sequences. EXAMPLE: n = 5:

$$\begin{array}{l} 0 < 1 < 4 > 0 \\ 0 < 1 < 3 > 1 > 0 \\ 0 < 2 < 3 > 0 \\ 0 < 3 > 2 > 0 \\ 0 < 4 > 1 > 0 \\ 0 < 5 > 0 \end{array}$$

u(5) = 6

└─STRONG UNIMODAL SEQUENCES

GENERATING FUNCTION:

$$\mathcal{U}(q) := \sum_{n} u(n)q^{n} = \sum_{n=0}^{\infty} (-q;q)_{n}q^{n+1}(-q;q)_{n},$$

= $q + q^{2} + 3 q^{3} + 4 q^{4} + 6 q^{5} + 10 q^{6} + 15 q^{7} + 21 q^{8}$
+ $30 q^{9} + 43 q^{10} + 59 q^{11} + 82 q^{12} + 111 q^{13} + 148 q^{14} + \cdots$

where we use the usual q-notation

$$(a;q)_n := \prod_{k=0}^{n-1} (1-aq^k).$$

└─STRONG UNIMODAL SEQUENCES

GENERATING FUNCTION:

$$\mathcal{U}(q) := \sum_{n} u(n)q^{n} = \sum_{n=0}^{\infty} (-q;q)_{n}q^{n+1}(-q;q)_{n},$$

= $q + q^{2} + 3 q^{3} + 4 q^{4} + 6 q^{5} + 10 q^{6} + 15 q^{7} + 21 q^{8}$
+ $30 q^{9} + 43 q^{10} + 59 q^{11} + 82 q^{12} + 111 q^{13} + 148 q^{14} + \cdots$

where we use the usual q-notation

$$(a;q)_n:=\prod_{k=0}^{n-1}(1-aq^k).$$

THE RANK OF A UNIMODAL SEQUENCE

rank of such a sequence as s - 2k + 1; i.e. the number terms after the maximum minus the number of terms before it. Let u(m, n) be the number of strongly unimodal sequences of size n and rank m.

THE RANK OF A UNIMODAL SEQUENCE

rank of such a sequence as s - 2k + 1; i.e. the number terms after the maximum minus the number of terms before it. Let u(m, n) be the number of strongly unimodal sequences of size n and rank m. Then

$$\mathcal{U}(z;q) := \sum_{m,n} u(m,n) z^m q^n = \sum_{n=0}^{\infty} (-zq;q)_n q^{n+1} (-z^{-1}q;q)_n$$
$$= q + q^2 + \frac{z^2 + z + 1}{z} q^3 + \frac{z^2 + 2z + 1}{z} q^4 + 2 \frac{z^2 + z + 1}{z} q^5 + \cdots$$

THE RANK OF A UNIMODAL SEQUENCE

rank of such a sequence as s - 2k + 1; i.e. the number terms after the maximum minus the number of terms before it. Let u(m, n) be the number of strongly unimodal sequences of size n and rank m. Then

$$\mathcal{U}(z;q) := \sum_{m,n} u(m,n) z^m q^n = \sum_{n=0}^{\infty} (-zq;q)_n q^{n+1} (-z^{-1}q;q)_n$$
$$= q + q^2 + \frac{z^2 + z + 1}{z} q^3 + \frac{z^2 + 2z + 1}{z} q^4 + 2 \frac{z^2 + z + 1}{z} q^5 + \cdots$$

EXAMPLE: n = 5:

Sequence	Rank
0 < 1 < 4 > 0	1
0 < 1 < 3 > 1 > 0	0
0 < 2 < 3 > 0	1
0 < 3 > 2 > 0	-1
0 < 4 > 1 > 0	-1
0 < 5 > 0	0

EXAMPLE: n = 5:

Sequence	Rank
0 < 1 < 4 > 0	1
0 < 1 < 3 > 1 > 0	0
0 < 2 < 3 > 0	1
0 < 3 > 2 > 0	-1
0 < 4 > 1 > 0	-1
0 < 5 > 0	0

EXAMPLE: n = 5:

Sequence	Rank
0 < 1 < 4 > 0	1
0 < 1 < 3 > 1 > 0	0
0 < 2 < 3 > 0	1
0 < 3 > 2 > 0	-1
0 < 4 > 1 > 0	-1
0 < 5 > 0	0

Let u(a, b; n) be the number of strongly unimodal sequences of n with rank congruent to $a \mod b$.

BRYSON, ONO, PITMAN, RHOADES CONJECTURE (2012) Suppose $\ell \equiv 7, 11, 13, 17 \pmod{24}$ is prime and $\binom{k}{\ell} = -1$. Then for all *n* we have

$$u(\ell^2 n + kl - s(\ell)) \equiv 0 \pmod{4}, \tag{4}$$

where $s(\ell) = \frac{1}{24}(\ell^2 - 1)$. Moreover, for $a \in \{0, 1, 2, 3\}$ we have

$$u(a,4;\ell^2n+kl-s(\ell))\equiv 0 \pmod{2},$$
(5)
and

$$u(0,4;\ell^2 n + kl - s(\ell)) \equiv u(2,4;\ell^2 n + kl - s(\ell)) \pmod{4}.$$
 (6)

└ODD-BALANCED UNIMODAL SEQUENCES

EXAMPLE
$$\ell = 7, \ k = 3, \ s(\ell) = 2, \ n = 20,$$

$$\ell^2 n + k\ell - s(\ell) = 999.$$

 $u(0, 4; 999) = 18037740457524792688410406143198 \equiv 2$

 $u(1, 4, 999) = u(3, 4, 999) = 18037740457524791096264174417626 \equiv 2$

 $u(2,4;999) = 18037740457524789504117942692058 \equiv 2$

 $u(999) = 72150961830099164385056697670508 \equiv 0$

RHOADES (2012)

└ODD-BALANCED UNIMODAL SEQUENCES

EXAMPLE
$$\ell = 7, \ k = 3, \ s(\ell) = 2, \ n = 20,$$

$$\ell^2 n + k\ell - s(\ell) = 999.$$

 $u(0, 4; 999) = 18037740457524792688410406143198 \equiv 2$

 $u(1, 4, 999) = u(3, 4, 999) = 18037740457524791096264174417626 \equiv 2$

 $u(2, 4; 999) = 18037740457524789504117942692058 \equiv 2$

 $u(999) = 72150961830099164385056697670508 \equiv 0$

RHOADES (2012)

$$u(n) \sim \frac{\sqrt{3}}{2(24n-1)^{3/4}} \exp(\frac{\pi}{6}\sqrt{24n-1})$$

RHOADES (2012)

└ODD-BALANCED UNIMODAL SEQUENCES

EXAMPLE
$$\ell = 7, \ k = 3, \ s(\ell) = 2, \ n = 20,$$

$$\ell^2 n + k\ell - s(\ell) = 999.$$

 $u(0, 4; 999) = 18037740457524792688410406143198 \equiv 2$

 $u(1, 4, 999) = u(3, 4, 999) = 18037740457524791096264174417626 \equiv 2$

 $u(2, 4; 999) = 18037740457524789504117942692058 \equiv 2$

 $u(999) = 72150961830099164385056697670508 \equiv 0$

RHOADES (2012)

$$u(n) \sim \frac{\sqrt{3}}{2(24n-1)^{3/4}} \exp(\frac{\pi}{6}\sqrt{24n-1})$$

RHOADES (2012)

A sequence of integers $\{a_j\}_{i=1}^s$ is **unimodal** of size *n* if it satisfies

 $0 < a_1 \leq a_2 \leq \cdots \leq a_{k-1} < a_k > a_{k+1} \geq \cdots \geq a_{s-1} \geq a_s > 0 \quad \text{and} \quad a_1 + a_2 + \cdots + a_s = n,$

Such a unimodal sequence is called **odd-balanced** if the peak a_k is even, even parts to the left and right of the peak are distinct and the odd parts to the left of the peak are identical with those to the right. As before the **rank** is the number to right of the peak minus the number to the left. We let v(n) be the number of odd-balanced unimodal sequences of size 2n + 2 and let v(m, n) be the number with rank m.

A sequence of integers $\{a_j\}_{j=1}^s$ is **unimodal** of size *n* if it satisfies

 $0 < a_1 \leq a_2 \leq \cdots \leq a_{k-1} < a_k > a_{k+1} \geq \cdots \geq a_{s-1} \geq a_s > 0 \quad \text{and} \quad a_1 + a_2 + \cdots + a_s = n,$

Such a unimodal sequence is called **odd-balanced** if the peak a_k is even, even parts to the left and right of the peak are distinct and the odd parts to the left of the peak are identical with those to the right. As before the **rank** is the number to right of the peak minus the number to the left. We let v(n) be the number of odd-balanced unimodal sequences of size 2n + 2 and let v(m, n) be the number with rank m.

└─ODD-BALANCED UNIMODAL SEQUENCES

THE GENERATING FUNCTION

$$\mathcal{V}(z;q) := \sum_{m,n} v(m,n) z^m q^n = \sum_{n=0}^{\infty} \frac{(-zq;q)_n (-z^{-1}q;q)_n q^n}{(q;q^2)_{n+1}}$$
$$= 1 + 2q + \frac{z^2 + 3z + 1}{z} q^2 + \frac{2z^2 + 5z + 2}{z} q^3 + 4\frac{z^2 + 2z + 1}{z} q^4 + \cdots$$

$$\mathcal{V}(q) := \mathcal{V}(1;q) = \sum_{n} v(n)q^{n} = \sum_{n=0}^{\infty} \frac{(-q;q)_{n}(-q;q)_{n}q^{n}}{(q;q^{2})_{n+1}}$$

= 1 + 2 q + 5 q^{2} + 9 q^{3} + 16 q^{4} + 29 q^{5} + 48 q^{6} + 77 q^{7} + 123 q^{8} + 191 q^{9} + 290 q^{10} + 436 q^{11} + 643 q^{12} + 936 q^{13} + 1352 q^{14} + \cdots

└─ODD-BALANCED UNIMODAL SEQUENCES

THE GENERATING FUNCTION

$$\mathcal{V}(z;q) := \sum_{m,n} v(m,n) z^m q^n = \sum_{n=0}^{\infty} \frac{(-zq;q)_n (-z^{-1}q;q)_n q^n}{(q;q^2)_{n+1}}$$
$$= 1 + 2q + \frac{z^2 + 3z + 1}{z} q^2 + \frac{2z^2 + 5z + 2}{z} q^3 + 4\frac{z^2 + 2z + 1}{z} q^4 + \cdots$$

$$\mathcal{V}(q) := \mathcal{V}(1;q) = \sum_{n} v(n)q^{n} = \sum_{n=0}^{\infty} \frac{(-q;q)_{n}(-q;q)_{n}q^{n}}{(q;q^{2})_{n+1}}$$

= 1 + 2 q + 5 q^{2} + 9 q^{3} + 16 q^{4} + 29 q^{5} + 48 q^{6} + 77 q^{7} + 123 q^{8} + 191 q^{9} + 290 q^{10} + 436 q^{11} + 643 q^{12} + 936 q^{13} + 1352 q^{14} + \cdots

└─ODD-BALANCED UNIMODAL SEQUENCES

KIM, LIM and LOVEJOY'S CONJECTURE (2016) Let $p \not\equiv \pm 1 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then $v(p^2n + (pk - 7)\delta_p) \equiv 0 \pmod{4}$.

ODD BALANCED UNIMODAL SEQUENCES AND A MOCK THETA FUNCTION OF ORDER 2

$$\mathcal{V}(i;q) := \sum_{m,n} v(m,n)i^m q^n = \sum_n (v(0,4;n) - v(2,4;n))q^n$$

= $\sum_{n=0}^{\infty} \frac{(-q^2;q^2)_n q^n}{(q;q^2)_{n+1}} = \frac{A(q)}{q}$
= $q + 2q^2 + 3q^3 + 5q^4 + 8q^5 + 11q^6 + 16q^7 + 23q^8 + 31q^9$
+ $43q^{10} + 58q^{11} + 76q^{12} + 101q^{13} + 132q^{14} + 170q^{15} + \cdots$

Let $N_A(n)$ denote the coefficient of q^n in A(q) so that $N_A(n+1) = v(0,4;n) - v(2,4;n)$.

Let $N_A(n)$ denote the coefficient of q^n in A(q) so that $N_A(n+1) = v(0,4;n) - v(2,4;n)$.

KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then $N_A(p^2n + (pk + 1)\delta_p) \equiv 0 \pmod{4}$.

Let $N_A(n)$ denote the coefficient of q^n in A(q) so that $N_A(n+1) = v(0,4;n) - v(2,4;n)$.

KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then $N_A(p^2n + (pk + 1)\delta_p) \equiv 0 \pmod{4}$.

LODD-BALANCED UNIMODAL SEQUENCES

THREE MOD 4 CONJECTURES

- SPT MOD 4 CONJECTURE
- BRYSON, ONO, PITMAN AND RHOADES MOD 4 STRONGLY UNIMODAL SEQUENCE CONJECTURE SPT MOD 4 CONJECTURE

└ODD-BALANCED UNIMODAL SEQUENCES

THREE MOD 4 CONJECTURES

- SPT MOD 4 CONJECTURE
- BRYSON, ONO, PITMAN AND RHOADES MOD 4 STRONGLY UNIMODAL SEQUENCE CONJECTURE SPT MOD 4 CONJECTURE
- KIM, LIM AND LOVEJOY MOD 4 ODD BALANCED UNIMODAL SEQUENCE CONJECTURES

ODD-BALANCED UNIMODAL SEQUENCES

THREE MOD 4 CONJECTURES

- SPT MOD 4 CONJECTURE
- BRYSON, ONO, PITMAN AND RHOADES MOD 4 STRONGLY UNIMODAL SEQUENCE CONJECTURE SPT MOD 4 CONJECTURE
- KIM, LIM AND LOVEJOY MOD 4 ODD BALANCED UNIMODAL SEQUENCE CONJECTURES

└─ODD-BALANCED UNIMODAL SEQUENCES

HAVE YOU SEEN THIS MOD 4 BEHAVIOUR BEFORE?

HAVE YOU SEEN THIS MOD 4 BEHAVIOUR IN MODULAR FORMS?

HAVE YOU SEEN THIS MOD 4 BEHAVIOUR BEFORE?

HAVE YOU SEEN THIS MOD 4 BEHAVIOUR IN MODULAR FORMS?

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex WEIGHT 3/2 ETA-PRODUCTS

WEIGHT 3/2 ETA-PRODUCTS

The SEARCH for similar congruences in the theory of modular forms.

We define

- a(n) = the number of representations of n as a sum of two pentagonal and three times a triangular number,
- b(n) = the number of representations of n as a sum of a pentagonal and three times the sum of two triangular numbers,
- c(n) = the number of representations of n as a sum of a pentagonal andtwo triangular numbers,

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \Box WEIGHT 3/2 ETA-PRODUCTS

so that

$$\sum_{n=0}^{\infty} a(n)q^n = \left(\sum_{k=-\infty}^{\infty} q^{k(3k+1)/2}\right)^2 \sum_{m=0}^{\infty} q^{3m(m+1)/2} = \frac{J_3^3 J_2^2}{J_1^2} = q^{-11/24} \frac{\eta(3\tau)^3 \eta(2\tau)^2}{\eta(\tau)^2}$$

$$\sum_{n=0}^{\infty} b(n)q^n = \sum_{k=-\infty}^{\infty} q^{k(3k+1)/2} \left(\sum_{m=0}^{\infty} q^{3m(m+1)/2}\right)^2 = \frac{J_6^3 J_2}{J_1} = q^{-19/24} \frac{\eta(6\tau)^3 \eta(2\tau)}{\eta(\tau)},$$

$$\sum_{n=0}^{\infty} c(n)q^n = \sum_{k=-\infty}^{\infty} q^{k(3k+1)/2} \left(\sum_{m=0}^{\infty} q^{m(m+1)/2}\right)^2 = \frac{J_3^2 J_2^5}{J_6 J_1^3} = q^{-7/24} \frac{\eta(3\tau)^2 \eta(2\tau)^5}{\eta(6\tau)\eta(\tau)^3}.$$

Here we have used the usual notation for infinite products and the Dedekind eta-function

$$J_k = \prod_{n=1}^{\infty} (1-q^{kn}), \qquad \eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n).$$

where $q = \exp(2\pi i \tau)$ and $\Im(\tau) > 0$.

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex WEIGHT 3/2 ETA-PRODUCTS

so that

n=0

$$\sum_{n=0}^{\infty} a(n)q^n = \left(\sum_{k=-\infty}^{\infty} q^{k(3k+1)/2}\right)^2 \sum_{m=0}^{\infty} q^{3m(m+1)/2} = \frac{J_3^3 J_2^2}{J_1^2} = q^{-11/24} \frac{\eta(3\tau)^3 \eta(2\tau)^2}{\eta(\tau)^2},$$
$$\sum_{n=0}^{\infty} b(n)q^n = \sum_{k=-\infty}^{\infty} q^{k(3k+1)/2} \left(\sum_{m=0}^{\infty} q^{3m(m+1)/2}\right)^2 = \frac{J_6^3 J_2}{J_1} = q^{-19/24} \frac{\eta(6\tau)^3 \eta(2\tau)}{\eta(\tau)},$$

$$\sum_{n=0}^{\infty} c(n)q^n = \sum_{k=-\infty}^{\infty} q^{k(3k+1)/2} \left(\sum_{m=0}^{\infty} q^{m(m+1)/2}\right)^2 = \frac{J_3^2 J_2^5}{J_6 J_1^3} = q^{-7/24} \frac{\eta(3\tau)^2 \eta(2\tau)^5}{\eta(6\tau)\eta(\tau)^3}.$$

Here we have used the usual notation for infinite products and the Dedekind eta-function

$$J_k = \prod_{n=1}^{\infty} (1-q^{kn}), \qquad \eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n),$$

where $q = \exp(2\pi i \tau)$ and $\Im(\tau) > 0$.

 $k = -\infty$

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex WEIGHT 3/2 ETA-PRODUCTS

[RONG CHEN and G. (2021)]

Let p > 3 be prime, suppose $24\delta_p \equiv 1 \pmod{p^2}$, and $k, n \in \mathbb{Z}$ where $\binom{k}{p} = 1$. Then

$$\begin{aligned} a(p^2n + (pk - 11)\delta_p) &\equiv 0 \pmod{4}, & \text{if } p \not\equiv 11 \pmod{24}, \\ b(p^2n + (pk - 19)\delta_p) &\equiv 0 \pmod{4}, & \text{if } p \not\equiv 19 \pmod{24}, \\ c(p^2n + (pk - 7)\delta_p) &\equiv 0 \pmod{4}, & \text{if } p \not\equiv 7 \pmod{24}. \end{aligned}$$

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \Box WEIGHT 3/2 ETA-PRODUCTS

CONNECTION WITH SUM OF THREE SQUARES

$$\sum_{n=0}^{\infty} A(n)q^n = \sum_{n=0}^{\infty} a(n)q^{24n+11}$$
$$= \sum_{x,y,z\in\mathbb{Z}} q^{(6x+1)^2 + (6y+1)^2 + 9(4z+1)}$$
$$= \frac{1}{24} \sum_{n=0}^{\infty} r_3(24n+11)q^n$$

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \Box WEIGHT 3/2 ETA-PRODUCTS

CONNECTION WITH SUM OF THREE SQUARES

$$\sum_{n=0}^{\infty} A(n)q^n = \sum_{n=0}^{\infty} a(n)q^{24n+11}$$
$$= \sum_{x,y,z\in\mathbb{Z}} q^{(6x+1)^2 + (6y+1)^2 + 9(4z+1)^2}$$
$$= \frac{1}{24} \sum_{n=0}^{\infty} r_3(24n+11)q^n$$

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \square WEIGHT 3/2 ETA-PRODUCTS

CONNECTION WITH THE CLASS NUMBER

Theorem (GAUSS) If n is square-free, n > 3 and $n \equiv 3 \pmod{8}$, then we have $r_3(n) = 24h(-n)$,

where h(-n) is the class number of $\mathbb{Q}(\sqrt{-n})$.

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \Box THE HURWITZ CLASS NUMBER

The Hurwitz class number H(N):

(1) If
$$N \equiv 1, 2 \pmod{4}$$
 then $H(N) = 0$.

(2) If
$$N = 0$$
 then $H(0) = -1/12$.

(3) If N > 0, N ≡ 0,3 (mod 4), then H(N) is the class number of positive definite binary quadratic forms of discriminant -N, with those classes that contain a multiple of x² + y² or x² + xy + y² counted with weight 1/2 or 1/3, respectively.

D
 0
 3
 4
 7
 8
 11
 12
 15
 16
 19
 20

$$H(D)$$
 $-\frac{1}{12}$
 $\frac{1}{3}$
 $\frac{1}{2}$
 1
 1
 $\frac{4}{3}$
 2
 $\frac{3}{2}$
 1
 2

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex \Box THE HURWITZ CLASS NUMBER

The Hurwitz class number H(N):

(1) If
$$N \equiv 1, 2 \pmod{4}$$
 then $H(N) = 0$.

(2) If
$$N = 0$$
 then $H(0) = -1/12$.

(3) If N > 0, N ≡ 0,3 (mod 4), then H(N) is the class number of positive definite binary quadratic forms of discriminant -N, with those classes that contain a multiple of x² + y² or x² + xy + y² counted with weight 1/2 or 1/3, respectively.

D
 0
 3
 4
 7
 8
 11
 12
 15
 16
 19
 20

$$H(D)$$
 $-\frac{1}{12}$
 $\frac{1}{3}$
 $\frac{1}{2}$
 1
 1
 $\frac{4}{3}$
 2
 $\frac{3}{2}$
 1
 2

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex THE HURWITZ CLASS NUMBER

$$H(-D)=\frac{2h(D)}{\omega(D)},$$

where -D is a fundamental discriminant, h(D) is the class number of $\mathbb{Q}(\sqrt{D})$, $\omega(D)$ is the number of units in the ring of integers of $\mathbb{Q}(\sqrt{D})$. More generally,

$$H(n) = \frac{2h(D)}{\omega(D)} \sum_{d|f} \mu(d) \left(\frac{D}{d}\right) \sigma_1(f/d),$$

if $n = -Df^2$, μ is the Möbius function, and σ_1 is the divisor sum.

NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex THE HURWITZ CLASS NUMBER

$$H(-D)=\frac{2h(D)}{\omega(D)},$$

where -D is a fundamental discriminant, h(D) is the class number of $\mathbb{Q}(\sqrt{D})$, $\omega(D)$ is the number of units in the ring of integers of $\mathbb{Q}(\sqrt{D})$. More generally,

$$H(n) = \frac{2h(D)}{\omega(D)} \sum_{d|f} \mu(d) \left(\frac{D}{d}\right) \sigma_1(f/d),$$

if $n = -Df^2$, μ is the Möbius function, and σ_1 is the divisor sum.

PROPERTIES OF HURWITZ CLASS NUMBER when $n \equiv 3 \pmod{4}$ is square-free

$$H(n)=h(-n)=2^{t-1}k,$$

where t is the number of distinct prime factors of n and k is the number of classes in each genus of $\mathbb{Q}(\sqrt{-n})$.

$$\left(2-\binom{n}{2}\right)H(n)=\left(2-\binom{n}{2}\right)h(-n)=\sum_{r=1}^{(n-1)/2}\binom{r}{n}.$$

PROPERTIES OF HURWITZ CLASS NUMBER when $n \equiv 3 \pmod{4}$ is square-free

$$H(n)=h(-n)=2^{t-1}k,$$

where t is the number of distinct prime factors of n and k is the number of classes in each genus of $\mathbb{Q}(\sqrt{-n})$.

$$\left(2-\left(\frac{n}{2}\right)\right)H(n)=\left(2-\left(\frac{n}{2}\right)\right)h(-n)=\sum_{r=1}^{(n-1)/2}\left(\frac{r}{n}\right)$$

• H(n) is odd if and only if *n* is a prime,

PROPERTIES OF HURWITZ CLASS NUMBER when $n \equiv 3 \pmod{4}$ is square-free

$$H(n)=h(-n)=2^{t-1}k,$$

where t is the number of distinct prime factors of n and k is the number of classes in each genus of $\mathbb{Q}(\sqrt{-n})$.

$$\left(2-\left(\frac{n}{2}\right)\right)H(n)=\left(2-\left(\frac{n}{2}\right)\right)h(-n)=\sum_{r=1}^{(n-1)/2}\left(\frac{r}{n}\right).$$

H(n) is odd if and only if n is a prime,
 H(n) ≡ 2 (mod 4) if and only if n = p₁p₂ is a product of two primes which satisfy

$$\left(\frac{p_1}{p_2}\right) = -1.$$
 HASSSE (1970)

PROPERTIES OF HURWITZ CLASS NUMBER when $n \equiv 3 \pmod{4}$ **is square-free**

$$H(n)=h(-n)=2^{t-1}k,$$

where t is the number of distinct prime factors of n and k is the number of classes in each genus of $\mathbb{Q}(\sqrt{-n})$.

$$\left(2-\left(\frac{n}{2}\right)\right)H(n)=\left(2-\left(\frac{n}{2}\right)\right)h(-n)=\sum_{r=1}^{(n-1)/2}\left(\frac{r}{n}\right).$$

• H(n) is odd if and only if *n* is a prime,

H(n) ≡ 2 (mod 4) if and only if n = p₁p₂ is a product of two primes which satisfy

$$\left(\frac{p_1}{p_2}\right) = -1.$$
 HASSSE (1970)

HIRZEBRUCH AND ZAGIER (1976)
$$\mathcal{H}(\tau) := \sum_{n=0}^{\infty} H(n)q^n + \frac{1}{8\sqrt{2\pi i}} \int_{-\overline{\tau}}^{i\infty} \frac{\Theta(w)}{(-i(\tau+w))^{3/2}} \, dw \in H_{3/2}(\Gamma_0(4))$$

AHLGREN, BRINGMANN AND LOVEJOY (2011) For odd prime p

$$H(p^2n) + \left(\frac{-n}{p}\right)H(n) + pH(n/p^2) = (p+1)H(n),$$

for all $n \ge 0$.

HIRZEBRUCH AND ZAGIER (1976)
$$\mathcal{H}(\tau) := \sum_{n=0}^{\infty} H(n)q^n + \frac{1}{8\sqrt{2}\pi i} \int_{-\overline{\tau}}^{i\infty} \frac{\Theta(w)}{(-i(\tau+w))^{3/2}} dw \in H_{3/2}(\Gamma_0(4))$$

AHLGREN, BRINGMANN AND LOVEJOY (2011) For odd prime p

$$H(p^2n) + \left(\frac{-n}{p}\right)H(n) + pH(n/p^2) = (p+1)H(n),$$

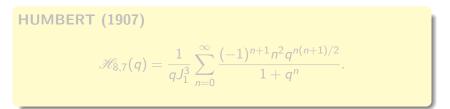
for all $n \ge 0$.

HURWITZ MOD 4 [CHEN AND G.] For $n \equiv 3 \pmod{4}$, 3H(n) is odd if and only if n has the form $n = p^{4a+1}m^2$. where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0.

HURWITZ MOD 4 [CHEN AND G.] For $n \equiv 3 \pmod{4}$, 3H(n) is odd if and only if n has the form $n = p^{4a+1}m^2$. where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. ▶ $3H(n) \equiv 2 \pmod{4}$ if and only if *n* has the form $n = p_1^{4a+1} p_2^{4b+1} m^2$. where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and a, b > 0 are integers.

Define

$$\mathscr{H}_{a,b}(q) := \sum_{n=0}^{\infty} H(an+b)q^n$$



where

$$J_k := (q^k; q^k)_{\infty} := \prod_{n=1}^{\infty} (1 - q^{kn}), \text{ and } (z; q)_{\infty} := \prod_{n=1}^{\infty} (1 - zq^{n-1}).$$

Define

$$\mathscr{H}_{a,b}(q) := \sum_{n=0}^{\infty} H(an+b)q^n$$

HUMBERT (1907)

$$\mathscr{H}_{8,7}(q) = rac{1}{qJ_1^3} \sum_{n=0}^{\infty} rac{(-1)^{n+1} n^2 q^{n(n+1)/2}}{1+q^n}$$

where

$$J_k := (q^k; q^k)_{\infty} := \prod_{n=1}^{\infty} (1 - q^{kn}), \text{ and } (z; q)_{\infty} := \prod_{n=1}^{\infty} (1 - zq^{n-1}).$$

Define

$$\mathscr{H}_{a,b}(q) := \sum_{n=0}^{\infty} H(an+b)q^n$$

HUMBERT (1907) $\mathscr{H}_{8,7}(q) = rac{1}{qJ_1^3} \sum_{n=0}^\infty rac{(-1)^{n+1}n^2q^{n(n+1)/2}}{1+q^n}.$

where

$$J_k := (q^k; q^k)_\infty := \prod_{n=1}^\infty (1 - q^{kn}), \text{ and } (z; q)_\infty := \prod_{n=1}^\infty (1 - zq^{n-1}).$$

Define

$$\mathscr{H}_{a,b}(q) := \sum_{n=0}^{\infty} H(an+b)q^n$$

HUMBERT (1907) $\mathscr{H}_{8,7}(q) = \frac{1}{qJ_1^3} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}n^2 q^{n(n+1)/2}}{1+q^n}.$

where

$$J_k := (q^k; q^k)_\infty := \prod_{n=1}^\infty (1-q^{kn}), \text{ and } (z; q)_\infty := \prod_{n=1}^\infty (1-zq^{n-1}).$$

ELEMENTARY CONGRUENCES

$$\frac{J_1^2}{J_2} = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \equiv 1 \pmod{2},$$

$$egin{array}{lll} rac{J_2^5}{J_4^2 J_1^2} &= 1+2\sum_{n=1}^\infty q^{n^2} \equiv 1 \pmod{2}, \\ & ext{and} \quad rac{J_1^4}{J_2^2} \equiv 1 \pmod{4}. \end{array}$$

LEMMA

$$N_A(n) \equiv (-1)^{n+1} H(8n-1) \pmod{4}.$$

PROOF: RAMANUJAN

$$A(q) = q \frac{(-q; q^2)_{\infty}}{(q^2; q^2)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^n q^{2n^2+3n}}{1-q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) = \frac{1}{qJ_1^3} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} n^2 q^{n(n+1)/2}}{1+q^n}$$

$$\frac{A(-q)}{-q} = \frac{J_1}{J_2^2} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) \equiv \frac{1}{J_1^3} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}} \pmod{4}$$

LEMMA

$$N_A(n) \equiv (-1)^{n+1} H(8n-1) \pmod{4}.$$

PROOF: RAMANUJAN

$$A(q) = q \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^n q^{2n^2+3n}}{1-q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) = \frac{1}{qJ_1^3} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} n^2 q^{n(n+1)/2}}{1+q^n}$$

$$\frac{A(-q)}{-q} = \frac{J_1}{J_2^2} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) \equiv \frac{1}{J_1^3} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}} \pmod{4}$$

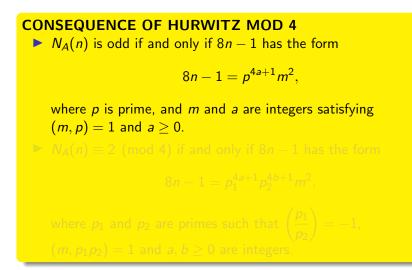
LEMMA

$$N_A(n) \equiv (-1)^{n+1} H(8n-1) \pmod{4}.$$

PROOF: RAMANUJAN

$$A(q) = q \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^n q^{2n^2+3n}}{1-q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) = \frac{1}{qJ_1^3} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} n^2 q^{n(n+1)/2}}{1+q^n}$$

$$\frac{\mathcal{A}(-q)}{-q} = \frac{J_1}{J_2^2} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}}, \quad \mathscr{H}_{8,7}(q) \equiv \frac{1}{J_1^3} \sum_{n=0}^{\infty} \frac{q^{2n^2+3n}}{1+q^{2n+1}} \pmod{4}$$



CONSEQUENCE OF HURWITZ MOD 4 \triangleright $N_A(n)$ is odd if and only if 8n - 1 has the form $8n-1=p^{4a+1}m^2$. where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. ▶ $N_A(n) \equiv 2 \pmod{4}$ if and only if 8n - 1 has the form $8n-1=p_1^{4a+1}p_2^{4b+1}m^2$ where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and a, b > 0 are integers.

CONSEQUENCE OF HURWITZ MOD 4 \triangleright $N_A(n)$ is odd if and only if 8n - 1 has the form $8n-1=p^{4a+1}m^2$. where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. ▶ $N_A(n) \equiv 2 \pmod{4}$ if and only if 8n - 1 has the form $8n-1=p_1^{4a+1}p_2^{4b+1}m^2$ where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and a, b > 0 are integers.

CONSEQUENCE OF HURWITZ MOD 4 \triangleright $N_A(n)$ is odd if and only if 8n - 1 has the form $8n-1=p^{4a+1}m^2$. where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. ▶ $N_A(n) \equiv 2 \pmod{4}$ if and only if 8n - 1 has the form $8n-1=p_1^{4a+1}p_2^{4b+1}m^2$ where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and a, b > 0 are integers.

COMPLETING THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then

$$N_A(p^2n + (pk+1)\delta_p) \equiv 0 \pmod{4}.$$

Let $m = p^2 n + (pk + 1)\delta_p$, where $8\delta_p \equiv 1 \pmod{p^2}$.

 $8m-1 \equiv pk \pmod{p^2},$

 $p \| 8m - 1$. CONSEQUENCE OF HURWITZ MOD $4 \Rightarrow N_A(m)$ is even.

COMPLETING THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then

$$N_A(p^2n + (pk+1)\delta_p) \equiv 0 \pmod{4}.$$

Let $m = p^2 n + (pk + 1)\delta_p$, where $8\delta_p \equiv 1 \pmod{p^2}$.

$$8m-1 \equiv pk \pmod{p^2},$$

p || 8m - 1. CONSEQUENCE OF HURWITZ MOD $4 \Rightarrow N_A(m)$ is even.

COMPLETING THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then

$$N_A(p^2n + (pk+1)\delta_p) \equiv 0 \pmod{4}.$$

Let $m = p^2 n + (pk + 1)\delta_p$, where $8\delta_p \equiv 1 \pmod{p^2}$.

$$8m-1 \equiv pk \pmod{p^2},$$

 $p \| 8m - 1$. CONSEQUENCE OF HURWITZ MOD $4 \Rightarrow N_A(m)$ is even.

COMPLETING THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then

$$N_A(p^2n + (pk+1)\delta_p) \equiv 0 \pmod{4}.$$

Let $m = p^2 n + (pk + 1)\delta_p$, where $8\delta_p \equiv 1 \pmod{p^2}$.

$$8m-1 \equiv pk \pmod{p^2},$$

p || 8m - 1. CONSEQUENCE OF HURWITZ MOD $4 \Rightarrow N_A(m)$ is even.

COMPLETING THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 2 (2016) Let $p \not\equiv 7 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then

$$N_A(p^2n + (pk+1)\delta_p) \equiv 0 \pmod{4}.$$

Let $m = p^2 n + (pk + 1)\delta_p$, where $8\delta_p \equiv 1 \pmod{p^2}$.

$$8m-1 \equiv pk \pmod{p^2},$$

p || 8m - 1. CONSEQUENCE OF HURWITZ MOD 4 $\Rightarrow N_A(m)$ is even.

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p}$, where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers.

Suppose $N_A(m) \equiv 2 \pmod{4}$. **CONSEQUENCE OF HURWITZ MOD 4** \Rightarrow $8m - 1 = p^1 q^{4b+1} t^2$, and $k \equiv q^{4b+1} t^2 \pmod{p}$, where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8}$

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p}$, where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers.

 $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1 q^{4b+1} t^2$, and $k \equiv q^{4b+1} t^2 \pmod{p}$, where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$ $\Rightarrow \left(\frac{p}{q}\right) = \left(\frac{p}{q}\right) = -1$

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p},$

where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$ $\Rightarrow \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) = -1 \Rightarrow$ But

$$\left(\frac{q}{p}\right) = \left(\frac{q^{4b+1}t^2}{p}\right) = \left(\frac{k}{p}\right) = 1,$$

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p},$

where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$ $\Rightarrow \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) = -1 \Rightarrow$ But

$$\left(\frac{q}{p}\right) = \left(\frac{q^{10+1}t^2}{p}\right) = \left(\frac{k}{p}\right) = 1,$$

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p},$

where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$ $\Rightarrow \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) = -1 \Rightarrow$ But

$$\left(\frac{q}{p}\right) = \left(\frac{q^{12+1}t^2}{p}\right) = \left(\frac{k}{p}\right) = 1,$$

 \times

Suppose $N_A(m) \equiv 2 \pmod{4}$. CONSEQUENCE OF HURWITZ MOD 4 \Rightarrow

 $8m-1 = p^1q^{4b+1}t^2$, and $k \equiv q^{4b+1}t^2 \pmod{p},$

where q is a prime satisfying $\left(\frac{p}{q}\right) = -1$, (pq, t) = 1, and $b \ge 0$, t > 0 are integers. $pq \equiv -1 \pmod{8} \Rightarrow$ either p or $q \equiv 1 \pmod{4}$ $\Rightarrow \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) = -1 \Rightarrow$ But

$$\left(\frac{q}{p}\right) = \left(\frac{q^{1+1}l^2}{p}\right) = \left(\frac{k}{p}\right) = 1,$$

 \times

SKETCH OF THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 1 (2016) Let $p \not\equiv \pm 1 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then $v(p^2n + (pk - 7)\delta_p) \equiv 0 \pmod{4}$.

We need some HECKE-ROGERS SERIES

SKETCH OF THE PROOF OF KIM, LIM AND LOVEJOY'S CONJECTURE 1 (2016) Let $p \not\equiv \pm 1 \pmod{8}$ be an odd prime, suppose $8\delta_p \equiv 1 \pmod{p^2}$ and $k, n \in \mathbb{Z}$ where $\left(\frac{k}{p}\right) = 1$. Then $v(p^2n + (pk - 7)\delta_p) \equiv 0 \pmod{4}$.

We need some HECKE-ROGERS SERIES

HECKE-ROGERS SERIES has the form

 $\sum (\pm 1)^{f(n,m)} q^{Q(n,m)+L(n,m)}$

HECKE-ROGERS SERIES has the form

(

$$\sum_{n,m)\in D} (\pm 1)^{f(n,m)} q^{Q(n,m)+L(n,m)}$$

where Q is an indefinite binary quadratic form, L is a linear form and D is a subset of \mathbb{Z}^2 for which $Q(n, m) \ge 0$.

HECKE-ROGERS SERIES has the form

(

$$\sum_{n,m)\in D} (\pm 1)^{f(n,m)} q^{Q(n,m)+L(n,m)}$$

where Q is an indefinite binary quadratic form, L is a linear form and D is a subset of \mathbb{Z}^2 for which $Q(n, m) \ge 0$.

EXAMPLE

$$\prod_{n=1}^{\infty} (1-q^n)^2 = \sum_{n=-\infty}^{\infty} \sum_{m=-\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} (-1)^{n+m} q^{(n^2-3m^2)/2 + (n+m)/2}$$

HECKE (1954) ROGERS (1894) (Виктор Кац) KAC and PETERSON (1980) ANDREWS (1984)

EXAMPLE

$$\prod_{n=1}^{\infty} (1-q^n)^2 = \sum_{n=-\infty}^{\infty} \sum_{m=-\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} (-1)^{n+m} q^{(n^2-3m^2)/2 + (n+m)/2}$$

HECKE (1954) ROGERS (1894) (Виктор Кац) KAC and PETERSON (1980) ANDREWS (1984)

MORTENSON (2014)

$$\left(1+\frac{1}{z}\right)\mathcal{V}(z,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}}\sum_{n=0}^{\infty}\sum_{r=0}^{n}(-1)^{n+r}(z^{r}+z^{-r-1})q^{n^{2}+2n-r(r+1)/2}.$$

$$\sum_{n=0}^{\infty} v(n)q^n = \mathcal{V}(1,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r} q^{n^2 + 2n - r(r+1)/2},$$

MORTENSON (2014)

 \Rightarrow

$$\left(1+\frac{1}{z}\right)\mathcal{V}(z,q)=\frac{(-q;q)_{\infty}}{(q;q)_{\infty}}\sum_{n=0}^{\infty}\sum_{r=0}^{n}(-1)^{n+r}(z^{r}+z^{-r-1})q^{n^{2}+2n-r(r+1)/2}.$$

$$\sum_{n=0}^{\infty} v(n)q^n = \mathcal{V}(1,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r} q^{n^2 + 2n - r(r+1)/2}$$

$$\frac{A(q)}{q} = \mathcal{V}(i,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r+r(r+1)/2} q^{n^2+2n-r(r+1)/2},$$

MORTENSON (2014)

$$\left(1+\frac{1}{z}\right)\mathcal{V}(z,q)=\frac{(-q;q)_{\infty}}{(q;q)_{\infty}}\sum_{n=0}^{\infty}\sum_{r=0}^{n}(-1)^{n+r}(z^{r}+z^{-r-1})q^{n^{2}+2n-r(r+1)/2}.$$

$$\Rightarrow$$

$$\sum_{n=0}^{\infty} v(n)q^n = \mathcal{V}(1,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r} q^{n^2 + 2n - r(r+1)/2},$$

$$\frac{A(q)}{q} = \mathcal{V}(i,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r+r(r+1)/2} q^{n^2+2n-r(r+1)/2},$$

 $v(n) \equiv N_A(n+1) \pmod{2}$

MORTENSON (2014)

$$\left(1+\frac{1}{z}\right)\mathcal{V}(z,q)=\frac{(-q;q)_{\infty}}{(q;q)_{\infty}}\sum_{n=0}^{\infty}\sum_{r=0}^{n}(-1)^{n+r}(z^{r}+z^{-r-1})q^{n^{2}+2n-r(r+1)/2}.$$

$$\Rightarrow$$

$$\sum_{n=0}^{\infty} v(n)q^n = \mathcal{V}(1,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r} q^{n^2 + 2n - r(r+1)/2},$$

$$\frac{A(q)}{q} = \mathcal{V}(i,q) = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^{n+r+r(r+1)/2} q^{n^2+2n-r(r+1)/2},$$

 $v(n) \equiv N_A(n+1) \pmod{2}$

$$\sum_{n=0}^{\infty} (v(n) - N_A(n+1))q^n \equiv 2\sum_{n=0}^{\infty} \sum_{r=0}^n (-1)^{n+r} \epsilon(r)q^{n^2 + 2n - r(r+1)/2} \pmod{4}$$

NOW let $m = p^2 n + (pk + 1)\delta_p$, where $p \not\equiv \pm 1 \pmod{8}$ is an odd prime, $8\delta_p \equiv 1 \pmod{p^2}$ and $\binom{k}{p} = 1$

We define

$$D_v(q):=\sum_{n=0}^\infty d_v(n)q^n:=\sum_{m=0}^\infty \sum_{r=0}^m q^{m^2+2m-r(r+1)/2}.$$

lemdv

Lemma 4.2. If $p \equiv 3, 5 \pmod{8}$ is prime and $p \| 8n + 7$ then $d_v(n) = 0$.

Proof. Suppose that $p \equiv 3, 5 \pmod{8}$ is prime and $p \|8n+7$. Suppose by way of contradiction that $d_v(n) \neq 0$. Then

$$8n + 7 = 8(m^2 + 2m - r(r+1)/2) + 7 = 8(m+1)^2 - (2r+1)^2,$$

for some integers $m \ge 0$ and $0 \le r \le m$. Since $p \mid 8n + 7$ this implies

 $8(m+1)^2 \equiv (2r+1)^2 \pmod{p}.$

Since $p \equiv 3, 5 \pmod{p}$, $\left(\frac{8}{p}\right) = -1$ and $(m+1) \equiv (2r+1) \equiv 0 \pmod{p}$. But this implies $p^2 \mid 8n+7$, which contradicts $p \mid 8n+7$. We conclude that $d_v(n) = 0$.

$$\sum_{n=0}^{\infty} (v(n) - N_A(n+1))q^n \equiv 2 \sum_{n=0}^{\infty} \sum_{r=0}^n (-1)^{n+r} \epsilon(r) q^{n^2+2n-r(r+1)/2} \pmod{4}$$

NOW let $m = p^2 n + (pk+1)\delta_p$, where $p \not\equiv \pm 1 \pmod{8}$ is an odd
prime, $8\delta_p \equiv 1 \pmod{p^2}$ and $\left(\frac{k}{p}\right) = 1$

We define

$$D_v(q):=\sum_{n=0}^\infty d_v(n)q^n:=\sum_{m=0}^\infty \sum_{r=0}^m q^{m^2+2m-r(r+1)/2}.$$

lemdv

Lemma 4.2. If $p \equiv 3, 5 \pmod{8}$ is prime and $p \| 8n + 7$ then $d_v(n) = 0$.

Proof. Suppose that $p \equiv 3, 5 \pmod{8}$ is prime and $p \|8n+7$. Suppose by way of contradiction that $d_v(n) \neq 0$. Then

$$8n + 7 = 8(m^2 + 2m - r(r+1)/2) + 7 = 8(m+1)^2 - (2r+1)^2,$$

for some integers $m \ge 0$ and $0 \le r \le m$. Since $p \mid 8n + 7$ this implies

 $8(m+1)^2 \equiv (2r+1)^2 \pmod{p}.$

Since $p \equiv 3,5 \pmod{8}$, $\left(\frac{8}{p}\right) = -1$ and $(m+1) \equiv (2r+1) \equiv 0 \pmod{p}$. But this implies $p^2 \mid 8n+7$, which contradicts $p \mid 8n+7$. We conclude that $d_v(n) = 0$.

THEN

$N_A(m+1) \equiv v(m) \pmod{4}$

THIS COMPLETES THE PROOF OF LIM, KIM AND LOVEJOYS MOD 4 CONJECTURES FOR ODD-BALANCE UNIMODAL SEQUENCES

THEN

$N_A(m+1) \equiv v(m) \pmod{4}$

THIS COMPLETES THE PROOF OF LIM, KIM AND LOVEJOYS MOD 4 CONJECTURES FOR ODD-BALANCE UNIMODAL SEQUENCES

- Berndt-Chan-Ramanujan's sixth order mock theta function \$\phi_-(q)\$
- Ramanujan's third order mock theta function $\psi(q)$

- Berndt-Chan-Ramanujan's sixth order mock theta function \$\phi_-(q)\$
- Ramanujan's third order mock theta function $\psi(q)$
- And rews spt-function, and And rews-Dyson-Hickerson $S^*(n)$

- Berndt-Chan-Ramanujan's sixth order mock theta function \$\phi_-(q)\$
- Ramanujan's third order mock theta function $\psi(q)$
- Andrews spt-function, and Andrews-Dyson-Hickerson $S^*(n)$
- More Hecke-Rogers series

- Berndt-Chan-Ramanujan's sixth order mock theta function \$\phi_-(q)\$
- Ramanujan's third order mock theta function $\psi(q)$
- And rews spt-function, and And rews-Dyson-Hickerson $S^*(n)$
- More Hecke-Rogers series
- Of course the Hurwitz class number function

- Berndt-Chan-Ramanujan's sixth order mock theta function \$\phi_-(q)\$
- Ramanujan's third order mock theta function $\psi(q)$
- And rews spt-function, and And rews-Dyson-Hickerson $S^*(n)$
- More Hecke-Rogers series
- Of course the Hurwitz class number function

BERNDT AND CHAN (2007)

$$\phi_{-}(q) = \sum_{n=1}^{\infty} N_{\phi_{-}}(n) q^{n} := \sum_{n=1}^{\infty} \frac{q^{n}(-q;q)_{2n-1}}{(q;q^{2})_{n}}$$

ATKIN U_p operator:

$$f(q) = \sum_{n \in \mathbb{Z}} a(n)q^n,$$

by

$$U_p(f(q)) = \sum_{n \in \mathbb{Z}} a(pn)q^n.$$

BERNDT AND CHAN (2007)

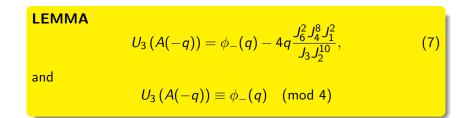
$$\phi_{-}(q) = \sum_{n=1}^{\infty} N_{\phi_{-}}(n) q^{n} := \sum_{n=1}^{\infty} \frac{q^{n}(-q;q)_{2n-1}}{(q;q^{2})_{n}}$$

ATKIN U_p operator:

$$f(q) = \sum_{n \in \mathbb{Z}} a(n)q^n,$$

by

$$U_p(f(q)) = \sum_{n \in \mathbb{Z}} a(pn)q^n.$$



LEMMA

$$N_{\phi_-}(n) \equiv -H(24n-1) \pmod{4}$$

LEMMA

$$U_{3}(A(-q)) = \phi_{-}(q) - 4q \frac{J_{6}^{2} J_{4}^{8} J_{1}^{2}}{J_{3} J_{2}^{10}},$$
(7)
and
$$U_{3}(A(-q)) \equiv \phi_{-}(q) \pmod{4}$$

∜

LEMMA

$$N_{\phi_-}(n) \equiv -H(24n-1) \pmod{4}$$

LEMMA

$$U_{3}(A(-q)) = \phi_{-}(q) - 4q \frac{J_{6}^{2} J_{4}^{8} J_{1}^{2}}{J_{3} J_{2}^{10}},$$
(7)
and
$$U_{3}(A(-q)) \equiv \phi_{-}(q) \pmod{4}$$

₩

LEMMA

$$N_{\phi_-}(n) \equiv -H(24n-1) \pmod{4}$$

THEOREM \triangleright N_{ϕ} (n) is odd if and only if 24n - 1 has the form $24n - 1 = p^{4a+1}m^2$ where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0.

THEOREM \triangleright N_{ϕ} (n) is odd if and only if 24n - 1 has the form $24n - 1 = p^{4a+1}m^2$ where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. \triangleright N_{ϕ} $(n) \equiv 2 \pmod{4}$ if and only if 24n - 1 has the form $24n-1=p_1^{4a+1}p_2^{4b+1}m^2$. where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and $a, b \ge 0$ are integers.

THEOREM \triangleright N_{ϕ} (n) is odd if and only if 24n - 1 has the form $24n - 1 = p^{4a+1}m^2$ where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. \triangleright N_{ϕ} $(n) \equiv 2 \pmod{4}$ if and only if 24n - 1 has the form $24n-1=p_1^{4a+1}p_2^{4b+1}m^2$. where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and $a, b \ge 0$ are integers.

THEOREM \triangleright N_{ϕ} (n) is odd if and only if 24n - 1 has the form $24n - 1 = p^{4a+1}m^2$ where p is prime, and m and a are integers satisfying (m, p) = 1 and a > 0. \triangleright N_{ϕ} $(n) \equiv 2 \pmod{4}$ if and only if 24n - 1 has the form $24n-1=p_1^{4a+1}p_2^{4b+1}m^2$. where p_1 and p_2 are primes such that $\left(\frac{p_1}{p_2}\right) = -1$, $(m, p_1 p_2) = 1$ and $a, b \ge 0$ are integers. WANG (2020)

RAMANUJAN'S THIRD ORDER MOCK THETA FUNCTION $\psi(q)$

$$\mathcal{U}(\pm i; q) = \psi(q) = \sum_{n=1}^{\infty} N_{\psi}(n) q^n = \sum_{n=1}^{\infty} \frac{q^{n^2}}{(q; q^2)_n}$$

THEOREM [ANDREWS, G. AND LIANG (2013)] For each n > 0, $N_{\psi}(n)$ is odd if and only if

$$24n - 1 = p^{4a + 1}m^2,$$

for some prime p, and some integers a, m satisfying (m, p) = 1and $a \ge 0$.

RAMANUJAN'S THIRD ORDER MOCK THETA FUNCTION $\psi(q)$

$$\mathcal{U}(\pm i; q) = \psi(q) = \sum_{n=1}^{\infty} N_{\psi}(n) q^n = \sum_{n=1}^{\infty} \frac{q^{n^2}}{(q; q^2)_n}$$

THEOREM [ANDREWS, G. AND LIANG (2013)] For each n > 0, $N_{\psi}(n)$ is odd if and only if

$$24n - 1 = p^{4a+1}m^2,$$

for some prime p, and some integers a, m satisfying (m, p) = 1and $a \ge 0$.

MORE HECKE-ROGERS SERIES

$$\frac{J_1^2}{J_2}\phi_-(q) = \sum_{n=1}^{\infty}\sum_{m=1-n}^n (-1)^{n-1}q^{n(3n-1)-2m^2+m}(1-q^{2n})$$

$$\frac{J_1^2}{J_2}\psi(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^{m-1} q^{n(3n-1)-2m^2+m} (1-q^{2n})$$

MORE HECKE-ROGERS SERIES

$$\frac{J_1^2}{J_2}\phi_-(q) = \sum_{n=1}^{\infty}\sum_{m=1-n}^n (-1)^{n-1}q^{n(3n-1)-2m^2+m}(1-q^{2n})$$

$$\frac{J_1^2}{J_2}\psi(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^{n} (-1)^{m-1} q^{n(3n-1)-2m^2+m} (1-q^{2n})$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n q^{n^2}}{(q;q^2)_n} = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^n q^{n(3n-1)-2m^2+m} (1+q^{2n})$$

MORE HECKE-ROGERS SERIES

$$\frac{J_1^2}{J_2}\phi_-(q) = \sum_{n=1}^{\infty}\sum_{m=1-n}^n (-1)^{n-1}q^{n(3n-1)-2m^2+m}(1-q^{2n})$$

$$\frac{J_1^2}{J_2}\psi(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^{m-1} q^{n(3n-1)-2m^2+m} (1-q^{2n})$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n q^{n^2}}{(q;q^2)_n} = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^n q^{n(3n-1)-2m^2+m)} (1+q^{2n})$$

$$\frac{J_1^2}{J_2}U(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^n \operatorname{sg}(m)(-1)^{n-1}q^{n(3n-1)-2m^2+m}(1+q^{2n})$$

where $s\sigma(m) = 1$ if m > 0 and $s\sigma(m) = -1$ otherwise

65 / 70

MORE HECKE-ROGERS SERIES

$$\frac{J_1^2}{J_2}\phi_-(q) = \sum_{n=1}^{\infty}\sum_{m=1-n}^n (-1)^{n-1}q^{n(3n-1)-2m^2+m}(1-q^{2n})$$

$$\frac{J_1^2}{J_2}\psi(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^{m-1} q^{n(3n-1)-2m^2+m} (1-q^{2n})$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n q^{n^2}}{(q;q^2)_n} = \sum_{n=1}^{\infty} \sum_{m=1-n}^n (-1)^n q^{n(3n-1)-2m^2+m)} (1+q^{2n})$$

$$\frac{J_1^2}{J_2}U(q) = \sum_{n=1}^{\infty} \sum_{m=1-n}^n \operatorname{sg}(m)(-1)^{n-1}q^{n(3n-1)-2m^2+m}(1+q^{2n})$$

where sg(m) = 1 if m > 0 and sg(m) = -1 otherwise

THEOREM [G. (2013)] If
$$\ell \ge 5$$
 is prime then
 $N_{\psi}(\ell^2 n - s_{\ell}) + (-1)^{s_{\ell}} \left(\frac{3}{\ell}\right) \left(\frac{1 - 24n}{\ell}\right) N_{\psi}(n) + \ell N_{\psi} \left(\frac{n + s_{\ell}}{\ell^2}\right)$

$$\equiv (-1)^{s_{\ell}} \left(\frac{3}{\ell}\right) (1 + \ell) N_{\psi}(n) \pmod{4}.$$

THEOREM For n > 0 be an integer, $N_{\psi}(n) \equiv 2 \pmod{4}$ if and only if 24n - 1 has the form

$$24n - 1 = p_1^{4a+1} p_2^{4b+1} m^2,$$

where p_1 and p_2 are primes such that $\binom{p_1}{p_2} = -\varepsilon(p_2)$ for $\varepsilon(p) = -1$ if $p \equiv \pm 5 \pmod{24}$ and $\varepsilon(p) = 1$ otherwise, $(m, p_1 p_2) = 1$ and $a, b \ge 0$ are integers.

THEOREM Let p > 3 be a prime where $p \not\equiv 23 \pmod{24}$. Suppose $24\delta_p \equiv 1 \pmod{p^2}$, $k, n \in \mathbb{Z}$ and $\binom{k}{p} = \varepsilon(p)$ where $\varepsilon(p) = -1$ if $p \equiv \pm 5 \pmod{24}$ and $\varepsilon(p) = 1$ otherwise. Then $N_{\psi}(p^2n + (pk + 1)\delta_p) \equiv 0 \pmod{4}$, (8) $\operatorname{spt}(p^2n + (pk + 1)\delta_p) \equiv 0 \pmod{4}$. (9) NSF/CBMS Research Conference Ramanujan's Ranks, Mock Theta Functions, and Beyond May 16-20, 2022 The University of Tex — REFERENCES

REFERENCES

- George E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008), 133–142.
- George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook. Part I, Springer, New York, 2005.
- George E. Andrews, Freeman J. Dyson, and Dean Hickerson, *Partitions and indefinite quadratic forms*, Invent. Math. 91 (1988), no. 3, 391–407.
- R. Chen and F. G. Garvan., Congruences modulo 4 for weight 3/2 eta-products, Bull. Austral. Math. Soc., doi:10.1017/S0004972720000982, to appear.
- G. Humbert, Formules relatives aux nombres de classes des formes quadratiques binaires et positives, Journ. de Math. (6) 3 (1907), 337–449 (French).

- Eric T. Mortenson, On the dual nature of partial theta functions and Appell-Lerch sums, Adv. Math. 264 (2014), 236–260.
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988, With an introduction by George E. Andrews.