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Outline

® Why causal/disentangled representations ?
o How?
® |ID case
® [inear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® [rom multiple distributions

® With temporal information
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Uncover Causality from
Observational Data?

® (ausal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)
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E\ - conditional independence among variables;
B Y - independent noise condition;
slippery - minimal (and independent) changes...

wet ground
Footprint of causality in data

® (ausal discovery (Spirtes et al., 1993)/ causal representation learning
(Scholkopf et al., 2021): find such representations with identifiability guarantees

® '|'hree dimensions of the problem:

. . Parametric Latent
2
I.1.d. data* constraints? confounders?
Yes No No

| No Yes Yes




Causal Representation Learning: A Summary

. Parametric Latent
2 2
HECBCELCT constraints? confounders? WG T 00 g ehoe
No _
No (Different types of)
Yes equivalence class
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No (Extended) regression
Non-I, but [.D. No/Yes
Yes Latent temporal causal
processes identifiable!
NG More informative than
NG MEC (CD-NOD)
May have unique
bt roml D ek dentifiability
; o NG Changing subspace
Ves identifiable
Yos Variables in changing
relations identifiable
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A Problem in Psychology

e 50 questions for big b personality test

B
~

race age engnat gender hand source country E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 A1 A2 A3 A4

N

us
uUs
PK
RO
us
us
uUs
IN

53

46

14

19

25

v

31

20
23

I

us
us
IT
IN

39

N

18

17

15
22
21

uUs
us
us
us
FR

N

N

28
21

19
21

N

us
GB

N

26
26

)

us

13

1

13

13
13

13



Learning Hidden Variables & 'T'heir Relations

| . . Parametric Latent
i.i.d. data? ]
l constraints? confounders?
Yes No No
| NoO Yes Yes

® Measured variables (e.g., answer scores 1n psychometric questionnaires)
were generated by causally related latent variables

Latent variables &
x1 121 x3 | xa!|xs!| xe6!| x7 | xs their causal structure
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® ['ind latent variables L; and their causal relations ?
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® Rank deficiency or GIN helps solve the problem



Outline

® Why causal/disentangled representations ?
o How?
® |ID case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® [rom multiple distributions

® With temporal information



Identifying Latent Causal Model in
Linear-(Gaussian Cases

Biwel Huang
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Motivation

Causal discovery:

® Aims to find causal relationships from observational
data, without doing interventions

® 'Traditionally, assumes no latent confounders and only considers
causal structure among observed variables

® However, in some cases, measured variables may not be causal
variables, e.g., variables with measurement error, image pixels
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Identifying Latent Causal Graphs

(Questions to answer:

® J.ocate (hierarchical) latent variables (i.e., cluster
the lower-level variables)

® Identify the causal structure among all variables
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X1 Xo Xz X4 X5 X6 X7 Xs Xo L 7

X;: measured variables
L;: latent variables



Motivation of Latent Variable Discovery in A/
Scientific Discovery

® Usually not possible to measure all task-related variables

® (ausal discovery in the presence of latent variables

® Image/Video/Language understanding

® Automatically identify and hierarchically cluster the underlying
functional brain areas and discover the information flow, from
measured voxel data

® Identify gene regulation process from gene expression data
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An illustration of Tetrad Conditions

Dep,

& De
St, P,

e Tetrad condition [Spearman 1904,
Anderson & Rubin 1956] Dep,,

Sty

Ny

L
/ \ / \ ,/,/ \,\‘ Xi: measured variables
X X X5 Xy A Xa X

(a) (b)

L;: latent variables

Tetrad condition:

P12P34 F P23P14 P12P34 = P23014 Indicates rank deficiency
P13P24 = P23P14 P13P24 = P23P14 of 2 x 2 off-diagonal
P12034 F P13P24 P12P34 = P13P24 covariance matrices

pij denotes the correlation coeflicient between x; and x;
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Applications of Tetrad Conditions

® One-factor measurement model [Silva et al., 2006, Kummerfeld et al., 2016]

® ‘[ree structure [Pearl, 1988, Choi et al., 2011]

One-factor measurement model

[Choi et al., 2011]
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Identifying more general latent structures:

LATENT HIERARCHICAL CAUSAL STRUCTURE DISCOVERY WITH RANK
CONSTRAINTS

Biwei Huang *! Charles Low *, Feng Xie?, Clark Glymour', Kun Zhang'~
I Carnegie Mellon University
2 Mohamed bin Zayed University of Artificial Intelligence
3 Beijing Technology and Business University, China
{bwei.huang, charleslow88, xiefeng®09}@gmail.com,
cg®9@andrew.cmu.edu, kunzl@cmu.edu

ABSTRACT

Most causal discovery procedures assume that there are no latent confounders in the system, which
is often violated in real-world problems. In this paper, we consider a challenging scenario for causal
structure identification, where some variables are latent and they form a hierarchical graph structure
to generate the measured variables; the children of latent variables may still be latent and only leaf
nodes are measured, and moreover, there can be multiple paths between every pair of variables (i.e.,
it is beyond tree structure). We propose an estimation procedure that can efficiently locate latent vari-
ables, determine their cardinalities, and identify the latent hierarchical structure, by leveraging rank
deficiency constraints over the measured variables. We show that the proposed algorithm can find
the correct Markov equivalence class of the whole graph asymptotically under proper restrictions on
the graph structure.



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

SEM with linear causal relations:
,// \L Xi = ZLjEPa(X,-) b;;L; + ex,,
T BB Xi: measured variables

// / \\\k m “ ™ IMiflatent variables

X1 Xo Xz X4 Xs Xe¢ X7 Xz Xo Xi0 X131

(Questions to answer:

X4
X, S o X0 ® [.ocate (hierarchical) latent
X, N 4 . \X“ variables (i.e., cluster the lower-
. LYy Xo level variables)
. e L74 X3 ® Identify the causal structure
o g X. . & among latent variables
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Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Basic idea:
® Rank-deficiency constraints over measured variables hod
' - this metho
+ Specific search procedure f sundation of

» rank(Zx, x,), which is deficient, indicates the smallest number
of variables that t-separate Xjfrom Xp

/2(4 I—X —_ EXP:
X6 L, —+ Lsx\/; Xm : Let X4 = {Xi10,X11} and Xp = X\Xy
X L, t = I * rank(Xy, x,) = 1 which is rank deficient,

- Xo X, because Lg d-separates X4 from Xp.

Xg L - Xl
g o N i Z: X;  However, we cannot directly know the
X s <: . X, location of these latent variables in the graph
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Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

Input :Date from a set of measured variables Xg
Output : Markov equivalence class G’

1. Find clusters and assign latent covers greedily

G' = findCausalClusters (Xg) ;

2. Refine incorrect clusters and covers from greedy search

G' — refineClusters (G')

3. Refine edges and find v structures

G’ = refineEdges (G) ;

17



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

Input :Date from a set of measured variables Xg
Output : Markov equivalence class G’

1. Find clusters and assign latent covers greedily

G' = findCausalClusters (Xg) ;

2. Refine incorrect clusters and covers from greedy search

G' — refineClusters (G')

3. Refine edges and find v structures

G’ = refineEdges (G) ;
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Latent Hierarchical Causal Structure Discovery with
Rank Constraints

X3

Search procedure: % Sl /
X6 L6A/l/3<—L1—>L2\
1. Find clusters and assign latent covers greedily x*~ % %o \
(findCausalClusters)
Xs X,
Rule 1: X, X,
If A is a rank-deficiency set . .
. 6 2
Wlt.h rank(ExA,XB) — g
assign a latent variable L with  x, X,

size k as the parents of each A; Input the data from measured variables

19



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:
(findCausalClusters)

Rule 1:

If A is a rank-deficiency set
with rank(ExA,XB) —

assign a latent variable L with
size k as the parents of each A;

X3 X4
X \L L /X
7 7 5 3
:: l/3 i Ll —> L2 ::
Xo v~ Ls \ \ \ Ly =~ X
P X X X i
X
i X,
A -
Lg X3
6 L:; X2
X X Xy \
X

Find latent covers {Lg, L7}, {L;, L¢}, and {Lg, Ly}.

20

|
| Let X4 = {X5, X6, X7} and X = X\ X4. |
' rank(Zx, x,) = 2 being rank deficient. |
: Add a latent cover {Lg, L} with size 2 above X,. :



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: % N | 747

1. Find clusters and assign latent covers greedily x*~ % %o % SN
(findCausalClusters)
Xs Lg\ L X,
Rule 1: X, \L; / | / X,
1 /
If A is a rank-deficiency set - 1 / iy L .
with rank(¥x , x,) =k, / X 0 0 \
assign a latent variable L with Xs X,
size k as the parents of each A; Find a latent cover {L,}.

LetA = {L], L.},

|
|
Use 1ts measured descendants X, = {X1, X5, X3, X4} |
|as a surrogate for rank test. |
|
|

'rank(2Zx, x,) = 1 being rank deficient.
| Add a latent cover {L}} with size 1 above A.



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: PN | 747

1. Find clusters and assign latent covers greedily x*~ % %o % .
(findCausalClusters)
X, I X,
A\
Rule 1: x7\L;\ / /L;/X3
If A is a rank-deficiency set - . ,/Lg b - -
with rank(EXAaXB) = k’ / Xu X X \
assign a latent variable L with Xs X,
size k as the parents of each A; Find a latent cover {L;}.
LetA={L,L} |

| Use 1ts measured descendants X4 = { X5, X¢, X7, Xg}l
| as a surrogate for rank test.

| rank(XZx, x,) = 1 being rank deficient.

22'_ Add a latent cover {L}} with size 1 above A.



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

\
1. Find clusters and assign latent covers greedily x*~ % %o % SN
(findCausalClusters)
X3 Lé L; X4
Rule 1: . \ 7 / \ L / X;
If A is a rank-deficiency set 7\LS g 5
is a rank- ien
: . Xs L . \L2 X,
Wlth I‘ank(EXA,XB) = k) / X“ X10 X9 \
assign a latent variable L with X,
size k as the parents of each A; Connect {Ly, Ly} to {L}} and to {L}}, and Step 1 ends.

23



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

Input :Date from a set of measured variables Xg
Output : Markov equivalence class G’

1. Find clusters and assign latent covers greedily

G' = findCausalClusters (Xg) ;

2. Refine incorrect clusters and covers from greedy search

G' — refineClusters (G')

3. Refine edges and find v structures

G’ = refineEdges (G) ;

24



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

X4
\ ey
Search procedure: . = | 40
B 1 > 2 ~.l
2. Refine incorrect clusters and covers from / > Xm R
X
greedy search (refineClusters) 1
X3 Lg L, X4
X \L / \ L /X3
7 7 \ . . / 5
3 2
X L6 / \ L:‘ X2
/ X X0 Xo \
X5 Xl

Rule 2:

For each discovered latent cover L,
let V= Gpg (L)USibg (L)UChg (L)
and apply findCausalClusters to

V to refine the clusters o



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Xs x
I\ ,
Search procedure: N
Refi . | d f Xs L6/¢<—$1_>+2\L4 X,
2. Rermne incorrect clusters and covers rrom ] [ X X, & \X
greedy search (refineClusters) i :
X8 \ Lé L(’) / X4
/ X X Xo \
X5 Xl
Rule 2: Refine {L}} by first removing {L’} and its parents {Lg, Ly}.

For each discovered latent cover L,
let V = GPG’ (L) U SibG/ (L) U ChG/ (L)
and apply findCausalClusters to

V to refine the clusters o



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

X X,
N Y
Search procedure: % N | 40
Ot T e i B 65
. 6
2. Refine incorrect clusters and covers from " X 0 Y
greedy search (refineClusters) 5 1
Xg X4
\ Ly, /
X, L — / L X;
3
X, e L X,
\
/ Xu X Xo \
X5 Xl
Rule 2: Perform findCausalClusters over {L}, L}, L., X9, X109, X11},
For each discovered latent cover L, and then we can find a latent cover {L]}.

let V = GPG’ (L) U S’ibG/ <L) U ChG/ (L)
and apply findCausalClusters to

V to refine the clusters
27



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

X X,
o S,

Search procedure: % N | 40

X < 2l Lf —i- L e X

2. Refine incorrect clusters and covers from = th X fg .

X X

greedy search (refineClusters) : |

X4
\ L, /
X7 L; = / Ls X3
. L,
X4 L e L X,
/ X 11 X 10 Xg \
X

Next perform findCausalClusters over {L},, L, Lg, X9, X10},
and we can find a latent cover {L7, }.

Rule 2:

For each discovered latent cover L,
let V = GPG’ (L) U S’ibG/ (L) U ChG/ (L)
and apply findCausalClusters to

V to refine the clusters o



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: Bl

2. Refine incorrect clusters and covers from / X“ Xm \

greedy search (refineClusters)
X4
\ Ly, /
X; L / Ly X3
\ I/
3
Xe 5 - I X,
\ \ Y
/ X Xig X \
X

Rule 2: Xs
For each discovered latent cover L, Next perform findCausalClusters over {L}, L}, Lg, X9},
let V = Gper(L)USibe (L)UChe (L) and we can find a latent cover L},.

and apply findCausalClusters to

V to refine the clusters o



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

\ /
Search procedure: .
lfs Bl Ll B Lz
2. Refine incorrect clusters and covers from / . \

greedy search (refineClusters)

Ly,
Xg /
\ L’10 /
X7 L; \ L//
3
X L
Y Y Y
/ X X X9 \
Rule 2: &
For each discovered latent cover L, Connect {L},} to {L}, L.}.

let V= Gpg(L)USibg (L)UChg (L)
and apply findCausalClusters to

V to refine the clusters 0



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: Bl

2. Refine incorrect clusters and covers from / X“ Xm \
greedy search (refineClusters)

Rule 2: Xs

For each discovered latent cover L,
let V = GPG’( )US’ib(p( )UChG/( )
and apply findCausalClusters to

Refine {L}} by first removing {L’} and its parents {L],}.

V to refine the clusters o



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: %& /

lG < Ll —> L2
2. Refine incorrect clusters and covers from % X“ Xm \

greedy search (refineClusters)

/

@

X3 X4
\ L, /
X; L I X
X I I X,
\/ Y \
/ X 11 X 10 Xg \
Rule 2: X X

For each discovered latent cover L, Perform findCausalClusters over {L, L’, L}, X11},
let V = Gper(L)USibe (L)UChe (L) and then we can find a latent cover {L,}.
. G’ G/ G/

and apply findCausalClusters to

V to refine the clusters -



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure: Bl

2. Refine incorrect clusters and covers from / X“ Xm \
greedy search (refineClusters)

X3
\ e
X, L /
X L
Y Y Y
/ X X Xo
Rule 2: Xs

For each discovered latent cover L, Connect {L},} to {L, L"}.
let V= Gpg(L)USibg (L)UChg (L)
and apply findCausalClusters to

| )
k%ﬁ

V to refine the clusters -



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

Input :Date from a set of measured variables Xg
Output : Markov equivalence class G’

1. Find clusters and assign latent covers greedily

G' = findCausalClusters (Xg) ;

2. Refine incorrect clusters and covers from greedy search

G' — refineClusters (G')

3. Refine edges and find v structures
G’ = refineEdges (G) ;

34



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Xg X4
Nt 7
Search procedure: % N | 40
o Ly «— L — L .l
X6 L6 X+ X+ )} L4 X2
3. Refine edges and find v structures x> S e .
(refineEdges)
Xq X,
: \ L; Lg / :
Rule 3: > Ly Ly, L, <
: X6 Lg l l l L, X,
For a pair (L 4, Lp), / X, X X, \
let A < {L,,C#,C%,...} and X: X,

B <+ {LB, leg’ C2B, }

If there exists such A, B such that
rankg (X 4 ) is rank deficient,

remove all edges between L4, Lg in G’

Perform refineEdges to refine the edges and
output the Markov equivalence class.

35



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

3. Refine edges and find v structures

Xl — Ll
(refineEdges) 4X2/ \
Another example that contains the v structure: \\“\; L= __,___/>X8

X3 X4
X
e A graph with v structure.
)(2/4/‘ Xx ” graph with v structure
‘\\“\L'—Z'XS

Possible Output from Phase II.

36



Latent Hierarchical Causal Structure Discovery with

Rank Constraints

Search procedure:

3. Refine edges and find v structures
(refineEdges)

Another example that contains the v structure:

X6 X6

X« g X| —— g/
LR EERES

Possible Output from Phase II. Connect L, and L;

37

4%‘/\&&.
\\\\A"Lél—————‘/——/'Xs

X3 Xy

A graph with v structure.



Latent Hierarchical Causal Structure Discovery with

Rank Constraints

Search procedure:

3. Refine edges and find v structures
(refineEdges)

Another example that contains the v structure:

Xlﬂ\Lr X6 §1<\L,
Xsz Kl‘ / K

4%‘/\&&.
\\\\A"Lél—————‘/——/'Xs

X3 Xy

A graph with v structure.

Possible Output from Phase II. Remove the edge between L) and L;

Let A = {L’ ,Xl} and B = {L’ : X2}
rank(X 4 g) = 1 being rank deficient

It means that L] d-separates L) from L’

38

Remove the edge between L) and L;



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Search procedure:

3. Refine edges and find v structures

Xi—
(refineEdges) AXz/ K
Another example that contains the v structure: \\‘\A; L= __,_.4/__/>X8

¥ X
Xl‘\L’ X6\ XI&L' 6\ A h with
X 4Y\ X2/ K graph with v structure.
< I Z»Xg . \\A‘ I _____4.-——/->)(8 5
X3X4 4\>)(7 X3X4 4\>)(7
Possible Output from Phase II. Forma V structure: L, — L, < L,

Let A' = {L), L, X;} and B' = {L}, X}
rank(XZ 4 g) =2 > 1 = rank(Z 4 g)
Let A% = {L}, X;} and B* = {L}, L}, X}
rank(X 4 g2) =2 > 1 = rank(Z 4 g)

39! SO L) = L) « L]



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

Main identifiability condition:

For each latent variable set L with size k, it has

 at least k+1 pure children (can be either latent or measured) and
e another k+1 neighbors

'Pure children: if V are pure children of latent variables L,i
then V do not have other parents besides L

e e e e e e e o e o e e o e e o e e e e mm mm mm mm e mm m mm — mm m mm mm m— mm m— mm m mm mm m— mm m— mm — m— — - - — — — — — — —

/'/ \ Exo.
Let L={L>,L3} with size 2:
)(%N m 3 pure children: {Le¢,L7,Ls}

; X12 Xi3 X4 Xis X6 3 peighbors: {Li,Lo,Lio}

///\\\w&\

X1 X0Xs X4 Xs X¢ X7 Xz Xo X

40



Latent Hierarchical Causal Structure Discovery with
Rank Constraints

The proposed approach works for

v Latent hierarchical causal structure with linear causal relations
v Each latent variable set with size k has at least (k+1) pure children

v Multiple latent parents for each (measured or latent) variable

41



Extension to the general case: to allow observed
variables to be causes as well

® Direct causal influences among observed variables

® In the special case with no latent variables, it returns the same graph
as the PC algorithm

® (Causal-related latent variables

® Latent variables may form a hierarchical structure

e J.atent variables can serve as both confounders and intermediate
variables for observed variables

————

42

Xinshuai Dong, Biwei Huang, Peter Spirtes,
Kun Zhang, et al., ongoing work



Extension to the general case: to allow observed
variables to be causes as well

Conditional independence Vs. Rank:

let A, B, and C be disjoint subsets of [m]. Then the conditional independence
statement X4 1L Xp|Xc holds for X, if and only if ¥ auc,Buc has rank C.

® ®@ & ©® @ @ ® 0o ©
00 ® ©® 000 & © ‘@O@

a) Take X = {{X3}} and (b) Take X = {{X2,X3}} and (C) Take X = {{X2}} and
(c): {{Xs}}. el C = {{X+},{Xs}}. 3 C={{Xe},{Xs},{Xe}}
rank(Xcux vux) = 1 rank(Xcux Nux) = 2 rank(Xcux vux) =2

(d) Take X = {} and
C={{X1},{L2, Xo}, {X3}}

006 @
GO0 © @

rank(Xcux vux) = 1

43



Extension to the general case: To allow observed

variables to be causes as well

F1 score for skeleton among Xg
Algorithm Ours Hier. rank PC FCI GIN RCD

2k | 0.95(0.04) - 0.78 (0.01) | 0.07 (0.01) - 0.79 (0.01)

Observed only | S5k | 0.97 (0.01) - 0.81 (0.01) | 0.15 (0.07) - 0.91 (0.01)
10k | 0.98 (0.02) - 0.82 (0.01) | 0.25 (0.18) - 0.93 (0.01)

2k | 0.79 (0.16) - 0.46 (0.02) | 0.00 (0.00) E 0.30 (0.03)

Latent+tree S5k | 0.86 (0.10) - 0.44 (0.00) | 0.03 (0.04) - 0.38 (0.01)
10k | 0.97 (0.04) - 0.44 (0.00) | 0.18 (0.07) - 0.39 (0.02)

2k | 0.84 (0.11) - 0.50 (0.02) | 0.00 (0.00) - 0.30 (0.02)

Latent+measm | Sk | 0.93 (0.08) - 0.49 (0.01) | 0.05 (0.03) - 0.32 (0.02)
10k | 0.95 (0.05) - 0.48 (0.02) | 0.03 (0.05) - 0.42 (0.09)

2k | 0.68 (0.02) - 0.44 (0.01) | 0.27 (0.09) - 0.39 (0.06)

Latent general | S5k | 0.71 (0.03) - 0.45 (0.01) | 0.31 (0.10) - 0.44 (0.05)
10k | 0.78 (0.06) - 0.45 (0.01) | 0.32 (0.05) - 0.44 (0.01)

F1 score for skeleton among Vg (both X; and Lg)
Algorithm Ours Hier. rank PC FCI GIN RCD

2k | 0.84 (0.11) | 0.58 (0.01) | 0.36 (0.01) | 0.00 (0.00) | 0.37 (0.03) | 0.24 (0.04)

Latent+tree Sk | 0.92 (0.05) | 0.60 (0.01) | 0.36 (0.00) | 0.02 (0.02) | 0.41 (0.03) | 0.33 (0.00)
10k | 0.98 (0.02) | 0.60 (0.01) | 0.36 (0.00) | 0.15 (0.08) | 0.41 (0.03) | 0.33 (0.01)

2k | 0.81 (0.12) | 0.52 (0.05) | 0.37 (0.01) | 0.00 (0.00) | 0.40 (0.02) | 0.26 (0.03)

Latent+measm | Sk | 0.88 (0.11) | 0.52 (0.05) | 0.49 (0.01) | 0.04 (0.03) | 0.46 (0.03) | 0.29 (0.01)
10k | 0.91 (0.09) | 0.53 (0.05) | 0.49 (0.01) | 0.02 (0.03) | 0.47 (0.05) | 0.34 (0.04)

2k | 0.66 (0.01) | 0.44 (0.02) | 0.31 (0.01) | 0.17 (0.06) | 0.30 (0.04) | 0.32 (0.03)

Latent general | 5k | 0.72 (0.03) | 0.45 (0.03) | 0.33 (0.01) | 0.21 (0.07) | 0.38 (0.04) | 0.34 (0.02)
10k | 0.80 (0.05) | 0.45 (0.04) | 0.33 (0.01) | 0.21 (0.04) | 0.35 (0.01) | 0.36 (0.01)
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Example: Big 5 Questions Are Well Designed but...

Big 5:
openness; conscientiousness; extraversion; agreeableness; neuroticism

[061 I do not have

a good imagination.

[09] I spend time

reflecting on things.

[E10 I am quiet

around strangers.

[05] | have

excellent ideas.

[03] I have a vivid

imagination.

010) Extraversion Neuroticism
I am full of

ideas.
eeas [E9] I don't mind being
the center of attention.

[E8] I don't like to draw
attention to myself.

[EG] I have little to say.

[EZ] I don't talk a lot. [N6] I get [N 1] I get

[NS] lam Upsetessily. stressed out easily.

easily disturbed. [N4] I seldom
feel blue.

[NZ] | am relaxed

most of the time.

[07] | am quick to

understand things.

[E7] 1talk to a lot of
different people at parties.

Openness

[E3] | feel comfortable

around people.

02] I have
difficulty
understanding
abstract ideas.

[04] I t interested [El] I am the life of the party.

in abstract ideas.

[E5] | start conversations.

[E4] 1k he background (N3] s worry [N9]

I keep in the background. about things. N9 N8l in
[08] 1 use difficult 01] 1 have a irritated easily. requlnt ave
words. rich vocabulary. mood swings

[A10] I make

< people feel at ease.

[N7] I change

my mood a lot.
[A3] 1 insult people.
v
[ ] / [AZ] lam [ ]
1 H C5] 1 get chores interested in people. A9] | feel others'
Conscientiousness [ 1estchor /. e Agreeableness
[C8] I shirk my duties. . , / - . [AS] | take time
- \ / ) out for others.
C4] 1 mak T \
!ness]of rt?\?ngs L1 > [A7] I am not really
— . interested in others.
[C7] | like order. «— P " I\ A[C3] | pay attention to details. t h ;n——“"*n-\\n
_ N\ [Al] I feel little \ B [A6] I'have a
[Cl] lam always ) » 4[(:9] | follow a schedule. concern for others. ! soft heart.
prepared. v [AS] I am not interested in
[ClO] lam X gCZ] lleavemy * LC6] | often forget to put things [A4] | sympathize with other people’s problems.
exacting in my work. elongings around. back in their proper place. others’ feelings.

45 Nice results by Xinshuai Dong


https://en.wikipedia.org/wiki/Conscientiousness

Intermediate Summary: Identifying
Latent Causal Graphs

. 7 ©
® Lurther issues... > L.
® Weaker conditions on the structure?
® Nonstationary cases? @
® More general or domain-specific cases? , /@
Y L4
Lo \_/

X1 X2 X3 Xu X5 X6 X7 Xsg Xo

X;: measured variables
L;: latent variables



Outline

® Why?
o How?
® |ID case
® |inear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® [rom multiple distributions

® With temporal information



Recap: Independent Noise (IN)

Condition

4 >Y

® (Z,Y)follows the IN condition 1iff regression residual ¥ — w'Z 1s
independent from Z

® Help determine causal orders and estimate the Linear, Non-(Gaussian

Acyclic Causal model (LINGAM)




Generalized Independent @:
Noise Condition (GIN) )

>
: 7= {X;} Y = {Xo, X34 i
&
C - XQ —b- X3
=c(bL1 + E5) — b(cLy + Es) Nontrivial linear combination
—cEy — bEj5, of Xo and X3 will involve

the noise term in L1,

independent from L, and from X7,
hence dependent on X4

and we kno b COU(XQ,Xg)
W W — =
C Cov(X1, X3) 49




Linear, Non-Gaussian Case: GIN

e Generalized Independent Noise (GIN) Condition:
(Z.Y) follows the GIN condition <—> w'Y I 7 :

where w' Cov(Y,Z) =0 and w # 0

1 /\

® Graphical criterion

L

Y

(Z,Y) follows the GIN condition iff %)
there is an exogenous set S of PA(Y)

that blocks all paths between Y @K% /' 5
and Z, where 0<=ISl<=min(ZI, [YI-1) L

X;: observed variables
L;: latent variables

EICNE1E
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GIN Condition for Estimating Linear

Non-Gaussian Latent Graphs

e A two-step algorithm to identify the latent variable graph

- By testing for GIN conditions over the input Xi, -, X3

Step 1: find causal clusters

/@ Cluster 1

L
Cluster 3 //

3

/@ Cluster 2

<

4

Y
——

({X17 CU 7X47 X77 X8}7 {X57 XG})

satisfies GIN condition

51

Step 2: determine causal structure

of the latent variables

o

&)
)

| >

L7

Z

T

Y

—

({X37 X4}7 {X17 X27 X5})
Cluster 3 Cluster 1 & 3

satisfies GIN condition



(GIN-Based Method: Application to leacher’s

Burnout Data

® (Contains 28 measured variables

® Discovered clusters and causal order of Hypothesized model by experts

the latent variables:

w02 [wo1] [RC2] [RC1 ]
4

13 4
Causal Clusters Observed variables Eﬁ“lkﬁé iﬂé
S, (D RC,.RCy. WO,. WO,
DM,, DM,
S (D CC,. CCL.00H.00, |
S, () PS,. PS, |
S; (1) FLC,, ELC,FLCy,ELCY,
ELC
32 SE,.SE,.SE.. EE,.
FFE, FE5, DP,, PA4
3.0 DP,. PA,. PA,

L(S)) > L(Sy) » L(S3) » L(S3) > L(S,) > L(Sy).
(from root to leaf)

® (onsistent with the hypothesized model

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent
Variable Causal Graphs," NeurlPS 2020
- Cai, Xie, Glymour, Hao, Zhang, “ITriad Constraints for Learning Causal Structure of Latent Variables, NeurlPS 2019



Outline

® Why?
® How?
® |ID case
® [.inear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® [rom multiple distributions

® With temporal information



By Yujia Zheng

|dentifiability of nonlinear ICA: challenge

Is nonlinear ICA identifiable?

L — f(S) No, it's i!!-posed without further
dSSUITIPUOINS

Mixtures (x) Independent estimates

—

Sources (s)

-Of6 —A0t4 -0.2 O D 0 2
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|dentifiability of nonlinear ICA: auxiliary variables

Independence alone is too weak » Conditional independence is strong enough

S1, S2, ..., SN are conditionally independent

1,52, ..., SN are marginally independent given an auxiliary variable U (e.g., domain index)

X CB:]l:(s) S

X ®

[Hyvarinen et al., Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning, AISTAT 2019]
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|dentifiability of nonlinear ICA: structural sparsity

S
(Structural Sparsity) For all k € {1,...,n}, there exists Cy, such that
ﬂ supp(Je(s):.) = {k}.
1€Cy X
) i . .
1511 S2 53 S4 Ss Graphically, for every latent source s_i, there exists a
S T el | e el set of observed variable(s) such that the intersection of their/its
| X1 I ® I ® ® | . .
N i s e i parent(s) is s_i
x2 : i o ]
ol R s a Example: for s_1, there exists x_1 and x_4 such that the
:_BC;:_—._—:— _— _— :!—: _—_— F _— _— :: intersection of their parents is s_1
I |
Xs | ! ] ® Failure: two sources influence the same set of observed
I I

variables

[Zheng et al., On the Identifiability of Nonlinear ICA: Sparsity and Beyond, NeurlPS 2022]
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|dentifiability of nonlinear ICA: real-world images

Line thickness

Angle
Upper width

Height

|dentification results on EMNIST

Each row represents an identified source with its value varying
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Outline

® Why?
e How?
® |ID case
® [.inear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



Nonlinear ICA with Multiple Domains

. . Parametric Latent
i.i.d. data? ]
constraints? confounders?
Yes No NoO
NoO Yes Yes

® Nonlinear ICA: observed variables follow X = g(Z), in which Z; are

mutually independent
® Solutions to nonlinear IGA high non-unique

® If the dstr of each Z; change across multiple domains, generally
their are identifiable (up to component-wise transformations)

® Why? O ====tZ T—3X _ g DRI T R X
v ,

- Hyvdrinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural networks,

1999.
- Hoyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In The 22nd

International Conference on Artificial Intelligence and Statistics, 2019.



Partial Identifiability for Domain Adaptation

Lingjing Kong! Shaoan Xie !

Weiran Yao

1

Yujia Zheng! Guangyi Chen?! Petar Stojanov

3

Victor Akinwande'! Kun Zhang?!

Abstract

Unsupervised domain adaptation is critical to
many real-world applications where label informa-
tion is unavailable in the target domain. In general,
without further assumptions, the joint distribution
of the features and the label is not identifiable
in the target domain. To address this issue, we
rely on a property of minimal changes of causal
mechanisms across domains to minimize unnec-
essary influences of domain shift. To encode this
property, we first formulate the data generating
process using a latent variable model with two par-
titioned latent subspaces: invariant components
whose distributions stay the same across domains,
and sparse changing components that vary across
domains. We further constrain the domain shift to
have a restrictive influence on the changing com-
ponents. Under mild conditions, we show that
the latent variables are partially identifiable, from

60

domain indices u, the training (source domain) data follows
multiple joint distributions Py yiu,» Px.y|uss - Px,ylun>
and the test (target domain) data follows the joint distri-
bution py |7, Where py |, may vary across uj, Uy, ...,
u)s. During training, for each ¢-th source domain, we are
given labeled observations (xgj), y,(:) )it from py vy, and
target domain unlabeled instances (x] )35, from py y(u-
The main goal of domain adaptation is to make use of the
available observed information, to construct a predictor that

will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective
is ill-posed. Namely, since the only available observations in
the target domain are from the marginal distribution py,7,
the data may correspond to infinitely many joint distribu-
tions py y|,7- This mandates making additional assump-
tions on the relationship between the source and the target
domain distributions, with the hope to be able to reconstruct
(identify) the joint distribution in the target domain py y|,,7-
Tvpicallv. these assumptions entail some measure of sim-



Finding Changing Hidden Variables for

Iranster Learning

| . Parametric Latent g
?
l \1.d. data constraints? confounders? S g X
Yes No No 1 —p
No Yes Yes

® Underlying components Z¢ may change across domains

® (hanging components Z¢ are identifiable; invariant part Z, are identifiable up to

1ts subspace

e Using invariant part Z. and transformed changing part Zj for prediction

Models — Art — Clipart ~ — Product — Realworld | Avg

Source Only (He et al., 2016) | 64.58+0.68 52.32+0.63 77.63+0.23  80.70+0.81 | 68.81
DANN (Ganin et al., 2016) 64.26+0.59 58.01+£1.55 76.44+0.47 78.80+0.49 | 69.38
DANN+BSP (Chen et al., 2019) | 66.10+0.27 61.03+0.39 78.13+0.31  79.92+0.13 | 71.29
DAN (Long et al., 2015) 68.28+0.45 57.92+0.65 78.45+0.05 81.93+0.35 | 71.64
MCD (Saito et al., 2018) 67.84+0.38 59.91+0.55 79.21+£0.61  80.93+0.18 | 71.97
M3SDA (Peng et al., 2019) 66.22+0.52 58.55+£0.62 79.45+0.52  81.35+0.19 | 71.39
DCTN (Xu et al., 2018) 66.92+0.60 61.82+0.46 79.20+£0.58  77.78+0.59 | 71.43
MIAN (Park & Lee, 2021) 69.39+0.50 63.05+0.61 79.62+0.16  80.44+0.24 | 73.12
MIAN-~ (Park & Lee, 2021) 69.88+0.35 64.20+0.68 80.87+0.37 81.49+0.24 | 74.11
iMSDA (Ours) 75.77+£0.21 60.83+0.73 84.13+0.09 84.83+0.12 | 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

Kong, Xie,Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



Unsupervised Image-to-Image Iranslation

D N A Y r
¥

‘l
‘ :
~ " =

Im 11N

Minimize the influence of ‘Style’on Image’ ¥4'%
during translation. A

How? A minimal number of changing
components?

Images from the winter season domain.
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Published as a conference paper at ICLR 2023

MULTI-DOMAIN IMAGE GENERATION AND TRANSLA-
TION WITH IDENTIFIABILITY GUARANTEES

Shaoan Xie!, Lingjing Kong', Mingming Gong*?, and Kun Zhang'-

I Carnegie Mellon University
Mohamed bin Zayed University of Artificial Intelligence
3The University of Melbourne
shaocan@cmu.edu, lingjingkong@cmu.edu,
mingming.gong@unimelb.edu.au, kunzl@cmu.edu

ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are
two important and related computer vision problems. The common technique
for the two tasks is the learning of a joint distribution from multiple marginal
distributions. However, it is well known that there can be infinitely many joint
distributions that can derive the same marginals. Hence, it is necessary to formulate
suitable constraints to address this highly ill-posed problem. Inspired by the recent
advances in nonlinear Independent Component Analysis (ICA) theory, we propose
a new method to learn the joint distribution from the marginals by enforcing

a specific type of minimal change across domains. We report one of the first
recnlte connectino multi-donmain cenerative mndele tn identifiahilitv and chnwe
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Sample Images Generated by
Generative Adversarial Networks (GANs)

Images generated by a GAN created by NVIDIA.
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https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Training set

Random
noise €

Generator

ﬁke image  Image credit: Thalles Silva

Discriminator

h {Fa ke

Minimax game which G wants to minimize V while D wants to
maximize it:

minmax V(D,G) = E

G D

z~pana(e) (108 D ()] + Ezp, (2 [log(1 — D(G(2)))].
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https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

2

2N

Random
noise €

GAN-Based e W

E == ke
Implementations

U

Generator & | /Fake image

(1)
€

»model the data distribution in
u-th domain

C =

Generator

_ Match the data distribution across domains, while the dimensionality of eéu)

is as small as possible (minimal changes across domains controlled by A; no
penalty when A=0)

- Correspondence relations among domains are identifiable
66



Multi-domain Image Generation &
Translation with Identihiability Guarantees

® [dea: Matching the distributions across domains with a minimal
number of changing components

® (orrespondence info (joint distribution) identifiable under mild
assumptions

® [xample: Generating female & males images with the same “content”

Ours (A=0.1) StyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023



More
results...

Figure 10: CelebA-HQ. Without the sparsity regularization, i.e., A = 0, we observe some unnecessary
changes between the image tuples in each row. For example, e.g.,the added sun-glasses and skin color

change in the first row. TGAN changes the background (first row of third panel). CoGAN changes
the skin color (second row, second panel).



More

results. ..

StyleGAN2-ADA

£
b
V- \

Figure 11: AFHQ. StyleGAN2-ADA changes animal poses in many examples, e.g., second and third
row of first panel. Our base (A = 0) also changes the poses, e.g., first and third row of second panel.
CoGAN and TGAN are slightly better in preserving poses but we can observe that some generated
images are unrealistic. For example, the wolf (first row, third panel of TGAN) and the dog (third row,

third panel of CoGAN).



Outline

® Why?
® How?
® |ID case
® [.inear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® [rom multiple distributions

® With temporal information



Temporally Disentangled Representation Learning

Weiran Yao Guangyi Chen Kun Zhang
CMU CMU & MBZUAI CMU & MBZUAI
welran@cmu.edu guangyichenl994@gmail.com kunzl@cmu.edu
Abstract

Recently in the field of unsupervised representation learning, strong identifiability
results for disentanglement of causally-related latent variables have been estab-
lished by exploiting certain side information, such as class labels, in addition to
independence. However, most existing work is constrained by functional form
assumptions such as independent sources or further with linear transitions, and
distribution assumptions such as stationary, exponential family distribution. It is
unknown whether the underlying latent variables and their causal relations are
identifiable if they have arbitrary, nonparametric causal influences in between. In
this work, we establish the identifiability theories of nonparametric latent causal
processes from their nonlinear mixtures under fixed temporal causal influences
and analyze how distribution changes can further benefit the disentanglement. We

nronnee TNRT. a nrincinled framewaonrk ta recaver time-delaved latent cancal vari-



Learning Latent Causal Dynamics

iid. data? Parametric

No

Yes

Yes

Unsupervised
Representation
Learning

e

A ﬁ,ﬂ X =
Time-series Inputs {x,}7_
Latent processes

>

Xt = g(zt) )

Latent
constraints? confounders?

Latent temporal causal processes
zir can be recovered if they follow

Learn the underlying causal dynamics from
their mixtures?
“lime-delayed™ influence renders latent processes
& their relations identifiable

8
e

9 12
7

Causal

. Skeleton
completely nonparametric

model; or furthermore,
non-stationary noise; or
non-stationary causal
influence, or
Parametric constraints

Recovery . s
>

2 5

3 6

Recovered latent

processes

zit = fi ({Zj.t—7|2j.t— € Pa(zit)}, €it) with €; ~ pe,
. -’ ‘-\/—-‘

Nonlinear mixing

Stationary nonparametric transition

-~

Stationary noise

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Comparisons

i.i.d. data? Parametric Latent Learn the underlying causal dynamics from
constraints? confounders? their mixtures?

No “lime-delayed™ influence renders latent processes
& their relations identifiable

Yes

Yes

Table 1: Attributes of nonlinear ICA theories for time-series. A check denotes that a method has an
attribute or can be applied to a setting, whereas a cross denotes the opposite. T indicates our approach.

Theory Time-varying Causally-related Partitioned Nonparametric Applicable to
Relation Process Subspace Transition Stationary Environment
PCL X X X 4 4
HM-NLICA X X X X X
SlowVAE X X X X %
SNICA v v/ X X X
1-VAE v X X X X
LEAP X 4 X / X
TDRL ' v v v v v

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Results on Video Data

® lor easy interpretation, consider two stmple video data sets

e Kil'l1Mask: a video dataset ® Mass-spring system: a video
of binary pedestrian masks dataset with ball movement

and 1nvisible springs

KiTTiMask Learned Interpretation
! V'oll as latent processes P M . Learned Interpretation
ideo ass-sprin
1 1 VidIe)o g latent processes
t—1 t  (Movement 5
T .
? O in a direction) z¢ t (x- & y- coordinates
2
t-1 Zt  (Movement in an s ¢ s Of the 5 balls)
O *O orthogonal direction) ¢> 22 t
73 73 =} zy /'
t—1 t . \
O O (Size)

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,” NeurlPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Causal Representation Learning: A Summary

. Parametric Latent
2 2
HECBCELCT constraints? confounders? WG T 00 g ehoe
No _
No (Different types of)
Yes equivalence class
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No (Extended) regression
Non-I, but [.D. No/Yes
Yes Latent temporal causal
processes identifiable!
NG More informative than
NG MEC (CD-NOD)
May have unique
bt roml D ek dentifiability
; o NG Changing subspace
Ves identifiable
Yos Variables in changing
relations identifiable




Summary

Essential to learn hidden causal variables in many cases!
Possible to achieve even 1n the 11D case

Benefit from distribution changes and temporal
information

Future work
e Lihicient procedure?
® Necessary and suthicient identihiability conditions?

® (hanging relations among hidden variables?



