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Identification of Causal Effects &
Counterfactual Inference: Outline

® Problem definition
® Potential outcome tramework
® Propensity score
® Backdoor criterion and tront door criterion

® (ounterfactual inference



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough if we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

P(X3|  (X2=1))

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
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Identification of Causal Effects
P(Recovery | do(Treatment=A)) ?

® “Golden standard”: randomized controlled experiments

® All the other factors that influence the outcome
variable are either fixed or vary at random, so any
changes in the outcome variable must be due to the
controlled variable

/ \

o ©

® Usually expensive or impossible to do!




Identification of Causal Eftects: Example

Treatment A Treatment B

G 1 G 2
Small Stones foup P
93% (81/87) 87% (234/270)

Group 3 Group 4
73% (192/263) 69% (55/80)

Both  78% (273/350) 83% (289/350) P(R|T) = Z P(R|T,S)P(S|T)
S

Large Stones

P(R|do(T))=» P(R|T,S)P(S)
S

5



Identification of Causal Eftects: Example

Treatment A Treatment B

O Small stones
4 Large stone

Group 1 Group 2

Small Stones 03% (B1/87) | 87% (234/270) 0.95¢
Group 3 Group 4 0.9}
Large SIones ;v (192/263) 69% (s5%80) P (R | do(T)) =
Both 78% (273/350) 83% (289/350) ‘cj_s' 0.85¢
(7))
o 0.8
(&)
— S
n 0.75]
0.7
0.65

17 All patients

Treatment A

Treatment B

conditioning vs. manipulating



Identifiability of Parameters in
Statistical Models

® Jdentifiability, in simple words, means that different values of a
parameter must produce different probability distributions.

® Mathematically, a parameter O is said to be identifiable if and

only
0+#60=>P,#P,, or equivalently P,=P,=>0=10

® Js the mean of a Gaussian distribution identifiable?



Identifiability of Causal Effects

Sometimes written as P(y | X)

® s causal effect, denoted by P(Y | do(X)), identifiable given

complete or partial causal knowledge?

® ‘Two models with the same causal
structure and the same distribution
for the observed variables give the
same causal effect?

® How?

® Key issue: Controlling confounding effects

Examples.: Average causal effect (ACE)...



Key Issue: Controlling Confounding Bias

® [Exercise-cholesterol study: identifiable if age is not observed?

exercise exercise

Cholesterol Cholesterol

Exercise Exercise



Potential Outcome

® Causal inference: Inferring the eftect of treatment/

policy on some outcome

do(T = 1) ey, = Ya(L)
U

& .

do(T = 0)

Causal effect:
Yi(1) - Yi(0)

Y =) =

I'R'I

Yi(0)

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit

Yi(1): potential outcome if the patient had
been treated

Yiaoer=1) = Y1)

Yi(0): potential outcome if the patient had
not been treated

Yiiio(r=0) = Y/(0)




Fundamental Problem
of Causal Inference

® Missing data issue

Unobserved:
Counterfactual

do(T = 0)

Observed:
Factual @ SRR

Y;(0) = 0

M
%
N

T: observed treatment

Y: observed outcome

1: denote a specific subject or unit

Yi(1): potential outcome under treatment
Yidocr=1) = Y{(1)

Yi(0): potential outcome without treatment
Yiidor=0) = Y(0)

Causal effect:
- Yi(0)




Fundamental Problem
of Causal Inference

® Missing data issue

doEE — 1}
Observed:

Yi(1) =1
®

>

&

Factual

Unobserved:
Counterfactual

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit
Yi(1): potential outcome under treatment
A
Yidor=1) = Y1)
Yi(0): potential outcome without treatment
A
Y do(r=0) = Y«(0)

Causal ettect:
Yi(l) -




Fundamental Problem
of Causal Inference

® Missing data issue

g W ) am - )
1.0 0 0 7
2L 1 ? ?
3 100 7 ?
im0 7 0 ?
501 1 ?
6 1 1 ? ?

T: observed treatment
Y: observed outcome
1: denote a specific subject or unit
Yi(1): potential outcome under treatment
A
Yiidoar=1) = Yi(D)
Yi(0): potential outcome without treatment
A
Y do(r=0) = Y«(0)

Causal effect:
Yi(1) - Yi(0)




Potential Outcome Framework

e For aset of 1.1.d. subjects i = 1,---, n, we observed a tuple
(X, T, Y;), comprised of
¢ A feature vector X; € R”
e A treatment assignment 7; € {0,1}

e Aresponse ¥; € R

e Yi(1) and Y:i(0) are potential outcomes in that they represent the
outcomes for individual i had they received the treatment or control
respectively.

e Missing data issue: we only get to see Y, with
Y, = Y(T) = Y,0)(1 - T) + Y(I)T,




Potential Outcome Framework

® Our first goal 1s to estimate the average treatment effect (ATE)
T = E[Y/(1) — Y, (0)]

e However, we cannot find Y;(1) — Y,(0) because of the unobserved
potential outcome

¢ Then what assumptions do we need 1n order to estimate ATE from
observational data?



Assumptions in the Potential-Outcome
Framework

Assumptions that make the ATE be estimated from observational data
® [gnorability: {Y(0),Y(1)} LT
Conditional ignorability: {Y;(0),Y,(1)} 1L T;[X;

® Positivity: 0<P(T=1|X=x)<1

Stable Treatment Value

o No imnterference: Yi(t, -, 6, 1,8, by 1, o, 1,) = Yi(2,)
} Assumption (SUTVA)

o Consistency: T=t= Y= Y@



Assumption 1: Ignorability

¢ The 1ignorability assumption: {Y;(0), Y, (1)} L T,

That is, the potential outcomes of subjects had they been treated
or not does not depend on whether they have really been
(observable) treated or not

e Corresponding graphical model: there 1s no other path
from 7T to Y, except the direct edge X

e ATE = E[Y(1)] — E[Y(0)] \

= E[Y(1)| T = 1] — E[Y(0)| T = 0] (Ignorability)

=E[Y|T=1]—-E[Y|T=0]| (Consistency)

Only contains observable moments



Assumption 1: Ignorability

¢ The 1ignorability assumption: {Y;(0), Y, (1)} L T,

ETY(D] = E[Y(0)] = E[Y(D)|T = 1] - E[Y(0)| T = O]

= E[Y|T=1]—-|E[Y|T = 0]

Yi(0) Y(l) 7
154.68 . = 100.52 — 100.59
135.67 — —
e
a0l
e
117.89 — —
— 7559 | —
il eoegl
100.07 — | —
ey | e

110.59( |100.52




Assumption 1: Conditional ignorability

¢ The conditional 1ignorability assumption: {¥;(0), Y, (1)} L T;| X,

That is, given the covariates, the potential outcomes of subjects
had they been treated or not does not depend on whether they
have really been (observable) treated or not

e Corresponding graphical model: X blocks all paths from T to
Y, except the direct edge

X
e Conditional average treatment effect: / \
CATE = E[Y(1) — [Y(0)| X] T Y

= ETY(1) | X] — ETY(0) | X]
=E[Y(1)|T=1,X]—-E[Y(0)|T=0,X] (Conditional ignorability)

=|E[Y|T=1X]—-E|Y|T=0,X]| (Consistency)
Only contains observable moments




From CATE to ATE

¢ Adjustment formula to identifying ATE

ATE = E[Y(1) — Y(0)] / \

= EyE[Y:(1) — Y(0)| X]




Assumption 2: Positivity

® The positivity assumption

For all values of covariates x present in the population of
interest (i.e., x such that P(X = x) > 0),

O<PT=1|X=x)<1

e A case where the positivity assumption violates
T=0 Suppose X = {Female, Male} T=1

Male
Male Male

Mal
Male e




Assumption 3: No Interference

e The no interference assumption: treatments of other
units do not affect one’s potential outcome, so

Y(tl, l lat t_|_19 9tn) — Yl(tl)

That is, unit i s potential outcome is only a function of its own
treatment, but will not be affected by other units’ treatment

e A case where the assumption holds: ® Violation:

Job training for too many people
may flood the market with qualified
job applicants (interference)

Jack’s recovery 1s not affected by
others’ taking aspirin.

Other’s Taking  Taking  Others’ Taking
aspirin aspirin aspirin

Tl Ti-l Ti Ti+1 Tn

Jack’s
Yi recovery



Assumption 4: Consistency

e The consistency assumption: the potential outcome under
treatment T=t, Y (t), 1s equal to the observed outcome 1f the

actual treatment received 1s T=t, 1.e.,
T=t=— Y=Y, forall

That is, the observed outcome is equal to the potential outcome Y(t),
when the actual treatment received is T =t; there is no variation in

[reatment

T'=1 =0
“I get a dog” “I don’t get a dog”

Q
l‘ (T'=1) = Y =1 (Pm happy)
EE— R — R (ko happy)

(Adapted from Brady Neal, 2020)

Consistency assumption violated



Recall the Assumptions

Assumptions that make the ATE be estimated from observational data

e Ignorability: {Y;(0), Y(1)} 1L T;| X,
Conditional ignorability: {Y;(0),Y,(1)} 1L T;[X;

® Positivity: 0<P(T=1|X=x) <1

e No imterference: Yi(t;, -, t;_, 8, by, o t,) = Yi(t)
Stable Unit Treatment
: Value Assumption
o Consistency: T=t= Y = Y(¢) SUTVA)

Stable Unit Treatment Value Assumption (SUVTA): No
interference assumption + Consistency assumption

SUVTA allows to write potential outcome for the 1th person
in terms of only that person’s treatments



Derivation of ATE

No interference:

7N\

ATE = E[Y(1) — Y(0)] = E[Y(1)] — E[Y(0)] (Linearity of expectation)

= E,[E[Y(1)| X] — E[Y(0) | X]1] (Law of iterated expectations)
_ _ _ _ (Ignorability and
= E[E[Y(1)|T = 1,X] - E[Y(O)|T = 0,X]] Positivity)

= E[ELY|T=1,X]—-E[Y|T=0,X]] (Consistency)



Estimands, Estimates, and
Estimation

¢ Estimand: any quantity we want to estimate
® Causal estimand (e.g. E[Y(1) — Y(0)]
® Statistical estimand (e.g. Ex[E[Y|T = 1,X] — E[Y|T = 0,X]])

e Estimate: approximation of some estimand, using data

e Estimation: process for getting from data + estimatand to estimate

The Identification-Estimation Flowchart

Identification Estimation

Causal Estimand > Statistical Estimand » Estimate




Example: Effect of Sodium Intake on Blood Pressure

Data (Epidemiological example taken from Luque-Fernandez et al. (2018)):

e Outcome Y: (systolic) blood pressure (continuous)
e Treatment T: sodium intake (1 1f above 3.5 mg and 0 if below)
e Covariates X: age and amount of protein excreted 1n urine

e Simulation: so we know the “true” ATE 1s 1.05

Estimation of ATE

True ATE: E[Y (1) — Y (0)] = 1.05
Identification: E[Y (1) —=Y(0)] =Ex [E[Y |T =1, X| —E[Y | T =0, X]]

: : 1
Estimation: - E Wipe || 28 = L, 4 = e | 78 =), 44|
= o\ )

Model (linear regression)

Bt 0135 '0'851651'0“ % 100% = 19%
Naive: E[Y | T =1] - E[Y | T = 0]
5.33 — 1.05 (Adapted from

Naive estimate: 5.33 x 100% = 407%

1.05 Brady Neal, 2020)




How to Estimate Causal Effect With
Confounders?

1) Randomization
E[Y(1)-Y(0)] =E[Y|T=1]-E[Y|T=0]
X\ Interventionon T X\
T >Y

T >Y

2) Statistical adjustment

ATE = E[E[Y|T = 1,X] — E[Y|T = 0.X]]



Covariates Adjustments

ATE = E(JE[Y|T = 1,X] - E[Y|T = 0,X]]
e Regression adjustments

® Matching

® Mahalanobis distance matching

® Propensity Score matching



Covariates Adjustments

ATE = Ey[E[Y|T = 1,X] - E[Y|T = 0,X]]
® Regression adjustments

® Matching

® Mahalanobis distance matching

® Propensity Score matching



Regression Adjustments

e Regression adjustments under 1gnorability / unconfoundedness

(Y,0), Y1)} L T;|X,

¢ We can express the ATE 1n terms of conditional response,

ATE = E[Y(1) — Y0)] = E[Y1)] — E[Y,0)]

= E[E[Y(1)|X]] — E[Y{0) | X/]]

= E[E[Y(D)|T; = 1.X,] - E[Y0)| T; = 0.X;]]
= E[E[Y,| T, = 1,X;] — E[Y;| T; = 0,X/]]

= Elpq)(Xp] — Elp)(X))]

where y,(x) = EIY,| T, = 1, X, = x]




Regression Adjustments

e Given ignorability, we have 7 = E[p1,(X)] — E[p,/(X)],

with p,(0) = ELY;| X,

:x_)]:.:t]

o Fit /i (x) via linear regression

o Fit /i,(x) via non-parametric approach

® One may use the following estimation strategy

1. Learn fig(x) by

predicting Y from X on controls

2. Learn fi;(x) by

1
3. Estimate 7 = —
n

7 1s consistent 1f /,(x) 1s

predicting Y from X on treated units
n

D (@) — Ag(X)

i=1

consistent for p(x)...



Covariates Adjustments

ATE = E(JE[Y|T = 1,X] - E[Y|T = 0,X]]
e Regression adjustments

® Matching

® Mahalanobis distance matching

® Propensity Score matching



Matching 1: Mahalanobis Distance
Matching

e Mahalanobis distance matching: match the feature of each
treated unit to the nearest control unit, with the distance

D(X,, X)) = 1/((X; = X)"S!(X; - X))

® Control units: pruned 1f unused

® Prune matches 1f distance > threshold

80 — 80 -
w0 Cc C C C 70 C C---.
C T c T
B0 | & Cc T 60 — : T-c &/
cC G ol c % C . C ¢ ¢ € &
50 -{C Cc c TC;T C cl Age 50 - CT“%T%T ¢
C C c {1 C C------- T c7¥ 0}
40 — T 40 — e
1 C T 1 . G T
e c S
30 — e 1 30 — -
TT 771
20 — | l | | | [ | [ 20 [ I I I [ I I I I
12 14 16 18 20 22 24 976 28 12 14 16 18 20 22 24 26 28

Education (vears) Education (years)



Propensity Score

® The propensity score measures the probability of being
treated conditionally on Xj | ie.,

e(x)=P(T,=1|X =x)
® In a randomized trial, the propensity score 1s constant
e(x) = ¢y € (0,1)

e At least qualitatively, the variability of the propensity score
gives a measure of how far we are from a randomized trial



Matching 2: Propensity Score
Matching

® One way 1s to match covarnates X, but it is hard especially for
high-dimensional X

® Propensity Score

® [cte(X)=P(T=1|X), TILX| e(X)

® Then e(X) and X are (confounding)-equivalent
o {Y(0),Y(D}LT|X {Y/0), Y(1)} LT;|e(X))

® Unconfoundness given X implies unconfoundness given e(X)

¢ X may be high-dimensional, while e(X) 1s one-dimension



Matching 2: Propensity Score
Matching

® Propensity SCOI’C/v The probability of T=1, given X
o Lete(X)=P(T=1|X); TLX|e(X)

® Then e(X) and X are (confounding)-equivalent:
Y P(Y|t,x)P(x) = ) ) P(Y|t,x)P(e)P(x|e)
= 2 Z P(Y|t, x,e)P(e)P(x|t, e) = 2 Z P(Y,x|t, e)P(e)

X

— 2 P(Y|t,e)P(e)



Matching 2: Propensity Score
Matching

® Unconfoundness given X implies unconfoundness given e(X)

(Y,0), (1)} L T}| X, (Y0), Y1)} LT;|e(X)

e [f directly matching on X, overlap decreases
with he dimensionality of the adjustment set

® The propensity score magically reduces the
dimensionality of the adjustment set to 1!

e However, we do not have access to the propensity score.

® The best we can do 1s to model it, e.g., with logistic regression,
shifting the high-dimensionality problem to the modeling of e(X)



Matching 2: Propensity Score
Matching

General procedures of propensity score matching:

1. Estimate propensity scores c(X) = P(T=1 | X), e.g. with logistic regression

2. Match each treated to the nearest untreated on propensity score

e Nearest neighbor matching
e Optimal full matching ...

80 - 80 —
1 1
70 4 & 70 —
1Ls C
60 - 60 — CTC o3 ‘
Age 50 - Age 50 — CT -%Tc;r C C T
. c—C cC TF—=¢
40 o s ¢
C Tc i
30 — 30 - T a1
TT
AL o e pee e B e B mEn e . e e e

12 16 20 24 28

Propensity

Education (years) Score Propensity

Education (years) Score

LEstimate propensity scores Matching



Matching 2: Propensity Score
Matching

Questions:

® What is the intuition behind why we can condition on e(X),
instead of X?

® What is attractive about conditioning on e(X), instead of X?

® Why does this not really solve the positivity issue when X is
high-dimensional?



Identification of Causal Effects &
Counterfactual Inference: Outline

® Backdoor criterion and front door criterion

® (ounterfactual inference



Graphical Criterion: Back-Door Criterion

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an ordered pair of vari-
ables (X;, X;) in a DAG G if:

(1) nonodeinZis adescendant of X;; and

(11) Z blocks every path between X; and X; that contains an arrow into X;.

- What if Z = {X3, X4}?
Z=1{Xy X5}?
Z = {X4}?

- What 1f there 1s a confounder?

Theorem 3.3.2 (Back-Door Adjustment)
If a set of variables Z satisfies the back-door criterion relative to (X, Y ), then the causal
effect of X on Y is identifiable and is given by the formula

[P(y %)= Z P(y | x,2)P(2).

Or P(Y=y | do(X=x))




Front-Door Criterion

@ (Unobserved)

s ~

V4 AN

/ 0 p—\
Definition 3.3.3 (Front-Door) X z Y

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair
of variables (X, Y) if:

(1) Zintercepts all directed paths from XtoY;
(11) there is no back-door path from X to Z; and
(i11) all back-door paths from Z to Y are blocked by X.

Theorem 3.3.4 (Front-Door Adjustment)
If Zsatisfies the front-door criterion relative to (X, Y ) and if P(x, 2) > O, then the causal
effect of X on Y is identifiable and is given by the formula

P(y|£)=) P(z|x)) P(y|x,2P(x"). (3.29)



' Example: Smoking & Genotype Theory

_ P(x, 2) P(Y=1]|x,2
':f;'\( genOtype Group Size % of Cancer Cases
| Group Type (% of Population)  in Group
smoking \ X =0, Z=0 Nonsmokers, Notar 47.5 10
X ~% =%y X=12Z=0 Smokers, No tar 2.5 90
tar lung cancer X=0,Z=1 Nonsmokers, Tar 2.5 5
X=17Z=1 Smokers, Tar 47.5 85

P(Y =1]|do(X =1)) =.05(10 x .50 + 90 x .50)
+.95(.05 x .50 + .85 x .50)
= .05 x .50 + .95 x .45 = 4525,

P(Y =1|do(X =0))

95(.10 x .50 + 90 x .50)
+.05(.05 x .50 + .85 x .50)
= .95 x .50 + .05 x .45 = .4975.



Remember Structural Causal

Models?

SEASON

: .. N
e For simplicity, suppose we have X and Y- SPRINKLER RAIN

N/
e SEM: X = Eyx; Y = f(X, Ey) weT
® A particular experimental unit (e.g., a SLIPPRRY
patient) u has 1ts values for exogenous
variables Ex and EYy, say, ex and e, P4 —— X;

® Do interventionon X: X =x;, Y =f(x, Ey) X - £

Xo = (X1, E»),
X3 = f3(X1 E3),
X+ = (X3, X2 Ey),
X5 =f5(Xy4 E5)

e Potential outcome Y(x,u) or Yy(u)

® Y(x): counterfactual variable




*  Relation to Ignorability (Potential
Outcome Framework)

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an ordered pair of vari-
ables (X;, X;) in a DAG G if: 1 X,

(1) nonodeinZis adescendant of X;; and 4

(11) Z blocks every path between X; and X; that contains an arrow into X;.

X Xg
- (Conditional) 1gnorability assumption in the potential outcome framework:

MEIRGWA v ;/): the value attained by Y in unit
u under 1ntervention do(x);

Definition 3.3.3 (Front-Door) Y(x): counterfactual variable (u 1s
A set of variables Z is said to satisfy the front-door criteffSFeRusE NS variable)

of variables (X, Y) if:

(1) Zintercepts all directed paths from XtoY
(11) there is no back-door path from X to Z; and
(i11) all back-door paths from Z to Y are blocked by X. X ~ Y

- Y(z,x) = Y(2); {Y(2), X} 1L Z(x).




" A Unification of the Graphical Criteria

- (Pear & Tian, 2002) A sufficient condition for identifying the causal
effect P(y | do(x)) 1s that there exists no bi-directed path (1.e., a path
composed entirely of bi-directed arcs) between X and any of 1ts
children.

- Necessary & sufficient conditions also exist (e.g., Shpitser and
Pearl, 2008)...

- Examples:

(a) (b) (c)

Figure 3.7 (a) A bow pattern: a confounding arc embracing a causal link X — Y, thus preventing
the identification of P(y | X) even in the presence of an instrumental variable Z, as in (b). (c) A
bowless graph that still prohibits the identification of P(y | x).



A Unification: Examples

- Examples: Y

(g)

Figure 3.8 Typical models in whichthe effect of X on Y is identifiable. Dashed arcs represent con-
founding paths, and Z represents observed covariates.



A Unification: Examples

/\,\Z

- Examples:

X

(e) () (2)

Figure 3.9 Typical models in which P(y | x) is not identifiable.



Nonparametric vs. Parametric

X N
® WWhat if the causal relations are linear? \,“

B =rxz (regression coefficient of regressing X on Z)
aff =ryz

SO (¥ = Tyz/’l“Xz.



Identification of Causal Effects &
Counterfactual Inference: Outhne

® (ounterfactual inference



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

Xi
1
0
0
1
0
0
1
1
0
1

: Oor—*r—*r—*or—*r—*oofﬁ
: oo»—»—xoohw—w—ofs

e (Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
fingers and coughs?

P(X3 X2=1 ‘XZ — 0, X3 = ])



Three Types of

Problems in Current Al

ellow fingers Cough

® Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough if we make sure
that he/she has yellow fingers?

Xi
1
0
0
1
0
0
1
1
0
1

: Oor—*r—*r—*or—*r—*oofﬁ
: oo»—»—xoohw—w—ofs

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow
fingers and coughs’!

P(X3 X2=1 ‘XZ — 0, X3 = ])



Counterfactual Inference vs. Prediction

attendance grade

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Standard Counterfactual Questions

® We talk about a particular situation (or unit) U = u, 1n
which X=xand Y =y

® What value would Y be had X been x’ 1n situation u?
I.e., we want to know Y_,-(u), the value of Y 1n
situation u 1f we do(X=x")

® u1s not directly observable, so P(Yy_.. | X =x, Y =)
instead

For identification of causal effects, U is randomized. It
is fixed for counterfactual inference.



Counterfactual Inference

W,
W=Uy B B B
X/ \Z X — fX (W, UX) P(YXZX’ ‘ X - .X, Y _y, W - W)
\ / Z=1f,(W, U, evidence
Y Y = fY (Xa Za UZ)

® Three steps
® Abduction: find P(U | evidence)
® Action: Replace the equation for X by X =x"’

® Prediction: Use the modified model to predict Y



Counterfactual Inference vs. Prediction

attendance grade

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + U + 3). For an individual
with (x,y), what would Y be 1f X had been x’ ?




Counterfactual Inference:
Discussions

® Discover the hidden features and use them,
since you focus on a specific subject

® Do we really need an SCM for counterfactual
reasoning?

® (Other potential issues?

- Chaochao Lu*, Biwei Huang*, Ke Wang, José Miguel Hernandez-Lobato, Kun Zhang, Bernhard Schdélkopf,
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation, NeurlPS Workshop on
Offline Reinforcement Learning, 2020



Summary: CGausal Ettect Identification
& Counterfactual Reasoning

® (lassical problem

® What s taken as input?

® What does identifiability mean?

® Potential outcomes framework

® Backdoor criterion and unification
® Propensity score

® Difference from counterfactual inference



