CBMS Conference -- Foundations of Causal Graphical Models and Structure Discovery

Lecture 7

Causal Discovery Based on Linear, Non-Gaussian Models

Instructor: Kun Zhang

Carnegie Mellon University

Distinguishing Cause from Effect: Examples (Tübingen Cause-Effect Pairs)

A Causal Process

$$
\text { rain } \longrightarrow \text { wet ground }
$$

Functional Causal Model

- A functional causal model represents effect as a function of direct causes and noise: $Y=f(X, E)$, with $X \Perp E$
- Linear non-Gaussian acyclic causal model (Shimizu et al., ‘o6)

$$
Y=\mathrm{a} \cdot X+E
$$

- Additive noise model (Hoyer et al., 'o9; Zhang \& Hyvärinen, ‘o9b)

$$
Y=f(X)+E
$$

- Post-nonlinear causal model (Zhang \& Chan, ’o6; Zhang \& Hyvärinen, ‘o9a)

$$
Y=f_{2}\left(f_{1}(X)+E\right)
$$

(Conditional) Independence

- $X \Perp Y$ iff $p(X, Y)=p(X) p(Y)$
- or $p(X \mid Y)=P(X)$: Y not informative to X
- $\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$ iff $p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z)$
- or, $p(X \mid Y, Z)=p(X \mid Z)$: given Z, Y not informative to X
- Divide \& conquer, remove irrelevant info...
- By construction, regression residual is uncorrelated (but not necessarily independent !) from the predictor

Uncorrelatedness: $E[X Y]=E[X] E[Y]$

Gaussian vs. Non-Gaussian Distributions

Causal Asymmetry the Linear Case: Illustration

Data generated by $Y=a X+E$ (i.e., $X \rightarrow Y$):

Super-Gaussian Case

Data generated by $Y=a X+E(X \rightarrow Y)$:

More Generally, LiNGAM Model

- Linear, non-Gaussian, acyclic causal model (LiNGAM) (Shimizu et al., 2006):

$$
X_{i}=\sum_{j: \text { parents of } i} b_{i j} X_{j}+E_{i} \quad \text { or } \quad \mathbf{X}=\mathbf{B X}+\mathbf{E}
$$

- Disturbances (errors) E_{i} are non-Gaussian (or at most one is Gaussian) and mutually independent
- Example:

$$
\begin{aligned}
& X_{2}=E_{2} \\
& X_{3}=0.5 X_{2}+E_{3} \\
& X_{1}=-0.2 X_{2}+0.3 X_{3}+E_{1}
\end{aligned}
$$

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030.

Independent Component Analysis

unknown mixing system

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{S} \quad \mathbf{Y}=\mathbf{W} \cdot \mathbf{X}
$$

$$
\begin{gathered}
X_{1} \\
X_{2}
\end{gathered}\left[\begin{array}{ccccc}
.5 & .3 & 1.1 & -0.3 & \ldots \\
.8 & -.7 & .3 & .5 & \ldots .
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & A^{2}
\end{array}\right] \cdot\left[\begin{array}{lllll}
? & ? & ? & ? & \ldots \\
? & ? & ? & ? & \ldots
\end{array}\right] \begin{aligned}
& s_{1} \\
& s_{2}
\end{aligned}
$$

- Assumptions in ICA
- At most one of S_{i} is Gaussian

Then A can be estimated up to column scale and permutation indeterminacies

- \#Source <= \# Sensor, and \mathbf{A} is of full column rank

Intuition: Why ICA works?

- (After preprocessing) ICA aims to find a rotation transformation $\mathbf{Y}=\mathbf{W} \cdot \mathbf{X}$ to making Y_{i} independent
- By maximum likelihood $\log p(X \mid \boldsymbol{A})$, mutual information $M I\left(Y_{l}, \ldots, Y_{m}\right)$ minimization, infomax...

A Demo of the ICA
 Procedure
 JOINT DENSITY

Input signals and density

Whitened signals and density

Separated signals after 1 step of FastICA

Separated signals after 3 steps of FastICA

Separated signals after 5 steps of FastICA

LiNGAM Analysis by ICA

- LiNGAM: $X_{i}=\sum_{j: \text { parents of } i} b_{i j} X_{j}+E_{i}$ or $\quad \mathbf{X}=\mathbf{B X}+\mathbf{E} \Rightarrow \mathbf{E}=(\mathbf{I}-\mathbf{B}) \mathbf{X}$
- B has special structure: acyclic relations
- ICA: $\mathbf{Y}=\mathbf{W} \mathbf{X}$
- B can be seen from \mathbf{W} and re-scaling

Question I. How to find W?

Question 2. How to see B from W?

- Faithfulness assumption avorded
- E.g., $\left[\begin{array}{l}E_{1} \\ E_{3} \\ E_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.2 & -0.3 & 1\end{array}\right] \cdot\left[\begin{array}{l}X_{2} \\ X_{3} \\ X_{1}\end{array}\right]$

$$
\Leftrightarrow\left\{\begin{array}{l}
X_{2}=E_{1} \\
X_{3}=0.5 X_{2}+E_{3} \\
X_{1}=-0.2 X_{2}+0.3 X_{3}+E_{2}
\end{array}\right.
$$

So we have the causal relation:

LiNGAM Analysis by ICA

- LiNGAM: $X_{i}=\sum_{j: \text { parents of } i} b_{i j} X_{j}+E_{i}$ or $\quad \mathbf{X}=\mathbf{B X}+\mathbf{E} \Rightarrow \mathbf{E}=\mathbf{(I - B) X}$
- B has special structure: acyclic relations
- ICA: $\mathbf{Y}=\mathbf{W} \mathbf{X}$
- B can be seen from \mathbf{W} by permutation $\mathbf{\prime}^{\prime}$ and re-scaling
- Faithfulness assumption avoided

1. First permute the rows of \mathbf{W}
to make all diagonal entries
non-zero, yielding $\ddot{\mathbf{W}}$.
2. Then divide each row of $\ddot{\mathbf{W}}$
by its diagonal entry, giving $\ddot{\mathbf{W}}^{\prime}$.
3. $\hat{\mathbf{B}}=\mathbf{I}-\ddot{\mathbf{W}}^{\prime}$.

- E.g., $\left[\begin{array}{l}E_{1} \\ E_{3} \\ E_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.2 & -0.3 & 1\end{array}\right] \cdot\left[\begin{array}{l}X_{2} \\ X_{3} \\ X_{1}\end{array}\right]$

$$
\Leftrightarrow\left\{\begin{array}{l}
X_{2}=E_{1} \\
X_{3}=0.5 X_{2}+E_{3} \\
X_{1}=-0.2 X_{2}+0.3 X_{3}+E_{2}
\end{array}\right.
$$

So we have the causal relation:

Can You See Causal Relations from? Example

- ICA gives $\mathbf{Y}=\mathbf{W} \mathbf{X}$ and

$$
\begin{aligned}
& \mathbf{W}=\left[\begin{array}{cccc}
0.6 & -0.4 & 2 & 0 \\
1.5 & 0 & 0 & 0
\end{array}\right] \\
& 0 \\
& 0.2 \\
& 1.5 \\
& 3
\end{aligned} \begin{aligned}
& x_{1} \xrightarrow{-0.5} x_{2} \xrightarrow{-0.4} \times \\
& \text { - Can we find the ca } \xrightarrow{-0.3} x_{3} x_{3} .2
\end{aligned}
$$

1. First permute the rows of \mathbf{W} to make all diagonal entries non-zero, yielding $\ddot{\mathbf{W}}$.
, Then divide each row of $\ddot{\mathbf{W}}$
X_{4} its diagonal entry, giving $\ddot{\mathbf{W}}^{\prime}$. $\hat{\mathbf{B}}=\mathbf{I}-\ddot{\mathbf{W}}^{\prime}$.

Faithfulness Assumption Needed?

- One might find independence between health condition \& risk of mortality. Why?

Possible to have $\mathrm{Y} \Perp \mathrm{Z} \mid \mathrm{X}$?

- E.g., if $a=-b c$, then health_condition \Perp mortality_risk, which cannot by seen from the graph!
- No faithfulness assumption is needed in LiNGAM
- Minimality (a zero coefficient corresponds to edge absence) is sufficient

Step-by-Step Demo \& Application

- Galton family height data
- Result of PC?
- Linear, non-Gaussian methods: let's do causal discovery step by step with 'illust_LiNGAM_Galton.m'

Galton's height data

family	father	mother	Gender	Height
$\mathbf{1}$	78.5	67	0	73.2
$\mathbf{1}$	78.5	67	1	69.2
$\mathbf{1}$	78.5	67	1	69
$\mathbf{1}$	78.5	67	1	69
$\mathbf{2}$	75.5	66.5	0	73.5
$\mathbf{2}$	75.5	66.5	0	72.5
$\mathbf{2}$	75.5	66.5	1	65.5
$\mathbf{2}$	75.5	66.5	1	65.5
$\mathbf{3}$	75	64	0	71
$\mathbf{3}$	75	64	1	68
$\mathbf{4}$	75	64	0	70.5
$\mathbf{4}$	75	64	0	68.5
$\mathbf{4}$	75	64	1	67
$\mathbf{4}$	75	64	1	64.5
$\mathbf{\ldots}$	\ldots	\ldots	\ldots	\ldots

Some Estimation Methods for LiNGAM

- ICA-LiNGAM
- ICA with Sparse Connections
- DirectLiNGAM...

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030.
Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science, 544 I:I95202, 2009
Shimizu, et al. (201I). DirectLiNGAM:A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12:1225-1 248.

Application: Causal diagram in HK Stock Market (Zhang \& Chan, 2006)

1. Ownership relation: x5 owns 60% of x8; x 1 holds 50% of x 10 .
2. Stocks belonging to the same subindex tend to be connected.
3. Large bank companies ($\times 5$ and x 8) are the cause of many stocks.
4. Stocks in Property Index (x1, x9, x11) depend on many stocks, while they hardly influence others.

Independent Noise (IN) Condition

$$
\mathbf{Z} \longrightarrow Y
$$

- (\mathbf{Z}, Y) follows the IN condition iff regression residual $Y-\tilde{w}^{\top} \mathbf{Z}$ is independent from \mathbf{Z}
- Estimate the Linear, Non-Gaussian Acyclic Causal model (LiNGAM), because (\mathbf{Z}, Y) satisfies the IN condition iff
- All variables in \mathbf{Z} are causally earlier than $Y \&$
- the common cause for Y and each variable in \mathbf{Z}, if there is any, is in \mathbf{Z}.
- Can then estimate the LiNGAM (the DirectLiNGAM algorithm)

Independence Test / Dependence Measure

- Measure: mutual information $M I\left(Y_{1}, Y_{2}\right) \geq 0$ with equality holds iff $Y_{1} \Perp Y_{2}$
- Statistical test for independence
- $Y_{1} \Perp Y_{2}$ if and only if all functions of them are uncorrelated
- The functional space can be narrowed down to the reproducing kernel Hilbert space
- HSIC independence test; Kernel-based (conditional) independence test; other tests also exist

Gretton et al. (2008).A kernel statistical test of independence. In Advances in Neural Information Processing Systems, 585-592.
Zhang et al. (20II). Kernel-based conditional independence test and application in causal discovery. In Proc. UAI, 804-8I 3.

Real Examples: By Checking Independence in Both Directions

Why Was Gaussianity Widely Used?

- Central limit theorem: An illustration

- "Simplicity" of the form; completely characterized by mean and covariance
- Marginal and conditionals are also Gaussian
- Has maximum entropy, given values of the mean and the covariance matrix
E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.

Gaussianity or Non-Gaussianity?

- Non-Gaussianity is actually ubiquitous
- Linear closure property of Gaussian distribution: If the sum of any finite independent variables is Gaussian, then all summands must be Gaussian (Cramér, 1936)
- Gaussian distribution is "special" in the linear case
- Practical issue: How non-Gaussian they are?

Practical Issues in Causal Discovery...

- Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS'ı9; Ding et al., NIPS'ı9; Xie et al., NeurIPS'20); latent causal representation learning (Xie et al., NeurIPS'20; Cai et al., NeurIPS'19)
- Cycles (Richardson 1996; Lacerda et al., 2008)
- Nonlinearities (Zhang \& Chan, ICONIP'o6; Hoyer et al., NIPS'o8; Zhang \& Hyvärinen, UAI'09; Huang et al., KDD'i8)
- Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'ı8)
- Measurement error (Zhang et al., UAi'ı8; PSAí8)
- Selection bias (Spirtes 1995; Zhang et al., UAT’‘)
- Missing values (Tu et al., AISTATS’ı)
- Causality in time series
- Time-delayed + instantaneous relations (Hyvarinen ICML’o8; Zhang et al., ECML'o9; Hyvarinen et al., JMLR'ıo)
- Subsampling / temporally aggregation (Danks \& Plis, NIPS WS'ı4; Gong et al., ICML’i5 \& UAI'it)
- From partially observable time series (Geiger et al., ICMLis)
- Nonstationary/heterogeneous data (Zhang et al., IJCAI’T; Huang et al, ICDM’if, Ghassami et al., NIPS'ı8; Huang et al., ICML’ı9 \& NIPS’ı9; Huang et al., JMLR²o)

With Confounders

- Confounders cause trouble in causal discovery
- Assuming independent confounders:
- Possible solutions I: Overcomplete ICA for Linear-Non-Gaussian case
- Assuming causally related confounders!
- Possible solutions II: GIN for Linear-NonGaussian case
- Possible solution II: Rank deficiency for Linear-Gaussian case

Are They Confounders?

Identifiability of

 Overcomplete ICA

- More independent sources than observed variables, i.e., $\mathrm{n}>\mathrm{m}$

Theorem: Suppose the random vector $X=\left(X_{1}, \ldots, X_{m}\right)^{\top}$ is generated by $X=\mathbf{A} S$, where the components of S, S_{1}, \ldots, S_{n}, are statistically independent. Even when $n>m$, the columns of \mathbf{A} are still identifiable up to a scale transformation if

- all S_{i} are non-Gaussian, or
- A is of full column rank and at most one of S_{i} is Gaussian.

Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973
Eriksson and Koivunen (2004). Identifiability, Separability and Uiiiqueness of Linear ICA Models, IEEE Signal Processing Lett.: vol. I I, no. 7, pp. GOI-604, Jul. 2004.

Overcomplete ICA: Illustration

Discussions I: Confounders

$$
\left[\begin{array}{c}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & a_{1} \\
a_{3} & 1 & a_{1} a_{3}+a_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
E_{1} \\
E_{2} \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
a_{3} & 1 & a_{3}+\frac{a_{2}}{a_{1}}
\end{array}\right] \cdot\left[\begin{array}{c}
E_{1} \\
E_{2} \\
a_{1} Z
\end{array}\right]
$$

- Can we see the causal direction ?
- Can we determine a_{3} ? a_{1} and a_{2} ?
- Observationally equivalent model:

$$
\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
\left(a_{3}+\frac{a_{2}}{a_{1}}\right)+\frac{-a_{2}}{a_{1}} & 1 & \left(a_{3}+\frac{a_{2}}{a_{1}}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
E_{1} \\
E_{2} \\
a_{1} Z
\end{array}\right]
$$

Two Examples: Causal Effect Identifiable?

Example 1

Example 2

Example 1: $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & a_{1} \\ a_{3} & 1 & a_{1} a_{3}+a_{2}\end{array}\right] \cdot\left[\begin{array}{c}E_{1} \\ E_{2} \\ Z\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 1 \\ a_{3} & 1 & a_{3}+\frac{a_{2}}{a_{1}}\end{array}\right] \cdot\left[\begin{array}{c}E_{1} \\ E_{2} \\ a_{1} Z\end{array}\right]$
Two possible solutions
Example 2: $\left[\begin{array}{l}X_{0} \\ X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & a_{0} \\ 0 & 1 & 0 & a_{1} \\ 0 & a_{3} & 1 & a_{1} a_{3}+a_{2}\end{array}\right] \cdot\left[\begin{array}{c}E_{0} \\ E_{1} \\ E_{2} \\ Z\end{array}\right]$
a_{3} identifiable!

Confounders: Example

$\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & a_{1} \\ a_{3} & 1 & a_{1} a_{3}+a_{2}\end{array}\right] \cdot\left[\begin{array}{c}E_{1} \\ E_{2} \\ Z\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 1 \\ a_{3} & 1 & a_{3}+\frac{a_{2}}{a_{1}}\end{array}\right] \cdot\left[\begin{array}{c}E_{1} \\ E_{2} \\ a_{1} Z\end{array}\right]$

Some Simulation Result I

- Simulate 2500 data points with nonGaussian noise using this model:
- Output of the algorithm:

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49(2):362- 378.

Some Simulation Result II

- Simulate 2500 data points with nonGaussian noise using this model:
- Output of the algorithm:

With Cycles

- Interpretation of cyclic causal relations
- ICA-based approach to estimating cyclic causal models

Discussion II: Feedback $\xrightarrow[x_{1} \rightarrow x_{2}]{\curvearrowleft}$

- Causal relations may have cycles; Consider an example

$$
\begin{aligned}
& X_{1}=E_{1} \\
& X_{2}=1.2 X_{1}-0.3 X_{4}+E_{2} \\
& X_{3}=2 X_{2}+E_{3} \\
& X_{4}=-X_{3}+E_{4} \\
& X_{5}=3 X_{2}+E_{5}
\end{aligned}
$$

Or in matrix form, $\mathbf{X}=\mathbf{B X}+\mathbf{E}$, where

$$
\mathbf{B}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1.2 & 0 & 0 & -0.3 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right]
$$

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component analysis. In Proc. UAI.
A conditional-independence-based method is given in T. Richardson (1996) - A Polynomial-Time Algorithm for
Deciding Markov Equivalence of Directed Cyclic Graphical Models. Proc. UAI

Why Feedbacks?

- Some situations where we can recover cycles with ICA:
- Each process reaches its equilibrium state \& we observe the equilibrium states of multiple processes

$$
\mathbf{X}_{t}=\mathbf{B} \mathbf{X}_{t-1}+\mathbf{E}_{t}
$$

At convergence we have $X_{t}=X_{t-1}$ for each dynamical process, so

$$
\mathbf{X}_{t}=\mathbf{B} \mathbf{X}_{t}+\mathbf{E}_{t}, \quad \text { or } \quad \mathbf{E}_{t}=(\mathbf{I}-\mathbf{B}) \mathbf{X}_{t} .
$$

- On temporally aggregated data

Suppose the underlying process is $\tilde{\mathbf{X}}_{t}=\mathbf{B} \tilde{\mathbf{X}}_{t-1}+\tilde{\mathbf{E}}_{t}$, but we just observe $\mathbf{X}_{t}=\frac{1}{L} \sum_{k=1}^{L} \tilde{\mathbf{X}}_{t+k}$. Since

$$
\frac{1}{L} \sum_{k=1}^{L} \tilde{\mathbf{X}}_{t+k}=\mathbf{B} \frac{1}{L} \sum_{k=1}^{L} \tilde{\mathbf{X}}_{t+k-1}+\frac{1}{L} \sum_{k=1}^{L} \tilde{\mathbf{E}}_{t+k} .
$$

We have $\mathbf{X}_{t}=\mathbf{B} \mathbf{X}_{t}+\mathbf{E}_{t}$ as $L \rightarrow \infty$.

Examples

- Some situations where we can recover cycles with ICA:
- Each process reaches its equilibrium state $\&$ we observe the equilibrium states of multiple processes

Consider the price and demand of the same product in different states:

$$
\begin{aligned}
\text { price }_{t} & =b_{1} \cdot \text { price }_{t-1}+b_{2} \cdot \text { demand }_{t-1}+E_{1} \\
\text { demand }_{t} & =b_{3} \cdot \text { price }_{t-1}+b_{4} \cdot \text { demand }_{t-1}+E_{2}
\end{aligned}
$$

- On temporally aggregated data

Suppose the underlying process is $\tilde{\mathbf{X}}_{t}=\mathbf{B} \tilde{\mathbf{X}}_{t-1}+\tilde{\mathbf{E}}_{t}$, but we just observe $\mathbf{X}_{t}=\frac{1}{L} \sum_{k=1}^{L} \tilde{\mathbf{X}}_{t+k}$.

Consider the causal relation between two stocks: the causal influence takes place very quickly (~ 1 - 2 minutes) but we only have daily returns.

Suppose we have the process

$$
\mathbf{X}_{t}=\underbrace{\left[\begin{array}{ll}
0 & b \\
a & 0
\end{array}\right]}_{\mathbf{B}} \mathbf{X}_{t}+\mathbf{E}_{t} .
$$

That is,

$$
\begin{aligned}
& (\mathbf{I}-\mathbf{B}) \mathbf{X}=\mathbf{E}, \quad \text { or } \quad\left[{ }_{-a}^{1} \mathbf{W}_{1}^{-b}\right] \mathbf{X}_{t}=\mathbf{E}_{t} \\
& \Rightarrow\left[\begin{array}{cc}
-a & 1 \\
1 \mathbf{W} & -b
\end{array}\right] \mathbf{X}_{t}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \cdot \mathbf{E}_{t} \\
& \Rightarrow\left[\begin{array}{cc}
1 & -1 / a \\
-1 / b & 1
\end{array}\right] \mathbf{X}_{t}=\left[\begin{array}{cc}
0 & -1 / a \\
-1 / b & 0
\end{array}\right] \cdot \mathbf{E}_{t} \\
& \Rightarrow \mathbf{X}_{t}=\underbrace{\left[\begin{array}{cc}
0 & 1 / a \\
1 / b & 0
\end{array}\right]}_{\mathbf{B}^{\prime}} \mathbf{X}_{t}+\left[\begin{array}{cc}
0 & -1 / a \\
-1 / b & 0
\end{array}\right] \cdot \mathbf{E}_{t} .
\end{aligned}
$$

- $\mathbf{E}=(\mathbf{I}-\mathbf{B}) \mathbf{X}$; ICA can give $\mathbf{Y}=\mathbf{W X}$
- Without cycles: unique solution to B
- With cycles: solutions to B not unique any more; why?
- A 2-D example?
- Only one solution is stable (assuming no self-loops), i.e., s.t. |product of coefficients over the cycle| <1 :-)

Summary:

I. Still m independent components;
2. W cannot be permuted to be lower-triangular

Can You Find the Alternative

 Causal Model ?- For this example...

$$
\begin{aligned}
& X_{1}=E_{1} \\
& X_{2}=1.2 X_{1}-0.3 X_{4}+E_{2} \\
& X_{3}=2 X_{2}+E_{3} \\
& X_{4}=-X_{3}+E_{4} \\
& X_{5}=3 X_{2}+E_{5}
\end{aligned}
$$

Or in matrix form, $\mathbf{X}=\mathbf{B X}+\mathbf{E}$, where $\mathbf{W}^{\prime} \bar{E}_{2}\left[\begin{array}{c|ccc}0 & 1 & X_{3} \\ -1.2 & 31 & 0 & 0.3 \\ 0 & \downarrow & -3 & 0\end{array}\right) .0$. That is,

$$
\mathbf{B}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1.2 & 0 & 0 & -0.3 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right]
$$

$$
\boldsymbol{B}_{\mathbf{B}^{\prime}}=\left[\begin{array}{ccccc}
X_{5} & 0 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
4 & -3.3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathbf{B}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1.2 & 0 & 0 & -0.3 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathbf{B}^{\prime}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
4 & -3.3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right] .
$$

Some Simulation Result

- Simulate 15000 data points with nonGaussian noise using this model:
- Output of the algorithm:

Fig. 3: The output of LiNG-D: Candidate \#1 and Candidate \#2

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component analysis. In Proc. UAI.

Summary of the Two Situations

- Can you distinguish between the following situations from ICA result $\mathbf{Y}=\mathbf{W X}$?
- cycles:
I. Y still has m independent components;

2. W cannot be permuted to be lower-triangular

- confounders:

$$
\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
a_{3} & 1 & a_{3}+\frac{a_{2}}{a_{1}}
\end{array}\right] \cdot\left[\begin{array}{c}
E_{1} \\
E_{2} \\
a_{1} Z
\end{array}\right]
$$

Y produced by ordinary ICA does not have independent

- Either of them makes causal discovery more difficult components
- They happen very often, even in the same problem

Take-Home Message

- Constraint-based causal discovery makes use of conditional independence relationships
- Asymptotically correct, but behavior on finite samples not guaranteed
- Wide applicability! Worth trying on complex problems
- Equivalence class!
- Linear non-Gaussian case: Causal model fully identifiable
- Based on ICA or its variants
- How to tackle practical issues, e.g., confounders, cycles, and error in-measurements, related to identifiability of the mixing procedure
- Nonlinearities?

