Deep Learning and Numerical PDEs Finite Neuron Method

Jinchao Xu

KAUST and Penn State

xu@multigrid.org

Morgan State University, June 22, 2023

CBMS Lecture Series

NSF DMS-2111387, KAUST Baseline Research Fund

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

7 Summary

A Model PDE

Given $\Omega \subset \mathbb{R}^d$, consider a 2*m*-th order elliptic problems

$$\sum_{\alpha|=m} (-1)^m \partial^{\alpha} (a_{\alpha}(x) \partial^{\alpha} u) + u = f \quad \text{in } \Omega.$$
(1)

Special cases:

$$-\Delta u = f$$
 (*m* = 1), $\Delta^2 u = f$ (*m* = 2).

The Dirichlet boundary condition for the 2m-th order elliptic problems are

$$B_D^k(u) = 0 \text{ on } \partial\Omega, \quad (0 \le k \le m-1),$$

where B_D^k are given by the following Dirichlet type trace operators

$$B_D^k(u) := \left. \frac{\partial^k u}{\partial \nu^k} \right|_{\partial \Omega} \quad (0 \le k \le m - 1).$$
(2)

Dirichlet vs Neumann boundary condition

Lemma

For each k = 0, 1, ..., m - 1, there exists a bounded linear differential operator of order 2m - k - 1:

$$B_N^k: H^{2m}(\Omega) \mapsto L^2(\partial\Omega)$$
 (3)

such that the following identity holds

$$\sum_{|\alpha|=m} (-1)^m \left(\partial^{\alpha} (a_{\alpha} \,\partial^{\alpha} \, u), \, v\right)_{0,\Omega} = \sum_{|\alpha|=m} (a_{\alpha} \partial^{\alpha} \, u, \partial^{\alpha} v)_{0,\Omega} - \sum_{k=0}^{m-1} \langle B_N^k(u), B_D^k(v) \rangle_{0,\partial\Omega}$$
(4)

for all $u \in H^{2m}(\Omega)$, $v \in H^m(\Omega)$. Furthermore,

$$\sum_{k=0}^{m-1} \|B_D^k(u)\|_{L^2(\partial\Omega)} + \sum_{k=0}^{m-1} \|B_N^k(u)\|_{L^2(\partial\Omega)} \lesssim \|u\|_{2m,\Omega}.$$
 (5)

Neumann problem: Consider

$$\left(\sum_{|\alpha|=m} (-1)^m \partial^\alpha (a_\alpha(x) \partial^\alpha u) + u = f \quad \text{in } \Omega, \\ B_N^k(u) = 0 \quad \text{on } \partial\Omega, \quad 0 \le k \le m - 1. \right)$$
(6)

Dirichlet and Neumann problems

• Find
$$u \in V$$
 such that

$$J(u) = \min_{v \in V} J(v)$$

where

$$J(v) = \frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha} |\partial^{\alpha} v|^2 + v^2 dx - \int_{\Omega} f v dx.$$
 (8)

Then

$$V = \begin{cases} H^m(\Omega) & \iff \text{Neumann problem} \\ H^m_0(\Omega) & \iff \text{Dirichlet problem} \end{cases}$$

(7)

Model problem

- Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

7 Summary

Shallow Neural Networks

A shallow neural network function: with *n* neurons

$$f(x) = \sum_{i=1}^{n} a_i \sigma(\omega_i \cdot x + b_i)$$

Common activation functions: •

$$\bullet \text{ Heaviside } \sigma = \begin{cases} 0 & x \leq 0 \\ 1 & x > 0 \end{cases}$$

- Sigmoidal σ = (1 + e^{-x})⁻¹
 Rectified Linear with σ = max(0, x)
 Power of a ReLU σ = [max(0, x)]^k
- Cosine $\sigma = \cos(x)$

(9)

Approximation properties

General Shallow neural network

$$\Sigma_n^{\sigma} = \left\{ \sum_{i=1}^n a_i \sigma(\omega_i \cdot x + b_i) : \omega_i \in \mathbb{R}^d, a_i, b_i \in \mathbb{R} \right\}.$$

Preliminary approximation results

$$\inf_{u_n\in\Sigma_n^{\sigma}}\|u-u_n\|_{L^2(\Omega)}=\mathcal{O}\left(n^{-\frac{1}{2}}\right)$$

(Jones 1992, Barron 1993, Hornik et al 1994, ...)

ReLU^k (Klusowski & Barron 2016, Xu 2020): For k > m

$$\inf_{u_n\in\Sigma_n^k}\|u-u_n\|_{H^m(\Omega)}=\mathcal{O}(n^{-\frac{1}{2}-\frac{1}{d}})$$

General activation (Siegel & Xu 2020):

If $\sigma \in W^{m,\infty}(\mathbb{R}), |\sigma^{(k)}(s)| \leq C(1+|s|)^{-p}, 0 \leq k \leq m+1.$

$$\inf_{u_n\in\Sigma_n^{\sigma}}\|u-u_n\|_{H^m(\Omega)}=\mathcal{O}\left(n^{-\frac{1}{2}-\frac{t}{(2+t)(d+1)}}\right)\quad t=\min(p-1,\epsilon).$$

Application of ReLU^k-DNN for high order PDE in any dimension

Finite neuron method: We take

$$V_n = \Sigma_n^{\sigma} \subset H^m(\Omega)$$

Neumann Problem: We define DNN-Galerkin approximation $u_n \in V_n$ as follows:

$$J(u_n) = \min_{v \in V_n} J(v).$$
(10)

Theorem (Xu, 2020)

Let $u \in V$ and $u_n \in V_n$ be solutions to (7) with $V = H^m(\Omega)$ and (10) respectively. Then

$$\|u - u_n\|_a = \inf_{v_n \in V_n} \|u - v_n\|_a.$$
 (11)

Error estimates for NN-PDE

For Neumann boundary condition,

$$\|u-u_n\|_{m,\Omega}\lesssim \inf_{v_n\in V_n}\|u-v_n\|_{m,\Omega}=\mathcal{O}(n^{-\frac{1}{2}-\alpha})$$

For Dirichlet problem, similar but less sharp estimates hold.

Issues:

• Discretization of the integral in J(v), i.e. how do we evaluate

$$\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha} |\partial^{\alpha} v|^2 + v^2 dx - \int_{\Omega} f v dx?$$
(12)

How to analyze the convergence when numerical quadratures are used?
 Convergence analysis when numerical quadratures are used? Existing works:

- M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen, and P. Wurstemberger, 2020;
- T. Luo and H. Yang, 2020;
- S. Mishra and T. K. Rusch, 2020; S. Mishra and R. Molinaro, 2020;
- J. Müller and M. Zeinhofer, 2020;
- Y. Shin, Z. Zhang, and G.E. Karniadakis, 2020;
- S. Lanthaler, S. Mishra, G.E. Karniadakis, 2021;
- J. Lu, Y. Lu and M. Wang, 2021;
- H. Son, J. Jang, W. Han, and H. J. Hwang, 2021;

Numerical Quadratures

Given NN:

$$\Sigma_n^k = \bigg\{ \sum_{i=1}^n a_i \sigma_k(\omega_i \cdot x + b_i) : \omega_i \in \mathbb{R}^d, a_i, b_i \in \mathbb{R} \bigg\}.$$

Numerical Quadrature:

$$\int_{\Omega} g(x) dx \approx |\Omega| \sum_{i=1}^{N} w_i g(x_i)$$
(13)

Consider

$$J(u) = \min J(v), \quad J_N(u_{n,N}) = \min J_N(v_n),$$

where $J_N(v)$ is computed by deterministic numerical quadrature

$$J_N(v) = \sum_{i=1}^N w_i \left(\frac{1}{2} \sum_{|\alpha|=m} a_\alpha(x_i) (\partial^\alpha v(x_i))^2 + \frac{1}{2} a_0(x_i) (v(x_i))^2 - f(x_i) v(x_i) \right)$$
(14)

or by sampling

$$J_{N}(v) = \frac{1}{2N} \sum_{i=1}^{N} \sum_{|\alpha|=m} a_{\alpha}(x_{i}) (\partial^{\alpha} v(x_{i}))^{2} + \frac{1}{2N} \sum_{i=1}^{N} a_{0}(x_{i}) v(x_{i})^{2} - \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) v(x_{i}).$$
(15)

Our objective

Estimate the error $u - u_{n,N}$

Error analysis

Numerical quadrature: for any g(x),

$$\left|\int_{\Omega} g(x)dx - |\Omega| \sum_{i=1}^{N} w_i g(x_i)\right| \lesssim N^{-\frac{r+1}{d}} \|g\|_{r,1}.$$

Challenges: how to bound

$$\|g\|_{r,1} \leq ?$$
, for $g \in \Sigma_n^{\sigma}$.

OK if the following Bernstein or inverse inequality holds for r > s

$$\|\mathbf{v}_n\|_r \lesssim n^{\beta} \|\mathbf{v}_n\|_s, \quad \forall \mathbf{v}_n \in \Sigma_n^k.$$
(16)

Bad news: Bernstein inequality does not hold for NN

Given any $\epsilon > 0$, consider an NN function with 3 neurons:

$$u_3(x) = \operatorname{ReLU}(x - \frac{1}{2} + \epsilon) - 2\operatorname{ReLU}(x - \frac{1}{2}) + \operatorname{ReLU}(x - \frac{1}{2} - \epsilon), \quad \forall x \in (0, 1).$$

A direct calculation shows that

$$\int_0^1 |u_3'(x)|^2 dx = 2\epsilon \text{ and } \int_0^1 |u_3(x)|^2 dx = \epsilon^2.$$

Therefore

$$|u_3|_{H^1} = \sqrt{\frac{2}{\epsilon}} ||u_3||_{L^2}, \quad \forall \epsilon > 0$$

As a result, the following Bernstein inequality can not hold for any constant C(n)

$$\|v_n\|_{H^1} \leq C(n) \|v_n\|_{L^2}, \quad \forall v_n \in \Sigma_n^{\sigma}$$

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

7 Summary

Our approach: Stable Neural Network

Consider approximation from the class

$$\Sigma_{n,M}^{\sigma} := \left\{ \sum_{i=1}^{n} a_i \sigma(\omega_i \cdot x + b_i), \ \omega_i \in \mathbb{S}^{d-1}, \ |b_i| \le B, \sum_{i=1}^{n} |a_i| \le M \right\}$$
(17)

of neural networks with ℓ^1 -bounded outer coefficients.

• More generally for a dictionary $\mathbb{D} \subset H = L^2(\Omega)$, consider

$$\Sigma_{n,M}(\mathbb{D}) = \left\{ \sum_{i=1}^{n} a_i h_i, \ h_i \in \mathbb{D}, \ \sum_{i=1}^{n} |a_i| \le M \right\}$$
(18)

Question: What is the "largest" functional class that Σ_{n,M}(D) can approximate?

Stable Dictionary Approximation Space

Define a closed convex hull of ±D:

$$B_1(\mathbb{D}) = \overline{\left\{\sum_{j=1}^n a_j h_j : n \in \mathbb{N}, h_j \in \mathbb{D}, \sum_{i=1}^n |a_i| \le 1\right\}},$$
(19)

Define a norm

$$|f||_{\mathcal{K}_1(\mathbb{D})} = \inf\{r > 0 : f \in rB_1(\mathbb{D})\},\tag{20}$$

as the guage of the set $B_1(\mathbb{D})$.

The unit ball is

$$\{f \in H : \|f\|_{\mathcal{K}_1(\mathbb{D})} \le 1\} = B_1(\mathbb{D}).$$
(21)

We have

$$\{f \in H : \|f\|_{\mathcal{K}_1(\mathbb{D})} < \infty\}$$
(22)

is a Banach space.

Ref: Siegel, Jonathan W., and Jinchao Xu. "Optimal Approximation Rates and Metric Entropy of ReLU^k and Cosine Networks." arXiv preprint arXiv:2101.12365 (2021).

Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021) A function $f \in H = L^{2}(\Omega)$ can be approximated at all, i.e. $\lim_{n \to \infty} \inf_{f_{n} \in \Sigma_{n,M}^{k}(\mathbb{D})} ||f - f_{n}||_{H} = 0, \quad (23)$ for a fixed $M < \infty$ if and only if $f \in \mathcal{K}_{1}(\mathbb{D})$ with $||f||_{\mathcal{K}_{1}(\mathbb{D})} \leq M$. Furthermore, if $\|\mathbb{D}\| \equiv \sup_{h \in \mathbb{D}} ||h||_{H} < \infty$

we have

$$\inf_{f_n \in \Sigma_{n,M}^k(\mathbb{D})} \|f - f_n\|_H \le n^{-\frac{1}{2} - \frac{2(k-m)+1}{2d}} \|\mathbb{D}\| \|f\|_{\mathcal{K}_1(\mathbb{D})}.$$
(24)

1 Model problem

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

7 Summary

Error estimates for deterministic numerical quadrature

Consider

$$\Sigma_{n,M}^{k} = \{\sum_{i=1}^{n} a_{i}\sigma_{k}(\omega_{i} \cdot x + b_{i}) : \omega_{i} \in \mathbb{S}^{d-1}, |b_{i}| \leq B, \sum_{i=1}^{n} |a_{i}| \leq M\} \subset W^{k,\infty}(\Omega)$$

with

$$M \geq \|u\|_{\mathcal{K}_1(\mathbb{P}^d_k)}$$

Theorem (Hong, Siegel & Xu 2021)

Let N be the number of quadrature points and

$$J_N(u_{n,N}) = \min_{v \in \Sigma_{n,M}^k} J_N(v).$$

If $N = \mathcal{O}(n^{\frac{d+1+2(k-m)}{k-1}})$, it holds that

$$\|u_{n,N} - u\|_a \lesssim n^{-\frac{1}{2} - \frac{2(k-m)+1}{2d}} \|u\|_{\mathcal{K}_1(\mathbb{P}^d_k)}$$

(25)

$$|J_N(v) - J(v)| \le N^{-\frac{k-1}{d}} \|v\|_{k,\infty}.$$
(26)

2 Since Ω is bounded, $\omega_i \in \mathbb{S}^{d-1}$, $|b_i| \leq B$, $\sum_{i=1}^n |a_i| \leq M$,

 $\|u_{n,N}\|_{k,\infty} \lesssim M.$

3 For any *n*, there exists $v_n \in \Sigma_{n,M}^k$

$$\|u - v_n\|_a \lesssim n^{-\frac{1}{2} - \frac{2(k-m)+1}{2\sigma}} \|u\|_{\mathcal{K}_1(\mathbb{F}_k^d)}.$$
(27)

0(1, ---) + +

Since
$$J_N(u_{n,N}) \le J_N(v_n)$$
,

$$\frac{1}{2} \|u_{n,N} - u\|_a^2 = J(u_{n,N}) - J(u) \le J(u_{n,N}) - J_N(u_{n,N}) + J_N(u_{n,N}) - J(v_n) + J(v_n) - J(u)$$

$$\lesssim N^{-\frac{k-1}{d}} + \|v_n - u\|_a^2 \lesssim N^{-\frac{k-1}{d}} + n^{-1 - \frac{2(k-m)+1}{d}}.$$

Choose $N = \mathcal{O}(n^{\frac{k-1}{k-1}})$, then

$$||u_{n,N} - u||_a \lesssim n^{-\frac{1}{2} - \frac{2(K-M)+1}{2d}}$$

Error estimate for numerical quadrature by sampling

Quadrature by sampling: Consider

$$J_N(u_{n,N}) = \min_{\boldsymbol{v}\in\Sigma_{n,M}^k} J_N(\boldsymbol{v}),$$

with sampling

$$J_{N}(v) = \frac{1}{2N} \sum_{i=1}^{N} \sum_{|\alpha|=m} a_{\alpha}(x_{i}) (\partial^{\alpha} v(x_{i}))^{2} + \frac{1}{2N} \sum_{i=1}^{N} a_{0}(x_{i}) v(x_{i})^{2} - \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) v(x_{i}).$$
(28)

Rademacher complexity: The Rademacher complexity of function class \mathcal{F} on Ω is given by

$$R_{N}(\mathcal{F}) = \mathbb{E}_{x_{1},...,x_{N}} \mathbb{E}_{\xi_{1},...,\xi_{N}} \left(\sup_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \xi_{i} f(x_{i}) \right),$$
(29)

where x_i are drawn uniformly at random from Ω and ξ_i are uniformly random signs.

Properties of Rademacher complexity

Lemma

Let \mathcal{F}, \mathcal{S} be classes of functions on Ω . Then the following bounds hold.

• $R_N(conv(\mathcal{F})) = R_N(\mathcal{F}).$

• Define the set $\mathcal{F} + \mathcal{S} = \{h(x) + g(x) : h \in \mathcal{F}, g \in \mathcal{S}\}$. We have

$$R_N(\mathcal{F} + \mathcal{S}) = R_N(\mathcal{F}) + R_N(\mathcal{S}). \tag{30}$$

• Suppose that $\phi : \mathbb{R} \to \mathbb{R}$ is L-Lipschitz. Let $\phi \circ \mathcal{F} = \{\phi(h(x)) : h \in \mathcal{F}\}$. Then

$$R_N(\phi \circ \mathcal{F}) \le LR_N(\mathcal{F}). \tag{31}$$

• Suppose that $f : \Omega \to \mathbb{R}$ is a fixed function. Let $f \cdot \mathcal{F} = \{f(x)h(x) : h \in \mathcal{F}\}$. Then

$$R_N(f \cdot \mathcal{F}) \le \|f(x)\|_{L^{\infty}(\Omega)} R_N(\mathcal{F}).$$
(32)

Bound by Rademacher complexity

Theorem (Bartlett, 2002)

Let ${\mathcal F}$ be a set of functions. Then

$$\mathbb{E}_{x_1,\ldots,x_N\sim\mu}\sup_{h\in\mathcal{F}}\left|\frac{1}{N}\sum_{i=1}^N h(x_i) - \int_{\Omega} h(x)d\mu\right| \le 2R_N(\mathcal{F}).$$
(33)

Bound the error of numerical quadrature by Rademacher complexity

Our function class:

$$\mathcal{F}_{n,M} = \left\{ \frac{1}{2} \sum_{|\alpha|=m} a_{\alpha}(x) (\partial^{\alpha} u(x))^2 + \frac{1}{2} u(x)^2 - f(x) u(x) : u \in \Sigma_{n,M}(\mathbb{D}) \right\}.$$
(34)

Theorem (Hong, Siegel & Xu 2021)

Suppose that $||a_{\alpha}||_{L^{\infty}(\Omega)}$, $||a_{0}||_{L^{\infty}(\Omega)} \leq K$ and $\sup_{d \in \mathbb{D}} ||d||_{W^{m,\infty}} \leq C$. Then the Rademacher complexity of the set $\mathcal{F}_{n,M}$ in (34) is bounded by

$$R_{N}(\mathcal{F}_{n,M}) \leq CKM \sum_{|\alpha|=m} R_{N}(\partial^{\alpha}\mathbb{D}) + CKMR_{N}(\mathbb{D}) + \|f\|_{L^{\infty}(\Omega)} MR_{N}(\mathbb{D}),$$
(35)

where $\mathbb{D} = \{\sigma_k(\omega \cdot x + b) : \omega \in \mathbb{S}^{d-1}, |b| \leq B\}$ and $\partial^{\alpha}\mathbb{D} = \{\partial^{\alpha}d : d \in \mathbb{D}\}.$

Bound the Rademacher complexity

Theorem (Hong, Siegel & Xu 2021)

Suppose that $\sigma \in W^{m+1,\infty}$. Then for any α with $|\alpha| \leq m$, we have

$$R_N(\mathbb{D}) \lesssim N^{-rac{1}{2}}, \quad R_N(\partial^lpha \mathbb{D}) \lesssim N^{-rac{1}{2}}.$$

where the implied constant is independent of N.

(36)

Sketch of Proof

Noting that

 $\partial^{\alpha} \mathbb{D} = \{ \omega^{\alpha} \sigma^{(\alpha)} (\omega \cdot \mathbf{x} + \mathbf{b}) : \ \omega \in \mathbb{S}^{d-1}, |\mathbf{b}| \le \mathbf{B} \}.$ (37)

hence $|\omega^{\alpha}|$ is bounded.

2 Since $\sigma \in W^{m+1,\infty}$, we have that $\sigma^{(\alpha)}$ is Lipschitz. We obtained

$$R_{N}(\partial^{\alpha}\mathbb{D}) \lesssim R_{N}(\{\omega \cdot x + b : \omega \in \mathbb{S}^{d-1}, |b| \le B\}.$$
(38)

It is well-known that the Rademacher complexity of the set of linear functions is bounded by

$$R_N(\{\omega \cdot x + b : \omega \in \mathbb{S}^{d-1}, |b| \le B\} \lesssim N^{-\frac{1}{2}},\tag{39}$$

for any distribution on x which is bounded almost surely.

Convergence Analysis Assuming Perfect Optimization

Suppose we can solve perfectly the optimization problem

$$J_N(u_{n,N}) = \min_{v \in \Sigma_{n,M}^k} J_N(v)$$
(40)

 Combining the uniform error bound with optimal approximation rates for ReLU^k networks, we get

Theorem

Suppose that $||a_{\alpha}||_{L^{\infty}(\Omega)}, ||a_{0}||_{L^{\infty}(\Omega)} \leq K$ and $\sup_{d \in \mathbb{D}} ||d||_{W^{m,\infty}} \leq C$. Let $\mathbb{D} = \mathbb{P}^{d}_{k}$ be the dictionary of ReLU^k ridge functions. Then we have

$$\mathbb{E}_{x_1,...,x_N} \left[\|u_{n,N} - u\|_{H^m(\Omega)}^2 \right] \lesssim MN^{-\frac{1}{2}} + Mn^{-1 - \frac{2(k-m)}{d}}.$$
 (41)

1 Model problem

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

7 Summary

Another Issue

How can we efficiently solve the optimization of the discrete energy, i.e.

 $J_N(u_{n,N}) = \min_{v \in \Sigma_{n,M}^k} J_N(v).$

Challenge: SGD or Adam

For the ReLU^k shallow neural network, let

$$u_n = \arg\min_{\nu_n \in \Sigma_{n,M}(\mathbb{D})} \|\nu_n - u\|$$
(42)

be the solution trained by SGD or Adam, then it is extremely difficult to observe

$$\|u - u_n\| \le cn^{-\alpha} \tag{43}$$

for any $\alpha > 0$. Non-convergence for Adam etc for large *n*

Our approach: Greedy Algorithm

Orthogonal greedy algorithm (OGA):

$$u_0 = 0, \ g_\ell = \arg\max_{g \in \mathbb{D}} \left| \langle u - u_{\ell-1}, g \rangle_H \right|, \ u_\ell = P_\ell u, \tag{44}$$

where P_{ℓ} : orthogonal projection onto span{ $g_1, ..., g_{\ell}$ }.

Relaxed greedy algorithm (RGA):

$$u_{0} = 0$$

$$g_{\ell} = \arg \max_{g \in \mathbb{D}} \langle \nabla J_{N}(u_{\ell-1}), g \rangle$$

$$u_{\ell} = (1 - s_{\ell})u_{\ell-1} - Ms_{\ell}g_{\ell}.$$
(45)

A Property of RGA:

Theorem (Hong, Siegel & Xu 2021)

The $u_{\ell}, \ell = 1, 2, \cdots$, produced by RGA satisfy $\|u_{\ell}\|_{\mathcal{K}_1(\mathbb{D})} \leq M$ for all ℓ and

$$J_N(u_\ell) - \min_{v \in \Sigma_{n,M}} J_N(v) \lesssim \frac{1}{\ell}.$$
(46)

Ref: Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-vvv187.

Jinchao Xu (KAUST & PSU)

Main Theorem

Theorem (Hong, Siegel & Xu 2021)

Assume that the true solution $u \in \mathcal{K}_1(\mathbb{D})$ satisfies $||u||_{\mathcal{K}_1(\mathbb{D})} \leq M$ and let the numerical solution $u_{n,M,N} \in \Sigma_{n,M}(\mathbb{D})$ be obtained by the relaxed greedy algorithm for n steps. Then we have

$$\mathbb{E}_{x_1,\ldots,x_N}(J(u_{n,M,N}) - J(u)) \le M\left[C_1(1 + \|f\|_{L^{\infty}(\Omega)})N^{-\frac{1}{2}} + C_2Mn^{-1}\right].$$
(47)

and

$$\mathbb{E}_{x_1,\ldots,x_N}(\|u_{n,M,N}-u\|_{H^m(\Omega)}^2) \le M\left[C_1'N^{-\frac{1}{2}}+C_2'Mn^{-1}\right],\tag{48}$$

where C'_1 and C'_2 depend only upon the dictionary and the differential operator.

Sketch of Proof

• Recall $J(u_n) = \min_{v \in \Sigma_{n,M}} J(v)$. We write

$$\mathbb{E}_{x_1,...,x_N} (J(u_{n,M,N}) - J(u)) \le \mathbb{E}_{x_1,...,x_N} (J_N(u_{n,M,N}) - J_N(u_n)) + \mathbb{E}_{x_1,...,x_N} (|J_N(u_n) - J(u_n)|) + \mathbb{E}_{x_1,...,x_N} (|J(u_n) - J(u)|).$$
(49)

Since $u_{n,M,N}$ is obtained by the relaxed greedy algorithm for *n* steps. The first term on the right hand side can be estimated by

$$J_{N}(u_{n,M,N}) - J_{N}(u_{n}) = J_{N}(u_{n,M,N}) - \min_{v \in \Sigma_{n,M}} J_{N}(v) + \min_{v \in \Sigma_{n,M}} J_{N}(v) - J_{N}(u_{n})$$

$$\leq J_{N}(u_{n,M,N}) - \min_{v \in \Sigma_{n,M}} J_{N}(v) \lesssim \frac{1}{n}.$$
(50)

The second term on the right is the error of numerical quadrature which is bounded via the Rademacher complexity by

$$CM(K + \|f\|_{L^{\infty}(\Omega)})N^{-\frac{1}{2}}.$$

The third term can be bounded by the approximation error.

PINN (Raissi et al., J. Comput. Phys. 378 (2019), pp. 686–707)

Loss function for PINN:

$$L(u) = \min_{v \in H^{1}(\Omega)} L(v) \text{ with } L(v) = \int_{\Omega} |\Delta v + f|^{2} dx + \int_{\partial \Omega} |\frac{\partial v}{\partial n}|^{2} ds.$$
(51)

Discretization of the loss:

$$L_{N}(u_{n,N}) = \min_{v \in \Sigma_{n,M}^{k}} L_{N}(v) \text{ with } L_{N}(v) = \frac{1}{N} \sum_{i=1}^{N} |\Delta v(x_{i}) + f(x_{i})|^{2} + \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} |\frac{\partial v}{\partial n}(x_{i})|^{2}.$$
(52)

Similar results can be obtained for PINN.

Ref: M. Raissi, P. Perdikaris, G. E Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational physics (2019), Volume 378, 686-707

Remarks on the relaxed greedy algorithm

Question: How to solve

$$g_k = \arg \max_{g \in \mathbb{D}} \langle
abla J_N(u_{k-1}), g \rangle$$

- Feasible for small d (d = 1, 2, 3).
- Challenge if *d* is large, but possible if *u* has special structure.
- We do not know any other method.

Orthogonal greedy algorithm

Orthogonal greedy algorithm (OGA) for function approximation in a Hilbert space H:

$$u_0 = 0, \ g_n = \arg \max_{g \in \mathbb{D}} \left| \langle u - u_{n-1}, g \rangle_H \right|, \ u_n = P_n u, \tag{53}$$

where P_n : orthogonal projection onto $V_n = \text{span}\{g_1, ..., g_n\}$.

Theorem

Assume that the true solution $u \in \mathcal{K}_1(\mathbb{D})$ and let the numerical solution u_n be obtained by the orthogonal greedy algorithm for n steps. If $\|\mathbb{D}\|_H := \sup_{d \in \mathbb{D}} \|d\|_H < \infty$, then we have

$$\|u - u_n\|_H \le \|\mathbb{D}\|_H \|u\|_{\mathcal{K}_1(\mathbb{D})} n^{-\frac{1}{2}}.$$
(54)

Ref: Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, Ronald A. DeVore "Approximation and learning by greedy algorithms," The Annals of Statistics, Ann. Statist. 36(1), 64-94, (February 2008). ProofUsing the orthogonality

$$u_n = \arg\min_{v_n \in V_n} \|u - v_n\|_H.$$
 (55)

2 Since $u_{n-1} + \alpha g_n \in V_n$ for $\forall \alpha \in \mathbb{R}$, taking $\alpha = c \langle u - u_{n-1}, g_n \rangle_H$ where $c = (||\mathbb{D}||_H)^{-2}$, we have

$$\begin{aligned} \|u - u_n\|_{H}^{2} &\leq \|u - u_{n-1} - \alpha g_n\|_{H}^{2} \\ &= \|u - u_{n-1}\|_{H}^{2} - 2c\langle u - u_{n-1}, g_n\rangle\langle u - u_{n-1}, g_n\rangle + \alpha^{2}\|g_n\|_{H}^{2} \\ &= \|u - u_{n-1}\|_{H}^{2} - c(2 - c\|g_n\|_{H}^{2})|\langle u - u_{n-1}, g_n\rangle_{H}|^{2} \\ &\leq \|u - u_{n-1}\|_{H}^{2} - c|\langle u - u_{n-1}, g_n\rangle_{H}|^{2} \end{aligned}$$
(56)

S The second term on the right can be estimated as follows: let $u \in \mathcal{K}_1(\mathbb{D})$ be expanded by $u = \sum_{k>0} \beta_k h_k$ for $h_k \in \mathbb{D}$,

$$\|u - u_{n-1}\|_{H}^{2} = \langle u - u_{n-1}, u - u_{n-1} \rangle_{H} = \langle u - u_{n-1}, u \rangle_{H}$$

= $\langle u - u_{n-1}, \sum_{k \ge 0} \beta_{k} h_{k} \rangle$
 $\leq \|u\|_{\mathcal{K}_{1}(\mathbb{D})} \max_{g \in \mathbb{D}} |\langle u - u_{n-1}, g \rangle_{H}|$
= $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} |\langle u - u_{n-1}, g_{n} \rangle_{H}|.$ (57)

Proof

 $|\langle u - u_{n-1}, g_n \rangle_H| \ge ||u||_{\mathcal{K}_1(\mathbb{D})}^{-1} ||u - u_{n-1}||_H^2.$ (58)

2 By (56) and (58), we have

$$\begin{aligned} \|u - u_n\|_{H}^{2} &\leq \|u - u_{n-1}\|_{H}^{2} \left(1 - \frac{c}{\|u\|_{\mathcal{K}_{1}(\mathbb{D})}^{2}} \|u - u_{n-1}\|_{H}^{2}\right) \\ &= \|u - u_{n-1}\|_{H}^{2} \left(1 - \frac{1}{\|\mathbb{D}\|_{H}^{2} \|u\|_{\mathcal{K}_{1}(\mathbb{D})}^{2}} \|u - u_{n-1}\|_{H}^{2}\right). \end{aligned}$$
(59)

3 The result follows from a mathematical induction, since $||u - u_0||_H = ||u||_H \le ||\mathbb{D}||_H ||u||_{\mathcal{K}_1(\mathbb{D})}$, and

for nonnegative series
$$a_0 \le M$$
, $a_n \le a_{n-1} \left(1 - \frac{a_{n-1}}{M}\right) \Longrightarrow a_n \le \frac{M}{n+1}$, $n \in \mathbb{N}$. (60)

1 Model problem

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- Numerical examples

Summary

NN with OGA for Data fitting

Example (2D approximation)

Consider approximating the following 2D function

 $u(x,y) = \cos(2\pi x)\cos(2\pi y), \quad (x,y) \in (0,1)^2.$

By fixing $||\omega|| = 1$ and $b \in [-2, 2]$, the convergence order of OGA is shown in Table below for ReLU^k neural networks. Theoretical order is shown in parenthesis.

n	$k = 1(n^{-1.25})$		k = 2(n ⁻	^{1.75})	$k = 3(n^{-2.25})$	
	$ u - u_n _{L^2}$	order	$ u - u_n _{L^2}$	order	$ u - u_n _{L^2}$	order
2	4.969e-01	-	4.998e-01	-	4.976e-01	-
4	4.883e-01	0.025	4.992e-01	0.002	4.957e-01	0.006
8	2.423e-01	1.011	3.233e-01	0.627	4.193e-01	0.242
16	6.632e-02	1.869	4.911e-02	2.719	1.099e-01	1.932
32	2.206e-02	1.588	1.688e-02	1.541	8.075e-03	3.767
64	1.060e-02	1.058	4.156e-03	2.022	1.149e-03	2.813
128	4.284e-03	1.306	9.773e-04	2.088	2.185e-04	2.395
256	1.703e-03	1.331	2.622e-04	1.898	4.718e-05	2.211

Table: Convergence order of OGA with ReLU^k activation function

Figure: Convergence order of OGA with ReLU^k activation function

NN with OGA for Numerical PDE

Example (1D elliptic equation)

Let us consider the 1D second order elliptic equation on $\Omega = (-1, 1)$:

$$-u'' + u = f, \text{ in } \Omega$$
(61)
$$\frac{\partial u}{\partial n} = 0, \text{ on } \partial \Omega.$$
(62)

with the source term $f = (1 + \pi^2) \cos(\pi x)$, then the analytical solution is $u(x) = \cos(\pi x)$. Let $\sigma = \text{ReLU}^2$ and the convergence rates are predicted theoretically.

n	$ u - u_n _{L^2}$	order (n^{-3})	$ u - u_n _{H^1}$	order(n ⁻²)
16	7.86e-04	-	2.79e-02	-
32	7.70e-05	3.35	5.89e-03	2.24
64	8.45e-06	3.19	1.36e-03	2.11
128	9.68e-07	3.13	3.22e-04	2.08
256	1.18e-07	3.04	7.81e-05	2.04
512	1.44e-08	3.03	1.94e-05	2.01
1024	1.83e-09	2.97	4.86e-06	1.99
2048	2.50e-10	2.88	1.28e-06	1.93

Table: L^2 and H^1 numerical error of the OGA solution

OGA v.s. SGD and Adam

We take the learning rate $\eta = 1e - 3$ for SGD and Adam. It is difficult to observe any convergence order from the solutions of SGD or Adam:

	Adam				SGD			
n	$ u - u_n _{L^2}$	order	$ u - u_n _{H^1}$	order	$ u - u_n _{L^2}$	order	$ u - u_n _{H^1}$	order
16	1.61e-02	-	1.45e-01	-	1.30e-02	-	1.52e-01	-
32	3.71e-03	2.12	5.84e-02	1.32	9.35e-03	0.47	1.13e-01	0.43
64	1.80e-03	1.04	3.46e-02	0.76	7.11e-03	0.39	8.64e-02	0.38
128	5.52e-04	1.70	1.43e-02	1.27	5.91e-03	0.27	7.22e-02	0.26
256	2.26e-04	1.29	6.99e-03	1.04 🧉	5.75e-03	0.04	7.03e-02	0.04
512	1.88e-04	0.27	3.90e-03	0.84	4.41e-03	0.38	5.40e-02	0.38
1024	2.09e-04	-0.16	2.56e-03	0.61	1.52e-03	1.54	1.99e-02	1.43
2048	4.11e-04	-0.97	2.51e-03	0.03	3.22e-03	-1.09	3.56e-02	-0.84

Table: Numerical results from different training methods.

Figure: OGA vs Adam

NN with OGA for 4th order PDE

Example (1D 4th-order equation)

We consider the 4th-order equation $(-\Delta)^2 u + u = f$ on (-1, 1) with

$$u(x) = (1 - x)^4 (1 + x)^4.$$

Take $\sigma = \text{ReLU}^3$. The convergence orders with $\|\cdot\|_0$ and $\|\cdot\|_a$ errors are listed in the following table to confirm 4th order and 2nd order convergence, respectively.

n	$ u - u_n _{L^2}$	order	$ u - u_n _a$	order
2	8.762e-01	-	6.063e+00	-
4	9.892e-01	-0.17	4.122e+00	0.56
8	1.493e-02	6.05	1.069e+00	1.95
16	2.608e-04	5.84	1.431e-01	2.90
32	1.089e-05	4.58	3.120e-02	2.20
64	5.530e-07	4.30	6.639e-03	2.23
128	2.989e-08	4.21	1.679e-03	1.98
256	1.746e-09	4.10	4.092e-04	2.04

Table: The $\|\cdot\|_0$ and $\|\cdot\|_a$ errors of the OGA solution.

Numerical experiments of OGA

Example (2D 4th-order equation)

Next consider the $\|\cdot\|_0$ and $\|\cdot\|_a$ errors of OGA for 2D 4th-order equations on $\Omega = (-1, 1)^2$. Let the exact solution to be $u(x, y) = (x^2 - 1)^4 (y^2 - 1)^4$ to satisfy the Neumann boundary conditions. We have

n	$ u - u_n _{L^2}$	order	$ u - u_n _a$	order
2	6.528e-01	-	7.927e+00	-
4	7.859e-01	-0.27	7.593e+00	0.06
8	9.906e-01	-0.33	6.295e+00	0.27
16	8.215e-01	0.27	4.003e+00	0.65
32	1.513e-01	2.44	1.446e+00	1.47
64	7.206e-02	1.07	4.747e-01	1.61
128	2.259e-02	1.67	1.809e-01	1.39
256	4.696e-03	2.27	6.970e-02	1.38

Table: The convergence order with $\|\cdot\|_0$ and $\|\cdot\|_a$ errors by OGA.

Nonlinear problem: 2D

Example (A nonlinear 2D example)

Consider the following nonlinear 2D equation $-\Delta u + u^3 + u = f$ on $(0, 1)^2$ with $\partial u / \partial n = 0$. The analytical solution is $u = \cos(2\pi x) \cos(2\pi y)$ and the dictionary for RGA is taken as

 $\mathbb{D} = \{ \sigma(w_1 x + w_2 y + b) | (w_1, w_2, b) \in [-20, 20]^3 \}$

where $\sigma(x)$ is the sigmoid function. The convergence is considered on the approximating space where $||u||_{\mathcal{K}_1(\mathbb{D})} \leq M = 15$.

n	$ u - u_n _2$	order	$ Du - Du_n _2$	order	$J(u_n) - J(u)$	order (n^{-1})
16	7.847e-01	-	4.645e+00	-	1.805e+04	-
32	6.679e-01	0.23	2.955e+00	0.65	7.563e+03	1.25
64	2.370e-01	1.49	1.675e+00	0.82	2.328e+03	1.70
128	1.216e-01	0.96	1.087e+00	0.62	9.680e+02	1.27
256	6.184e-02	0.98	5.205e-01	1.06	2.222e+02	2.12
512	3.797e-02	0.70	3.611e-01	0.53	1.067e+02	1.06
1024	2.687e-02	0.50	2.110e-01	0.77	3.662e+01	1.54
2048	1.072e-02	1.33	1.432e-01	0.56	1.663e+01	1.14

Table: Convergence order of RGA.

Nonlinear problem: 2D

Example (2D Poisson-Boltzmann equation)

Consider the PB equation $-\Delta u + \kappa \sinh(u) = f$ on the sphere $\{(x, y)|x^2 + y^2 \le 4\}$ with $\partial u / \partial n = 0$. The energy functional for this problem is

$$\mathcal{J}(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + \kappa \cosh(u) - fu \right) dx,$$

which is a strictly convex and coercive energy as long as $\kappa > 0$. We set $\kappa = 1$ and consider the radially symmetric solution

$$u(x, y) = \cos(\frac{\pi}{2}\sqrt{x^2 + y^2}).$$

n	$ u - u_n _2$	order	$ Du - Du_n _2$	order	$J(u_n) - J(u)$	order (n^{-1})
16	1.103e+00	-	2.470e+00	-	1.512e+05	-
32	6.499e-01	0.76	1.845e+00	0.42	7.750e+04	0.96
64	5.440e-01	0.26	1.536e+00	0.26	5.480e+04	0.50
128	2.435e-01	1.16	7.509e-01	1.03	1.285e+04	2.09
256	1.507e-01	0.69	4.532e-01	0.73	4.690e+03	1.45
512	7.373e-02	1.03	2.659e-01	0.77	1.423e+03	1.72
1024	2.949e-02	1.32	1.647e-01	0.69	5.363e+02	1.41
2048	2.401e-02	0.30	1.156e-01	0.51	2.571e+02	1.06

Table: Convergence order of RGA for the 2D Poisson-Boltzmann equation.

10D example

Example (10D Poisson equation)

Consider a 10d elliptic equation in the following form

$$-\nabla \cdot (\alpha \nabla u) + u = f, \ x \in (0, 1)^{10}, \quad \frac{\partial u}{\partial n} = 0, \ x \in \partial(0, 1)^{10}.$$
(63)

We take

$$u = \sum_{i=1}^{10} \cos(\pi x_i), \quad \alpha = \sqrt{1 + \sum_{i=1}^{10} (x_i - \frac{1}{2})^2}.$$
 (64)

We discretize the energy using 100 million quasi-Monte-Carlo samples in [0, 1]¹⁰ and optimize the energy using the OGA with dictionary

$$\mathbb{P}_{2}^{10,r} = \{ \sigma(\omega \cdot x + b), \ \omega = \pm e_{i}, \ i = 1, ..., 10, \ b \in [-2, 2] \},$$
(65)

and we obtained

п	$ u - u_n _{l^2}$	order (n^{-3})	$ u - u_n _{H^1}$	order (n^{-2})
2	2.058e+00	0.00	6.778e+00	0.00
4	1.850e+00	0.15	6.139e+00	0.14
8	1.307e+00	0.50	4.604e+00	0.42
16	5.019e-01	1.38	3.184e+00	0.53
32	4.702e-02	3.42	5.988e-01	2.41
64	4.629e-03	3.34	1.104e-01	2.44
128	4.437e-04	3.38	2.272e-02	2.28
256	5.411e-05	3.04	5.194e-03	2.13

1 Model problem

- 2 Shallow neural network functions
- 3 Stable Neural Network Approximation
- Error estimates for numerical quadrature of stable NN approximation
- 5 Optimization algorithms
- 6 Numerical examples

🕖 Summary

Summary

Using neural network to solve 2*m*-th order PDEs.

- Inverse inequality does not hold for the neural network function class
- 3 Using the good property of stable neural network
- Convergence analysis for sampling
- Greedy algorithm to solve the optimization problem.

References

- Q. Hong and J. W. Siegel, and J. Xu, A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs, arXiv preprint arXiv:2104.02903 (2021).
- J. W. Siegel, Q. Hong, X. Jin, W. Hao and J. Xu, Greedy training algorithms for neural networks and applications to PDEs. Journal of Computational Physics, 2023, Vol. 484: 112084.

Thank you very much!