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Outline

Semi-supervised learning
Domain adaptation (transter learning)
Image-to-image translation

Fairness in machine learning and connection to causality



“Independence” & “Dependence”

Implied by Causal Models

Statistical Intuition: p(effect)
“dependent” on p(causel|effect):

e (Generating process for »
cause X is “independent”
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For Instance, Causal View of
Clustering

® (Clustering (unsupervised)...

® What if X =Y without a
confounder?

P(YX)
P(X) > X— Y

® What if Y—=X without a
confounder?



Problem 1: Semi-Supervised Learning

X2 4 i A
S E °
® X: features; 1: label (or target) S
® Semi-supervised learning: more precise N E i X,
estimate of Px helps learn Pyx Yo o4Q vee A
0’0"1_ ‘0:
4 ‘~~\ o _-”
® Utilizes dependence between px and pyix L2l %\ T
¥ S o0 - o
(Scholkopf et al., 2012) g AL /X
I

® X—Y: unlabeled points do not help
® Y—X: Yes

Scholkopf et al., On causal and anticausal learning, ICML 2012



Typical Assumptions

® (Continuity assumption

® Points that are close to each other are more likely to X, 4

|
|
share a label. o g
S
® Additionally yields a preference for decision boundaries N i
in low-density regions, so few points are close to each ! !
other but in different classes. X L &: coq
PN 00
® (luster assumption e ',"'5‘\\'
~~~~~ ) oo ‘\ )
® The data tend to form discrete clusters, and points in the ®oe o
same cluster are more likely to share a label (although N s
data that shares a label may spread across multiple
clusters).

® Special case of the smoothness assumption.
® Manifold assumption

® The data lie approximately on a manifold of much lower
dimension than the input space.



RMSE + std. error

Some Meta-Analysis of Previous
Experimental Results
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o X: features; Y: label (or target)



Outline

® Semi-supervised learning
® Domain adaptation (transfer learning)
® Image-to-image translation

® lairness in machine learning and connection to causality



Domain Adaptation

tr tr
® ‘Traditional - \(X > Y )

SupCrViSCd source 1
learning:

te __ tr
PXY_PXY

\ J
/ source_Q\ target
® Might not be the : * (test) X
case 1n practice :
® How to leverage @
information in _

source domains?

_— | N

Prob. model PUY(X)Y), PO(X,Y), PO(XY), ... POXY)...




Possible Situations for Domain
Adaptation: When X—=Y

covariate shift s

(Shimodairaoo; Sugiyama etal.0o8; Huang
etal.o7, Gretton etal.08...)
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O test data
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What Features/Components to Transfer?

e Invariant cause distribution (Zhang et al., ICML’13)

e Invariant/transferrable causal mechanism (Zhang et al., ICML’13;
AAAT’14; Gong et al, ICML’16): invariance of P(X¢<|Y)

e Nonparametric transfer learning (Stojanov et al. AISTATS’19; Gong et
al, ICML’18; Zhang et al., NeurIPS’20)

o Detect, model, utilize changes

e Even 1f one aims to find invariant representation, the transformation 1s
domain-specific (Stojanov et al., NeurIPS’21)



may Matter in Prediction: An
[llustration

e

o

Understanding connections between different scenarios
& modeling difterences



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

Y lly th fX 0 %I‘?; 2 (é;j? §' 697 '
® Y is usually the cause o W,
(especially for classification) :33:} 2-77%8/3 ‘ *@

o Target shift (TarS) <0maZTD—>®_>®

PN

LN

e Conditional shift (ConS)
@@ O-@ [

e Generalized target shift (GeTarS) helps

(0mazD->@—>@ i

PY|X

involved parameters estimated by matching Px

Zhang et al., ICML 201 3; Scholkopf et al., 2012; Zhang et al., AAAl 2015; Gong et al., ICML
2016; Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...




"Traditional Methods Assume How
Distribution Changes...

e (Covariate shift @0 maz’D—>®_>@

e Target shift d

e Conditional shift

damai@@)

How to discover and leverage the changeability of the distribution, especially
in complex situations?

(Shimodaira 2000; Sugiyama et al. 2008; Huang et al. 2007, Zhang et al.,, 2013; Zhang et al.,
2015; Gong et al., 201 6; Stojanov et al., 2018...)



NeurIPS 2020

Domain Adaptation As a Problem of Inference on
Graphical Models

Kun Zhang*, Mingming Gong*, Petar Stojanov, Biwei Huang, Qingsong Liu, Clark Glymour

Abstract

This paper is concerned with data-driven unsupervised domain adaptation, where
it is unknown in advance how the joint distribution changes across domains, i.e.,
what factors or modules of the data distribution remain invariant or change across
domains. To develop an automated way of domain adaptation with multiple source
domains, we propose to use a graphical model as a compact way to encode the
change property of the joint distribution, which can be learned from data, and
then view domain adaptation as a problem of Bayesian inference on the graphical
models. Such a graphical model distinguishes between constant and varied modules
of the distribution and specifies the properties of the changes across domains, which
serves as prior knowledge of the changing modules for the purpose of deriving the
posterior of the target variable Y in the target domain. This provides an end-to-end
framework of domain adaptation, in which additional knowledge about how the
joint distribution changes, if available, can be directly incorporated to improve the
graphical representation. We discuss how causality-based domain adaptation can
be put under this umbrella. Experimental results on both synthetic and real data
demonstrate the efficacy of the proposed framework for domain adaptation.

1 Introduction 15



An Approach to Data-Driven Domain
Adaptation

Target-domain

Data set 1 unlabeled data

Data set 2

= Prediction in
larget-domain

Data set n

® Only relevant features needed to predict Y

® Augmented graph learned by GD-NOD

® Independently changing modules 6;

® Special case: invariant modules

® Domain adapticm. i faranman am thic ceanhiscal weadal

@ Judea Pearl @ @yudapearl - Feb 14, 2020

For ML folks, "domain adaptation" connotes an insurmountable obstacle.
For Cl folks it is a causal graphs problem embraced under

® Infer the po

® Nonparame "transportability" theory. This paper arxiv.org/pdf/2002.03278... views the
problem as Bayes inference on graphical models.
Zhang*, Gong™, Stojanov, Ht #Bookofwhy

Models," NeurlPS 2020. (F,




Results on Simulated & Real Data

Table 1: Accuracy on simulated datasets for the baselines and proposed method. The values presented
are averages over 10 replicates for each experiment. Standard deviation is in parentheses.

DICA weigh simple_adapt comb_classif LMP poolSVM Infer
9 sources  80.04(15.5) 72.1(14.5) 70.0(14.3) 72.34(16.24) 78.90(13.81) 71.8(11.43) 83.90(9.02)
4 sources 74.16(13.2) 67.88(13.7)  65.22(16.00) 69.64(15.8) 79.06(13.93) 70.08(12.25) 85.38(11.31)
2 sources 86.56(13.63) 75.04(18.8) 69.42(17.87) 74.28(18.2) 84.52(13.72)  83.84(13.7) 93.10(7.17)

Table 2: Accuracy on the Wi-Fi & Flow data. Standard deviation is in parentheses.

DICA weigh LMP poolSVM Soft-Max poollNN Infer
£2,t3 — t1 29.32(2.5) 43.71(3.02) 46.80(1.4) 40.25(1.6) 44.86(5.1) 42.88(1.6) 70.8(2.7)
t1,83 512 245(3.6) 38.19(1.9)  30.11(2.1)  48.70(1.8) 44.95(4.4) 47.41(2.1) 84529) (L)
t1,t2 > t3  21.7(3.9)  36.03(1.85) 39.28(2.05) 40.46(1.4) 43.63(4.1) 41.00(1.8) 83.0(7.3)
Flow 3 sources 79.2(11.0) 84.2(9.3) 91.6 (8.4) 92.1(7.5) 89.0(9.7) 95.7(5.2) 96.8(3.5)
Flow 5 sources  83.1(12.0) 92.9(7.0) 92.3 (6.4) 94.7(6.1) 89.7(8.0) 96.0(5.1) 97.1(3.5)

Table 3: Accuracy on the digits data. T: MNIST; M: MNIST-M; S: SVHN; D: SynthDigits.

weigh poolNN poolDANN Hard-Max Soft-Max poolNN_Ours Infer
S+M+D/T 75.5 93.8 92.5 97.6 97.9 94.9 96.64
T+S+D/M 56.3 06.1 65.1 66.3 68.7 09.6 89.89
M+T+D/S 604 77.1 77.6 80.2 81.6 67.8 89.34




Transter Learning on WIFI Data

Input X: WiFi signal strengths from s
multiple routers; Y : location

® ’Transfer from two time periods to R
dera
another (e..g, t1, 12 — t3)

2002




Causality & Transterability

Causality helps

But hard to find (rather strong =

assumptions) %

And perhaps not necessary to R

achieve transferability o “Ifa particular stimulus in the
dog's surroundings was present

® Think about classical when the dog was given food

then that stimulus could
become associated with food
and cause salivation on its
own.”’

conditioning
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® ‘o represent independent changes in the joint distribution

® (ausal graph VS, augmented DAG

| bgcause pb(Y|X) is | 0
s invariant across domains .

@_> D)

(a) The underlying data generating process of Example (b) The augmented DAG representation for
1. Y generates (causes) X, and S denotes the selection Example 1 to explain how the data distribu-
variable (a data point is included if and only if S = 1).  tion changes across domains.

0x

nx
T, / because p(Y) is =
@/ \® invariant across domains <: ) 5 @m

(c) The generating process of Example 2. L is a con- (d) The augmented DAG representation for
founder; the mechanism of X changes across domains, Example 2 to explain how the data distribu-
as indicated by 7nx. tion changes across domains.




What Changes Lead to Distribution
Shift?

e Distributions of measured features or their relationships 1n
between

e Due to changes in hidden variables (illumination conditions,
temperature...)?



Partial Identifiability for Domain Adaptation

Lingjing Kong! Shaoan Xie !

Weiran Yao

1

Yujia Zheng! Guangyi Chen?! Petar Stojanov

3

Victor Akinwande'! Kun Zhang?!

Abstract

Unsupervised domain adaptation is critical to
many real-world applications where label informa-
tion is unavailable in the target domain. In general,
without further assumptions, the joint distribution
of the features and the label is not identifiable
in the target domain. To address this issue, we
rely on a property of minimal changes of causal
mechanisms across domains to minimize unnec-
essary influences of domain shift. To encode this
property, we first formulate the data generating
process using a latent variable model with two par-
titioned latent subspaces: invariant components
whose distributions stay the same across domains,
and sparse changing components that vary across
domains. We further constrain the domain shift to
have a restrictive influence on the changing com-
ponents. Under mild conditions, we show that
the latent variables are partially identifiable, from

22

domain indices u, the training (source domain) data follows
multiple joint distributions Py yiu,» Px.y|uss - Px,ylun>
and the test (target domain) data follows the joint distri-
bution py |7, Where py |, may vary across uj, Uy, ...,
u)s. During training, for each ¢-th source domain, we are
given labeled observations (xgj), y,(:) )it from py vy, and
target domain unlabeled instances (x] )35, from py y(u-
The main goal of domain adaptation is to make use of the
available observed information, to construct a predictor that

will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective
is ill-posed. Namely, since the only available observations in
the target domain are from the marginal distribution py,7,
the data may correspond to infinitely many joint distribu-
tions py y|,7- This mandates making additional assump-
tions on the relationship between the source and the target
domain distributions, with the hope to be able to reconstruct
(identify) the joint distribution in the target domain py y|,,7-
Tvpicallv. these assumptions entail some measure of sim-



Finding Changing Hidden Variables for

Iranster Learning

| . Parametric Latent g
?
l \1.d. data constraints? confounders? S g X
Yes No No 1 —p
No Yes Yes

® Underlying components Z¢ may change across domains

® (hanging components Z¢ are identifiable; invariant part Z, are identifiable up to

1ts subspace

e Using invariant part Z. and transformed changing part Zj for prediction

Models — Art — Clipart ~ — Product — Realworld | Avg

Source Only (He et al., 2016) | 64.58+0.68 52.32+0.63 77.63+0.23  80.70+0.81 | 68.81
DANN (Ganin et al., 2016) 64.26+0.59 58.01+£1.55 76.44+0.47 78.80+0.49 | 69.38
DANN+BSP (Chen et al., 2019) | 66.10+0.27 61.03+0.39 78.13+0.31  79.92+0.13 | 71.29
DAN (Long et al., 2015) 68.28+0.45 57.92+0.65 78.45+0.05 81.93+0.35 | 71.64
MCD (Saito et al., 2018) 67.84+0.38 59.91+0.55 79.21+£0.61  80.93+0.18 | 71.97
M3SDA (Peng et al., 2019) 66.22+0.52 58.55+£0.62 79.45+0.52  81.35+0.19 | 71.39
DCTN (Xu et al., 2018) 66.92+0.60 61.82+0.46 79.20+£0.58  77.78+0.59 | 71.43
MIAN (Park & Lee, 2021) 69.39+0.50 63.05+0.61 79.62+0.16  80.44+0.24 | 73.12
MIAN-~ (Park & Lee, 2021) 69.88+0.35 64.20+0.68 80.87+0.37 81.49+0.24 | 74.11
iMSDA (Ours) 75.77+£0.21 60.83+0.73 84.13+0.09 84.83+0.12 | 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

Kong, Xie,Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



Implementation of Partial
Disentanglement for Domain Adaptation

x
'
fu fx
‘ v
.......... .ZAC 23 ._..:.... —> g —> f
A R R B A ‘-"
Figure 1. The generating process: The gray shade e
of nodes indicates that the variable is observable. fu
ceennnnns ..
.... 5 g tte., ~
...... Ze | Jas | T
| network | network
e 0| —
N(0,I)

Figure 2. Diagram of our proposed method, IMSDA. We first apply
the VAE encoder (f,., fs) to encode x into (Z., zs), which is

further fed into the decoder g for reconstruction. In parallel, the
loss = ||x-x]|]>= ||x-d(2)[]? = || x-d(e(x))|] changing part Z; is passed through the flow model fu to recover the
high-level invariant variable z;. We use (Z., zs) for classification

Autoencoder with the classifier fqs and for matching NV (0, I) with a KL loss.



Published as a conference paper at ICLR 2022

ADARL: WHAT, WHERE, AND HOW TO ADAPT IN
TRANSFER REINFORCEMENT LEARNING

Biwei Huang Fan Feng

Carnegie Mellon University City University of Hong Kong
biweih@andrew.cmu.edu ffengl0l7@gmail.com
Chaochao Lu

University of Cambridge & Max Planck Institute for Intelligent Systems
cl64l@cam.ac.uk

Sara Magliacane Kun Zhang
University of Amsterdam & MIT-IBM Watson Al Lab  Carnegie Mellon University &
sara.magliacane@gmail.com Mohamed bin Zayed University of Artificial Intelligence

kunzl@cmu.edu

ABSTRACT

One practical challenge in reinforcement learning (RL) is how to make quick
adaptations when faced with new environments. In this paper, we propose a
principled framework for adaptive RL, called AdaRL, that adapts reliably and
efficiently to changes across domains with a few samples from the target domain,
even in partially observable environments. Specifically, we leverage a parsimonious
graphical representation that characterizes structural relationships over variables
in the RL system. Such graphical representations provide a compact way to
encode what and where the changes across domains are, and furthermore inform
us with a minimal set of changes that one has to consider for the purpose of policy
adaptation. We show that by explicitly leveraging this compact representation to
encode changes, we can efficiently adapt the policy to the target domain, in which
only a few samvles are needed and further policv ontimization is avoided. We

25



Adaptive RL: Procedure

Source domains

Target domain
1

._]1.

E"

Domain-specific parameters §

o

. Domaintshared representatio
Spe-1 = > S1e

SZ.:— 1

”*(Oim'n)
Optimal parametrised policy

Domain n

-1 7*(Ofarger)
timeslice t-1 timeslice t Optimal target policy

Model estimation

Figure 1: The overall AdaRL framework. We learn a Dynamic Bayesian Network (DBN) over the
observations, latent states, reward, actions and domain-specific change factors that is shared across
the domains. We then characterize a minimal set of representations that suffice for policy transfer, so
that we can quickly adapt the optimal source policy with only a few samples from the target domain.



Unsupervised Image-to-Image Iranslation

D N A Y r
¥

‘l
‘ :
~ " =

Im 11N

Minimize the influence of ‘Style’on Image’ ¥4'%
during translation. A

How? A minimal number of changing
components?

Images from the winter season domain.

27



Published as a conference paper at ICLR 2023

MULTI-DOMAIN IMAGE GENERATION AND TRANSLA-
TION WITH IDENTIFIABILITY GUARANTEES

Shaoan Xie!, Lingjing Kong', Mingming Gong*?, and Kun Zhang'-

I Carnegie Mellon University
Mohamed bin Zayed University of Artificial Intelligence
3The University of Melbourne
shaocan@cmu.edu, lingjingkong@cmu.edu,
mingming.gong@unimelb.edu.au, kunzl@cmu.edu

ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are
two important and related computer vision problems. The common technique
for the two tasks is the learning of a joint distribution from multiple marginal
distributions. However, it is well known that there can be infinitely many joint
distributions that can derive the same marginals. Hence, it is necessary to formulate
suitable constraints to address this highly ill-posed problem. Inspired by the recent
advances in nonlinear Independent Component Analysis (ICA) theory, we propose
a new method to learn the joint distribution from the marginals by enforcing

a specific type of minimal change across domains. We report one of the first
recnlte connectino multi-donmain cenerative mndele tn identifiahilitv and chnwe

28



Sample Images Generated by
Generative Adversarial Networks (GANs)

Images generated by a GAN created by NVIDIA.

29


https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Training set

Random
noise €

Generator

ﬁke image  Image credit: Thalles Silva

Discriminator

h {Fa ke

Minimax game which G wants to minimize V while D wants to
maximize it:

minmax V(D,G) = E

G D

z~pana(e) (108 D ()] + Ezp, (2 [log(1 — D(G(2)))].

30


https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

2

2N

Random
noise €

GAN-Based e W

E == ke
Implementations

U

Generator & | /Fake image

(1)
€

»model the data distribution in
u-th domain

C =

Generator

_ Match the data distribution across domains, while the dimensionality of eéu)

is as small as possible (minimal changes across domains controlled by A; no
penalty when A=0)

- Correspondence relations among domains are identifiable
31



Multi-domain Image Generation &
Translation with Identihiability Guarantees

® [dea: Matching the distributions across domains with a minimal
number of changing components

® (orrespondence info (joint distribution) identifiable under mild
assumptions

® [xample: Generating female & males images with the same “content”

Ours (A=0.1) StyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023



Outline

® Semi-supervised learning
® Domain adaptation (transter learning)
® [mage-to-image translation

® Fairness in machine learning and connection to
causality



Carnegie
Mellon
University

What-Is & How-To for ML Fairness

A Principled Connection between Causality and Responsible Al

Zeyu Tang (zeyutang@cmu.edu)

https://zeyu.one




Outline

1
Lo
MOTIVATING DEFINITION AND A QUICK INTRO TO CONCLUSION AND
EXAMPLES PROBLEM SETUP FAIRNESS SPECTRA

Q&A



Example #1: COMPAS!1

A software that predicts the risk of the recidivism of the defendant.

African-American defendants White defendants

Risk Score Risk Score
WHITE AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend 23.5% 44.9%
Labeled Lower Risk, Yet Did Re-Offend 47.7% 28.0%

[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used across the country to predict
future criminals, and it’s biased against blacks. ProPublica, 2016.



Example #2: Loan application

B U 6

Look for credit Check FICO score Approve / Reject



Example #2: Loan application (continued)

TransUnion FICO scores (2003) of more than 300k individuals.

Non-default rate

100%

80%¢

60%

40%

20% ¢}

Non-default rate by FICO score

Asian
White

Hispanic
Black

....

400 500

600
FICO score

700

800

Fraction of group below

1.0

CDF of FICO score by group

o
o

— Asian
White
Hispanic

o
o

o
I

500

600 700

FICO score

800

[1] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In Advances in Neural Information
Processing Systems, pages 3315-3323, 2016.

900



Protected features

 Race & color Civil Rights Act of 1964

e Gender Equal Pay Act of 1963; Civil Rights Act of 1964

* Religion Civil Rights Act of 1964

* National origin Civil Rights Act of 1964

¢ Age Age Discrimination in Employment Act of 1967

* Disability status Rehabilitation Act of 1973; Americans with Disabilities Act of 1990
* \Veteran status Uniformed Employment and Reemployment Rights Act

* Genetic information Genetic Information Nondiscrimination Act



Beyond intuition (notions & settings)

* Group level fairness notions
 Demographic Parity (Calders et al., 2009)
* Equal Opportunity (Hardt et al., 2016)
* Fqualized Odds (Hardt et al., 2016)

e Error-rate Balance (Chouldechova, 2017)
* Predictive Rate Parity (Zafar et al., 2017)

* Individual level fairness notions
* Fairness Through Awareness (Dwork et al. 2011)



Beyond intuition (notions & settings)

* Fairness notions based on estimating/bounding causal effects
* Counterfactual Fairness (Kusner et al., 2017)
* Fair Inference on Outcomes (Nabi & Shpitser, 2018)
e Path-Specific Counterfactual Fairness (Chiappa, 2019)
* PC-fairness (Wu et al., 2019)
Probability of Individual Unfairness (Chikahara et al., 2020)



Examples of fairness notions (CF)

* Counterfactual Fairness (Kusner et al., 2017) \ | /

* The prediction should be the same in following two worlds: v
(a) the actual world
(b) a counterfactual world where the individual belonged to a different group

Actual world Counterfactual world

OQO0O000 OO0O0O

(Y |

Q Q Q Q Q () positive decision Q Q Q Q Q

Q negative decision | :
I

L=



Beyond intuition (notions & settings)

* Fairness in various settings

* Dynamical setting
e “Delayed Impact of Fair Machine Learning” (Liu at al., 2018)
* “How do Fair Decisions Fare in Long-Term Qualifications?” (Zhang et al., 2020)

e “Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors” (Tang et al.,
2023)

 \Welfare consideration

* “A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual &
Group Unfairness via Inequality Indices” (Speicher et al., 2018)

* “Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making”
(Heidari et al., 2018)

e “Allocating Opportunities in a Dynamic Model of Intergenerational Mobility” (Heidari &
Kleinberg, 2021)

10



The fairness flowchart

Data at hand

No Do we assume
the data is free from
historical bias?

Fairness w.r.t.
Data Generating Process | Pass
The bias quantification and
(potential) correction for data
No Does the algorithm
correctly utilize the
information?
Fairness w.r.t.
Predicted Outcome Pass

The bias quantification for
prediction, decision making

[1] Zeyu Tang, Jiji Zhang, and Kun Zhang. What-Is and How-To for Fairness in Machine Learning: A Survey, Reflection, and Perspective. In

ACM Computing Surveys. 2023.

Yes

What is the induced impact
of fairness considerations (if
new data can be collected)?

“Clean” data
Downstream-task ready

Yes

»  to further
>, .

' improve fairness
5 (in the long run,
*or, to a larger

: scale)?

“Fair” prediction
Downstream-task ready

Fairness w.r.t.
Induced Impact
Potential influences
from external
entities like users
and data dynamics
(apart from
prediction,
decision making)

11



Spectrum - w.r.t. data generating process

Data at hand

No Do w§ assume Yes
the data is free from
historical bias?

Fairness w.r.t.

Data Generating Process | Pass “Clean” data
The bias quantification and Downstream-task ready
(potential) correction for data )

45



Spectrum - w.r.t. predicted outcome

“Clean” data
Downstream-task ready

No Does the algorithm Yes
correctly utilize the
information?
Fairness w.r.t. 2
Predicted Outcome Pass “Fair” prediction
The bias quantification for Downstream-task ready

prediction, decision making
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Spectrum - w.r.t. induced impact

What is the induced impact
of fairness considerations (if
new data can be collected)?

Data at hand

“Clean” data
Downstream-task ready

: What can we do
0 to further
-t )
' improve fairness

! scale)?

“Fair” prediction
Downstream-task ready
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Fairness w.r.t.
Induced Impact
Potential influences
from external
entities like users
and data dynamics
(apart from
prediction,
decision making)
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Why three spectra?

Fairness w.r.t.
Data Generating Process
The bias quantification and
(potential) correction for data

Fairness w.r.t.
Predicted Outcome
The bias quantification for
prediction, decision making
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Fairness w.r.t.
Induced Impact
Potential influences
from external
entities like users
and data dynamics
(apart from
prediction,
decision making)
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Thank you!



Summary

e (lausality matters
® “Simplicity” helps in causal discovery & causal representation learning:
® (onditional independence: constraint-based approach

e (ause I noise in constrained FGMs = causal asymmetry

® Independent changes in P(cause) and P(effect | cause)
® Other types of “simplicity”: rank deficiency...
® ML based on causality-related representation
® (Compact description of changes
® Property behind data

® Latent variables & their relations involved 1n changing influences are
generally identifiable



