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Causal Representation Learning: 
Recovery of  the Hidden World

Instructor: Kun Zhang

CBMS Conference -- Foundations of Causal 
Graphical Models and Structure Discovery



Outline
• Why causal/disentangled representations ? 


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information



• Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)


• Causal discovery (Spirtes et al., 1993)/ causal representation learning 
(Schölkopf  et al., 2021): find such representations with identifiability guarantees


• Three dimensions of  the problem:

Uncover Causality from 
Observational Data?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of  causality in data



Causal Representation Learning: A Summary

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable



A Problem in Psychology: Finding Underlying 
Mental Conditions?

• 50 questions for big 5 personality test 



Learning Hidden Variables & Their Relations
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Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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Latent variables & 

their causal structure

Discovery: How?

• Find latent variables Li and their causal relations ?


• Rank deficiency or GIN helps solve the problem

• Measured variables (e.g., answer scores in psychometric questionnaires) 
were generated by causally related latent variables

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



Outline
• Why causal/disentangled representations ? 


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information



Biwei Huang

Identifying Latent Causal Model in 
Linear-Gaussian Cases
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Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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Causal discovery: 

Motivation

• Traditionally, assumes no latent confounders and only considers 
causal structure among observed variables

• Aims to find causal relationships from observational 
data, without doing interventions

• However, in some cases, measured variables may not be causal 
variables, e.g., variables with measurement error, image pixels

X1 X2 X3 X4 X5
1.2 0.7 2.1 1.5 0.9

0.5 0.1 2.2 1.2 1.9

2.9 1.9 3.1 2.2 0.9

2.5 3.5 1.2 1.9 1.4

1.3 1.7 2.3 3.1 2.9



Identifying Latent Causal Graphs
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Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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L1

L2 L3 L4

X10 L5 L6 L7 L8 L9 X11

X1 X2 X3 X4 X5 X6 X7 X8 X9

Figure 1: A hierarchical causal structure involving 9 latent variables (shaded nodes) and 11 observed
variables (unshaded nodes).

latent variables as children (e.g., hierarchical latent structure). For instance, consider Figure ??,38

a hierachical latent model, where Li are latent variables and Xi are observed ones. One may not39

discover the latent L1 and L3 using the above methods.40

There exist work in the literature that tried to learn the hierarchical latent structure other than41

measurement model. For instance, Zhang [2004] generalized the classic latent cluster models and42

proposed hierarchical latent class models (also known as latent tree models) for discrete variables.43

Poon et al. [2010] extend this model and proposed Pouch Latent Tree Models, which allow each leaf44

node consist of one or more continuous observed variables. Later, Choi et al. [2011]) proposed the45

more general latent variables tree models for both discrete and Gaussian random variables, and given46

two efficient estimation algorithms: recursive grouping (RG) and CLGrouping. Work along this line,47

many interesting work have already been proposed [Mourad et al., 2013, Zhang and Poon, 2017].48

Although these methods shave been used in a range of fields, they usually assume the tree-structured49

graphical assumption is met, i.e., there only one path between each pair of variables in the system. In50

many setting, it is often violated, e.g., the structure in Figure 1.51

In this paper, we will make an attempt to study the problem of inferring the latent variables and52

their influences when some latent variables have no observed variables as children. To do so, we53

first introduce a graphical constraint condition which we refer to as the minimal latent hierarchical54

structure. This condition ensures that the structure among latent variables does not include any55

redundant latent nodes. In this condition, unlike the well-known minimal latent tree condition, we56

introduce the latent variable set and allow the causal relationship between them. In addition, we show57

that the Linear Non-Gaussian Latent Hierarchical Model (LiNG-LHM) is (almost) identifiable under58

this minimal minimal latent hierarchical structure and non-Gaussian condition. We further develop59

an practical algorithm for learning the LiNG-LHM by making use of Generalized Independent Noise60

(GIN) conditions, including the number of the latent variable sets and the casual structure among61

latent variable set.62

2 Problem Definition63

2.1 Notation64

In a directed acyclic graph (DAG) G(V = X [ L) with observed variables X = {X1, X2, ...Xm}65

and latent variables L = {L1, L2, ...Ln}. Here, we use “variable” and “node” interchangeably. We66

denote the set of all parents of node Vi as Pa(Vi) and the set of all common latent parents of the67

set Y as L(Y). we use Li to refer to the i-th latent set (in which their neighbors are independent68

of each other given Li) in the graph G. We let |Li| denote the number of elements of Li. We say a69

set Si is a cluster if all nodes in Si share the same latent parent set. In addition, we say a cluster Si70

is pure if there are no same observed descendant node among the nodes of Si. Otherwise, Si is an71

impure cluster 1. Furthermore, we say that a node (which can be either hidden or observed) is active72

if is currently selected. In Figure 1, the parents of L8 is {L1, L4}, i.e., Pa(L8) = {L1, L4}, and the73

common parents of {L5, L6, L7} is {L2, L3}, i.e., L({L5, L6, L7}) = {L2, L3}. There are 7 latent74

sets, such as {L1} and {L2, L3}. |{L1}| = 1 and |{L5, L6}| = 2. {X1, X2, X3} and {X4, X5} are75

two pure clusters but {L4, L8} is an impure cluster.76

1The definitions of the cluster and pure were given in [Silva et al., 2006]. Here, we modify it slightly to
better characterize a set Si that may contain latent nodes.

2

Questions to answer:
• Locate (hierarchical) latent variables (i.e., cluster 

the lower-level variables)
• Identify the causal structure among all variables

  Xi: measured variables
  Li: latent variables
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Motivation of Latent Variable Discovery in AI/
Scientific Discovery

• Identify gene regulation process from gene expression data

• Usually not possible to measure all task-related variables

• Image/Video/Language understanding

• Automatically identify and hierarchically cluster the underlying 
functional brain areas and discover the information flow, from 
measured voxel data

• Causal discovery in the presence of latent variables



• Tetrad condition [Spearman 1904, 
Anderson & Rubin 1956]

12

Xi: measured variables
Li: latent variables

Tetrad condition: 
Indicates rank deficiency 
of 2 x 2 off-diagonal 
covariance matrices

An illustration of Tetrad Conditions
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One-factor measurement model
Tree

• One-factor measurement model [Silva et al., 2006, Kummerfeld et al., 2016]

• Tree structure [Pearl, 1988, Choi et al., 2011]

[Choi et al., 2011]

Applications of Tetrad Conditions



Identifying more general latent structures:
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SEM with linear causal relations:

  Xi: measured variables
  Li: latent variables

Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

Questions to answer:
• Locate (hierarchical) latent 

variables (i.e., cluster the lower-
level variables)

• Identify the causal structure 
among latent variables



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

16

• Rank-deficiency constraints over measured variables
+ Specific search procedure

Basic idea:

‣                    , which is deficient, indicates the smallest number 
of variables that t-separate      from 

Exp:

However, we cannot directly know the 
location of these latent variables in the graph

foundation of this method



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

17

1. Find clusters and assign latent covers greedily

2. Refine incorrect clusters and covers from greedy search

3. Refine edges and find v structures

Search procedure: 



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

18

1. Find clusters and assign latent covers greedily

2. Refine incorrect clusters and covers from greedy search

3. Refine edges and find v structures

Search procedure: 



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

19

Search procedure: 

Input the data from measured variables

1. Find clusters and assign latent covers greedily
(findCausalClusters)

Rule 1:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

20

Search procedure: 

1. Find clusters and assign latent covers greedily

Exp:

(findCausalClusters)

Rule 1:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

21

Search procedure: 

1. Find clusters and assign latent covers greedily
(findCausalClusters)

Rule 1:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

1. Find clusters and assign latent covers greedily
(findCausalClusters)

Rule 1:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

23

Search procedure: 

1. Find clusters and assign latent covers greedily
(findCausalClusters)

Rule 1:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

24

1. Find clusters and assign latent covers greedily

2. Refine incorrect clusters and covers from greedy search

3. Refine edges and find v structures

Search procedure: 



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

25

2. Refine incorrect clusters and covers from 
greedy search

Search procedure: 

Pink area: incorrect clusters due to the greedy search in step 1

(refineClusters)

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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Search procedure: 

(refineClusters)
2. Refine incorrect clusters and covers from 
greedy search

Rule 2:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

34

1. Find clusters and assign latent covers greedily

2. Refine incorrect clusters and covers from greedy search

3. Refine edges and find v structures

Search procedure: 



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

35

3. Refine edges and find v structures

Search procedure: 

(refineEdges)

Rule 3:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

36

3. Refine edges and find v structures

Search procedure: 

(refineEdges)

Another example that contains the v structure:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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3. Refine edges and find v structures

Search procedure: 

(refineEdges)

Another example that contains the v structure:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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3. Refine edges and find v structures

Search procedure: 

(refineEdges)

Another example that contains the v structure:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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3. Refine edges and find v structures

Search procedure: 

(refineEdges)

Another example that contains the v structure:



Latent Hierarchical Causal Structure Discovery with 
Rank Constraints

40

Main identifiability condition:
For each latent variable set L with size k, it has 

• at least k+1 pure children (can be either latent or measured) and
• another k+1 neighbors

Pure children: if  V are pure children of  latent variables L,                
then V do not have other parents besides L 

Exp: 
Let L={L2,L3} with size 2:

3 pure children: {L6,L7,L8}

3 neighbors: {L1,L9,L10}
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The proposed approach works for
  

✓ Latent hierarchical causal structure with linear causal relations

✓ Each latent variable set with size k has at least (k+1) pure children

✓ Multiple latent parents for each (measured or latent) variable

Latent Hierarchical Causal Structure Discovery with 
Rank Constraints
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• Direct causal influences among observed variables
• In the special case with no latent variables, it returns the same graph 

as the PC algorithm

• Causal-related latent variables
• Latent variables may form a hierarchical structure
• Latent variables can serve as both confounders and intermediate 

variables for observed variables

Extension to the general case: to allow observed 
variables to be causes as well

Xinshuai Dong, Biwei Huang, Peter Spirtes, 
Kun Zhang, et al., ongoing work



43

Extension to the general case: to allow observed 
variables to be causes as well

1 2

Conditional independence Vs. Rank: 

2

1
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Extension to the general case: To allow observed 
variables to be causes as well
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Example: Big 5 Questions Are Well Designed but…
Big 5: 

openness; conscientiousness; extraversion; agreeableness; neuroticism

Nice results by Xinshuai Dong

https://en.wikipedia.org/wiki/Conscientiousness


Intermediate Summary: Identifying 
Latent Causal Graphs

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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L1

L2 L3 L4

X10 L5 L6 L7 L8 L9 X11

X1 X2 X3 X4 X5 X6 X7 X8 X9

Figure 1: A hierarchical causal structure involving 9 latent variables (shaded nodes) and 11 observed
variables (unshaded nodes).

latent variables as children (e.g., hierarchical latent structure). For instance, consider Figure ??,38

a hierachical latent model, where Li are latent variables and Xi are observed ones. One may not39

discover the latent L1 and L3 using the above methods.40

There exist work in the literature that tried to learn the hierarchical latent structure other than41

measurement model. For instance, Zhang [2004] generalized the classic latent cluster models and42

proposed hierarchical latent class models (also known as latent tree models) for discrete variables.43

Poon et al. [2010] extend this model and proposed Pouch Latent Tree Models, which allow each leaf44

node consist of one or more continuous observed variables. Later, Choi et al. [2011]) proposed the45

more general latent variables tree models for both discrete and Gaussian random variables, and given46

two efficient estimation algorithms: recursive grouping (RG) and CLGrouping. Work along this line,47

many interesting work have already been proposed [Mourad et al., 2013, Zhang and Poon, 2017].48

Although these methods shave been used in a range of fields, they usually assume the tree-structured49

graphical assumption is met, i.e., there only one path between each pair of variables in the system. In50

many setting, it is often violated, e.g., the structure in Figure 1.51

In this paper, we will make an attempt to study the problem of inferring the latent variables and52

their influences when some latent variables have no observed variables as children. To do so, we53

first introduce a graphical constraint condition which we refer to as the minimal latent hierarchical54

structure. This condition ensures that the structure among latent variables does not include any55

redundant latent nodes. In this condition, unlike the well-known minimal latent tree condition, we56

introduce the latent variable set and allow the causal relationship between them. In addition, we show57

that the Linear Non-Gaussian Latent Hierarchical Model (LiNG-LHM) is (almost) identifiable under58

this minimal minimal latent hierarchical structure and non-Gaussian condition. We further develop59

an practical algorithm for learning the LiNG-LHM by making use of Generalized Independent Noise60

(GIN) conditions, including the number of the latent variable sets and the casual structure among61

latent variable set.62

2 Problem Definition63

2.1 Notation64

In a directed acyclic graph (DAG) G(V = X [ L) with observed variables X = {X1, X2, ...Xm}65

and latent variables L = {L1, L2, ...Ln}. Here, we use “variable” and “node” interchangeably. We66

denote the set of all parents of node Vi as Pa(Vi) and the set of all common latent parents of the67

set Y as L(Y). we use Li to refer to the i-th latent set (in which their neighbors are independent68

of each other given Li) in the graph G. We let |Li| denote the number of elements of Li. We say a69

set Si is a cluster if all nodes in Si share the same latent parent set. In addition, we say a cluster Si70

is pure if there are no same observed descendant node among the nodes of Si. Otherwise, Si is an71

impure cluster 1. Furthermore, we say that a node (which can be either hidden or observed) is active72

if is currently selected. In Figure 1, the parents of L8 is {L1, L4}, i.e., Pa(L8) = {L1, L4}, and the73

common parents of {L5, L6, L7} is {L2, L3}, i.e., L({L5, L6, L7}) = {L2, L3}. There are 7 latent74

sets, such as {L1} and {L2, L3}. |{L1}| = 1 and |{L5, L6}| = 2. {X1, X2, X3} and {X4, X5} are75

two pure clusters but {L4, L8} is an impure cluster.76

1The definitions of the cluster and pure were given in [Silva et al., 2006]. Here, we modify it slightly to
better characterize a set Si that may contain latent nodes.

2

  Xi: measured variables
  Li: latent variables

• Further issues…

• Weaker conditions on the structure?

• Nonstationary cases?

• More general or domain-specific cases?



Outline
• Why?


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information



Recap: Independent Noise (IN) 
Condition

• (Z, ) follows the IN condition iff  regression residual  is 
independent from Z


• Help determine causal orders and estimate the Linear, Non-Gaussian 
Acyclic Causal model (LiNGAM)

Y Y � w̃|Z

Z            Y

X2 X3

X1 X4
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X1
L1

L2

X2

X3

X1
L1

L2

X2

X3

X

a

b c

a

b
c

ƛ

c ·X2 � b ·X3

=c(bL1 + E2)� b(cL1 + E3)

=cE2 � bE3,

independent from L1 and from X1,

and we know
b

c
=

Cov(X2, X3)

Cov(X1, X3)

Nontrivial linear combination
of X2 and X3 will involve
the noise term in L1,
hence dependent on X1

Generalized Independent 
Noise Condition (GIN)

L3

X1
L1

L2

X2

X3 X4

X5

X6

Z = {X1}            Y = {X2, X3}
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• Generalized Independent Noise (GIN) Condition:
,

• Graphical criterion

follows the GIN condition if
there is an exogenous set S of PA(Y) 
that blocks all paths between Y 
and Z, where 0<=|S|<=min(|Z|, |Y|-1)      

where

follows the GIN condition

  Xi: observed variables
  Li: latent variables

Linear, Non-Gaussian Case: GIN



Step 1: find causal clusters

51

Step 2: determine causal structure 
of the latent variables

• A two-step algorithm to identify the latent variable graph
- By testing for GIN conditions over the input X1, ···, X8

satisfies GIN condition
satisfies GIN condition

Cluster 3 Cluster 1 & 3

L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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Cluster 1

Cluster 2

Cluster 3
L1

L2

L3

L4

X1 X2 X3 X4

X5

X6

X7

X8

Figure 1: A causal structure involving 4 latent variables and 8 observed variables, where each pair of
observed variables in {X1, X2, X3, X4} are affected by two latent variables.
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GIN Condition for Estimating Linear 
Non-Gaussian Latent Graphs



GIN-Based Method: Application to Teacher’s 
Burnout Data

• Contains 28 measured variables 

• Discovered clusters and causal order of  
the latent variables:


• Consistent with the hypothesized model
Ref [Byrne, 2010]

(from root to leaf)

Hypothesized model by experts

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent 
Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019



Outline
• Why?


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information
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Is nonlinear ICA identifiable?

No, it’s ill-posed without further 
assumptions

Identifiability of nonlinear ICA: challenge

By Yujia Zheng
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Independence alone is too weak Conditional independence is strong enough

S1, S2, … , SN are marginally independent S1, S2, … , SN are conditionally independent 
given an auxiliary variable U (e.g., domain index)

S

X S

X

U

Identifiability of nonlinear ICA: auxiliary variables

[Hyvarinen et al., Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning, AISTAT 2019]
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Identifiability of nonlinear ICA: structural sparsity

[Zheng et al., On the Identifiability of Nonlinear ICA: Sparsity and Beyond, NeurIPS 2022]

Graphically, for every latent source s_i, there exists a
set of observed variable(s) such that the intersection of their/its 
parent(s) is s_i

Example: for s_1, there exists x_1 and x_4 such that the 
intersection of their parents is s_1

Failure: two sources influence the same set of observed 
variables

S

X
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Identification results on EMNIST

Each row represents an identified source with its value varying

Line thickness

Angle

Upper width

Height

Identifiability of nonlinear ICA: real-world images



Outline
• Why? 


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information



Nonlinear ICA with Multiple Domains
i.i.d. data? Parametric 

constraints?
Latent 

confounders?
Yes No No
No Yes Yes

• Nonlinear ICA: observed variables follow X = g(Z), in which Zi are 
mutually independent 


• Solutions to nonlinear ICA high non-unique


• If  the dstr of  each Zi change across multiple domains, generally 
their are identifiable (up to component-wise transformations)


• Why?

- Hyvärinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural networks, 
1999.

- Hyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In The 22nd 
International Conference on Artificial Intelligence and Statistics, 2019.

𝜃1  Z1

𝜃2  Z2
for :Z′￼= h(Z)

X1

X2
g

𝜃1  Z’1

𝜃2  Z’2

X1

X2
gg′￼



60



Finding Changing Hidden Variables for 
Transfer Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Underlying components  may change across domains


• Changing components  are identifiable; invariant part  are identifiable up to 
its subspace


• Using invariant part  and transformed changing part  for prediction

ZS

ZS ZC

ZC Z̃S

- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022
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Methods ! Art ! Cartoon ! Photo ! Sketch Avg
Source Only (He et al., 2016) 74.9 ± 0.88 72.1±0.75 94.5±0.58 64.7±1.53 76.6
DANN (Ganin et al., 2016) 81.9±1.13 77.5±1.26 91.8±1.21 74.6±1.03 81.5
MDAN (Zhao et al., 2018) 79.1±0.36 76.0±0.73 91.4±0.85 72.0±0.80 79.6

WBN (Mancini et al., 2018) 89.9±0.28 89.7±0.56 97.4±0.84 58.0±1.51 83.8
MCD (Saito et al., 2018) 88.7±1.01 88.9±1.53 96.4±0.42 73.9±3.94 87.0

M3SDA (Peng et al., 2019) 89.3±0.42 89.9±1.00 97.3±0.31 76.7±2.86 88.3
CMSS (Yang et al., 2020) 88.6 ±0.36 90.4± 0.80 96.9±0.27 82.0±0.59 89.5

LtC-MSDA (Wang et al., 2020) 90.19 90.47 97.23 81.53 89.8
T-SVDNet (Li et al., 2021) 90.43 90.61 98.50 85.49 91.25

iMSDA (Ours) 93.44±0.20 91.79±1.52 98.28±0.03 88.95±0.64 93.12

Table 1. Classification results on PACS. Backbone:Resnet-18. Most baseline results are taken from (Yang et al., 2020).

Models ! Art ! Clipart ! Product ! Realworld Avg
Source Only (He et al., 2016) 64.58±0.68 52.32±0.63 77.63±0.23 80.70±0.81 68.81
DANN (Ganin et al., 2016) 64.26±0.59 58.01±1.55 76.44±0.47 78.80±0.49 69.38

DANN+BSP (Chen et al., 2019) 66.10±0.27 61.03±0.39 78.13±0.31 79.92±0.13 71.29
DAN (Long et al., 2015) 68.28±0.45 57.92±0.65 78.45±0.05 81.93±0.35 71.64
MCD (Saito et al., 2018) 67.84±0.38 59.91±0.55 79.21±0.61 80.93±0.18 71.97

M3SDA (Peng et al., 2019) 66.22±0.52 58.55±0.62 79.45±0.52 81.35±0.19 71.39
DCTN (Xu et al., 2018) 66.92±0.60 61.82±0.46 79.20±0.58 77.78±0.59 71.43

MIAN (Park & Lee, 2021) 69.39±0.50 63.05±0.61 79.62±0.16 80.44±0.24 73.12
MIAN-� (Park & Lee, 2021) 69.88±0.35 64.20±0.68 80.87±0.37 81.49±0.24 74.11

iMSDA (Ours) 75.77±0.21 60.83±0.73 84.13±0.09 84.83±0.12 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

7.2. Results and Discussion

PACS The results for PACS are presented in Table 1. We
can observe that for the majority of the transfer directions,
iMSDA outperforms the most competitive baseline by a con-
siderable margin of 1.2% - 3%. For the ! Phone direction
where it does not, the performance is within margin of error
compared to the strongest algorithm T-SVDNet. Notably,
when compared with T-SVDNet (Li et al., 2021), which is
recently proposed, our method achieves a significant perfor-
mance gain on the challenging task ! Sketch. In addition,
we visualize the learned features by our method in Figure S1
(Appendix S4) and find that features learned by iMSDA are
more clustered and discriminative.

Office-Home Compared to the PACS dataset, Office-
Home dataset contains 64 categories and thus is more chal-
lenging. The results in Table 2 show that iMSDA is still
superior to other algorithms in most of the transfer tasks.
In particular, we achieve the accuracy of 75.77 on the !
Art task while the strongest baseline MIAN and its variant
MIAN-� can only achieve an accuracy of 69.39 and 69.88
respectively.

8. Conclusion
It is not uncommon to assume observations of the real-world
are generated from high-level latent variables and thus the
ill-posedness in the problem of UDA can be reduced to
obtaining meaningful reconstructions of the those latent
variables and mapping distinct domains to a shared space
for classification.

In this work, we show that under reasonable assumptions
on the data generating process, as well as leveraging the
principle of minimality, we can obtain partial identifiability
of the changing and invariant parts of the generating pro-
cess. In particular, by introducing an high-level invariant
latent variable that influences the changing variable and the
corresponding label across domains, we show identifiabil-
ity of the joint distribution px,y|uT for the target domain
uT with a classifier trained on source domain labels. Our
proposed VAE combined with a flow model architecture
learns disentangled representations that allows us perform
multi-source UDA with state-of-the-art results across vari-
ous benchmarks.
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Unsupervised Image-to-Image Translation
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Images from the summer season domain.

Images from the winter season domain.

Content
 

                                   Image

Style

Minimize the influence of  ‘Style’ on ‘Image’ 
during translation.

How?  A minimal number of changing 
components?
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Sample Images Generated by 
Generative Adversarial Networks (GANs)
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Images generated by a GAN created by NVIDIA.

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf


GANs
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Image credit: Thalles Silva

Minimax game which G wants to minimize V while D wants to 
maximize it:

𝜖

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394


GAN-Based 
Implementations
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- Match the data distribution across domains, while the dimensionality of  
is as small as possible (minimal changes across domains controlled by ƛ; no 
penalty when ƛ=0)

- Correspondence relations among domains are identifiable

ϵ(u)
S

ϵ(u)
S

ϵC

𝜖

model the data distribution in 
u-th domain



Multi-domain Image Generation & 
Translation with Identifiability Guarantees

• Idea: Matching the distributions across domains with a minimal 
number of  changing components


• Correspondence info (joint distribution) identifiable under mild 
assumptions


• Example: Generating female & males images with the same “content”
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It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7
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widely used metric for distribution divergence between the generated images and the real images.
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Ours (ƛ=0.1) TGANStyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023
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Outline
• Why? 


• How?


• IID case


• Linear-Gaussian case


• Linear, non-Gaussian case


• Nonlinear case


• From multiple distributions


• With temporal information





Learning Latent Causal DynamicsLEAP: Latent tEmporally cAusal Processes Estimation 

10

Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

xt = g(zt)
Latent processes

Recovered latent 
processes

Latent temporal causal processes 
zit can be recovered if they follow


- completely nonparametric 
model; or furthermore,


- non-stationary noise; or 

- non-stationary causal 

influence, or 

- Parametric constraints 

LEAP: Latent tEmporally cAusal Processes Estimation 
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Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.
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• Linear + Laplacian Noise
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Temporal VAE with Causal Prior

Causal 
Skeleton 
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Representation 

Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

Learn the underlying causal dynamics from 
their mixtures?


“Time-delayed” influence renders latent processes 
& their relations identifiable

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Comparisons
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constraints?
Latent 

confounders?
Yes No No
No Yes Yes

Learn the underlying causal dynamics from 
their mixtures?


“Time-delayed” influence renders latent processes 
& their relations identifiable

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Results on Video Data 

• For easy interpretation, consider two simple video data sets

Published as a conference paper at ICLR 2022

(Violation) Low-rank State Transition For this dataset, the transition matrix B⌧ in Eq. 4 is low-
rank instead of full-rank. The datasets are created following the steps in the VAR dataset, but we
restrict the rank of state transition matrix B⌧ to 4 and time lag L = 1. The full matrix rank is 8.

(Violation) Gaussian Noise Distribution For this dataset, the noise terms ✏it in Eq. 4 follow the
Gaussian distribution (↵i = 2) instead of Generalized Laplacian distribution (↵i < 2). In particular,
the noise terms ✏it are sampled from i.i.d. Gaussian distribution (� = 0.1).

(Violation) Regime-Variant Causal Relations For regime-variant causal relations, we generate
240,000 data points according to Eq. 55:

xt = g(zt), zt =
LX

⌧=1

Bu
⌧ zt�⌧ + ✏t with ✏it ⇠ p✏i . (55)

The noises ✏it are sampled from i.i.d. Laplace distribution (� = 0.1). In each regime u, the entries
of state transition matrices Bu

⌧ are uniformly distributed between [�0.5, 0.5].

(Violation) Instantaneous Causal Relations For instantaneous causal relations, we generate
45,000 data points according to Eq. 56:

xt = g(zt), zt = Azt +
LX

⌧=1

B⌧zt�⌧ + ✏t with ✏it ⇠ p✏i , (56)

where matrix A is a random Directed Acyclic Graph (DAG) which contains the coefficients of the
linear instantaneous relations. The noises ✏it are sampled from i.i.d. Laplacian distribution with
� = 0.1. The entries of state transition matrices B⌧ are uniformly distributed between [�0.5, 0.5].

B.2 REAL-WORLD DATASET

Three public datasets, including KiTTiMask, Mass-Spring System, and CMU MoCap database, are
used. The observations together with the true temporally causal latent processes are showcased in
Fig. B.1. For CMU MoCap, the true latent causal variables and time-delayed relations are unknown.

(a) (b) (c)
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Figure B.1: Real-world datasets: (a) KiTTiMask is a video dataset of binary pedestrian masks, (b)
Mass-Spring system is a video dataset with ball movement rendered in color and invisible springs,
and (c) CMU MoCap is a 3D point cloud dataset of skeleton-based signals.

KiTTiMask The KiTTiMask dataset consists of pedestrian segmentation masks sampled from the
autonomous driving vision benchmark KiTTi-MOTS. For each given frame, the position (vertical
and horizontal) and the scale of the pedestrian masks are set using measured values. The difference
in the sample time (e.g., �t = 0.15s) generates the sparse Laplacian innovations between frames.

Mass-Spring System The Mass-Spring system is a classical physical system that several objects
are connected by some visible/invisible spring, which follows Hooke’s law. In this work, we consid-
ered the system with five degrees of freedom and made linearization on the state without calculating
the Euclidian distance between objects. Thus, there are ten causal relations, six of which were
set connected, and the other four were disconnected. The rest length of the spring was uniformly
distributed between [1, 10], and the stiffness of the spring relation was set as 20. The action was
at = 300et, where et followed the Laplacian distribution with mean µ = 0 and variance � = 1.
We assumed there was no damping in the system and randomly assigned the objects in different
positions at the beginning of each episode.
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Figure B.1: Real-world datasets: (a) KiTTiMask is a video dataset of binary pedestrian masks, (b)
Mass-Spring system is a video dataset with ball movement rendered in color and invisible springs,
and (c) CMU MoCap is a 3D point cloud dataset of skeleton-based signals.

KiTTiMask The KiTTiMask dataset consists of pedestrian segmentation masks sampled from the
autonomous driving vision benchmark KiTTi-MOTS. For each given frame, the position (vertical
and horizontal) and the scale of the pedestrian masks are set using measured values. The difference
in the sample time (e.g., �t = 0.15s) generates the sparse Laplacian innovations between frames.

Mass-Spring System The Mass-Spring system is a classical physical system that several objects
are connected by some visible/invisible spring, which follows Hooke’s law. In this work, we consid-
ered the system with five degrees of freedom and made linearization on the state without calculating
the Euclidian distance between objects. Thus, there are ten causal relations, six of which were
set connected, and the other four were disconnected. The rest length of the spring was uniformly
distributed between [1, 10], and the stiffness of the spring relation was set as 20. The action was
at = 300et, where et followed the Laplacian distribution with mean µ = 0 and variance � = 1.
We assumed there was no damping in the system and randomly assigned the objects in different
positions at the beginning of each episode.
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• KiTTiMask: a video dataset 
of  binary pedestrian masks

• Mass-spring system: a video 
dataset with ball movement 
and invisible springs

Mass-spring

Video
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latent processes Interpretation

(x- & y- coordinates
 of the 5 balls)

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022



Causal Representation Learning: A Summary

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable



Summary

• Essential to learn hidden causal variables in many cases!


• Possible to achieve even in the IID case


• Benefit from distribution changes and temporal 
information


• Future work


• Efficient procedure?


• Necessary and sufficient identifiability conditions?


• Changing relations among hidden variables?


