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Distinguishing Cause trom Etfect:
Examples (Iubingen Gause-Ettect Pairs)
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A Causal Process

rain ——> wet ground




Functional Causal Model

¢ A functional causal model represents effect as a
function of direct causes and noise: Y= f (X, E), with X 1LE Y.

® Linear non-Gaussian acyclic causal model (Shimizu et 7=
al., ‘06) . :':..,‘.-.}i;‘s:?.}:.

Y=aX+E SR

1t1 . o‘:'-n...:%'f"&g&..',({"? .'-.
® Additive noise model (Hoyer et al., ’09; Zhang & s e»g_t-:-:}‘,,Q'
Hyvirinen, ‘ogb) e
',3'.‘?-.?;3"'
Y — f(X) —I_E AR
::..‘ :z‘:.’: .

® Post-nonlinear causal model (Zhang & Chan, 06 Zhang .,,,,«
& Hyvirinen, ‘09a) s

Y=f5 (fitX) +E) o



(Conditional) Independence

* XLYift p(X,Y) = p(X)p(Y) -
e or p(X]Y) = P(X): Y not informative to X 8 £y

o XLY | Ziff p(X,Y|2) = p(X|Z)p(Y|Z) Y
¢ or, pX|Y.2) = pX12): given Z, ¥ not L

informative to X
e Divide & conquer, remove irrelevant info... %%

e By construction, regression residual 1s %
uncorrelated (but not necessarily
independent !) from the predictor

Uncorrelatedness: E[XY] = E[X]E[Y]




(zaussian vs. Non-(aussian
Distributions

Three distribusions with zero mean and unit variance
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Causal Asymmetry the Linear

Case: Illustration
Data generated by Y =aX + E (1.e., X —Y):

Linear regression Y = aX + EY
Y

Linear regression X = bY + EX

Gaussian case
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Super-(Gaussian Case

Data generated by Y = aX + E (X —Y):
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More Generally, LINGAM Model

e Linear, non-Gaussian, acyclic_causal model (LiINGAM)
(Shimizu et al., 2006):

X;= )  bjX;+E or X=BX+E

9: parents of 1

e Disturbances (errors) E; are non-Gaussian (or at most
one is Gaussian) and mutually independent

e Example:
Xo = ko, y
X3 =0.5X2 + E3, Ey

X1 =—-0.2X9+0.3X35+ Ej.

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003—-2030.



Independent Component Analysis
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® Assumptions in ICA Then A can be estimated up to

column scale and permutation

® . 1 1 : . .
At most one of §; is GGaussian indeterminacies

® #Source <= # Sensor, and A is of full column rank
Hyvdrinen et al., Independent Component Analysis, 200 |



Intuition: Why ICA works?

XzA

s1&s2 bo=h Gaussian

® (After preprocessing) ICA aims to find a
rotation transformation Y=W-X to making
Y: independent

® By maximum likelihood log p(X14),
mutual information MI(Y;,..., Y
minimization, infomax...
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A Dem() Of SIGNALS JOINT DENSITY

the ICA e+
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SIGNALS

A A A AR

Separated signals after 1 step of FastiCA

SIGNALS JOINT DENSITY

Separated signals after 3 steps of FastiCA



SIGNALS JOINT DENSITY

s

VAVAVAVAVAVAVAVAVAVAVAVAVA

(TR

= “ye
déingad
Q...u.\. . ".,?.!

.

™

Separated signals after 5 steps of FastiCA



LiNGAM Analysis by ICA

LINGAM:X; = ) b;X;+E or X=BX+E= E=(I-B)X

7: parents of 1

® B has special structure: acyclic relations

ICA: Y=WX

Question |. How to find W?

B can be seen from W
and re-scaling Question 2. How to see B from W?

Faithfulness assumption avoidec

E.g., [E, 1 00 X So we have the causal
Bzl =1-05" "1 01131 olation:
Ep| |02 03 1| |Xi '
Xo = F4

<< X3 =0.5X9 4+ Es
X1 =—-0.2X2+0.3X3+ E>




LiNGAM Analysis by ICA

LINGAM:X; = ) b;X;+E or X=BX+E= E=(I-B)X

7: parents of ¢

® B has special structure: acyclic relations

ICA: Y=WX |1. First permute the rows of W
/|to make all diagonal entries

B can be seen from W by permutationr” |non-zero, yielding W.

and re-scaling 2. Then divide each row of W
. . . by its diagonal entry, giving W’.
Faithfulness assumption avoided 3 BT W
Eg, E] [ 1 0 0] [X2]  Sowe have the causal
Byl =1-050 "1 = 014 relation:
Eo 02  —-03 1] |X1 '

X9 = F4
<< X3 =0.5X9 4+ Es
X1 =—-0.2X2+0.3X3+ E>




Can You See Causal Relations
fromW? Example

® JCA gives Y=WX and

[. First permute the rows of W

06 —04 2 0 to make all dlagonal entries
1’5 O. 0 0 non-zero, yielding W. )
W — - ? Then divide each row of W

1.5 3 Xl — A /-—;—> X, its diagonal entry, giving W’

\:\3 > B=1-W'.

® (Can we find the ca X3
I-S 0 0 0 1 ¢ O « o 0 O
& AAY 55 50 R £ DY 3 = ~+3 00 0
L\} (:\‘ -0.4 2 v ) V\/ 0 ; 202 | 0 ) ’ ¢ ‘ .2 0 QO
D e g e v »\4' ¢ 1 % '04 ov



Faithfulness Assumption Needed?

® One might find independence between health condition & risk of
mortality. Why?

a _ -
&= P
condition b -

healthy Possible to have
lifestyle YLZ|X?

o E.g., if a=-bc, then health_condition 1L mortality_risk, which
cannot by seen from the graph!

e No faithfulness assumption is needed in LINGAM

e Minimality (a zero coefhicient corresponds to edge absence) is
sufficient



Step-by-Step Demo & Application

® (Galton family height data

® Result of PC?

® Linear, non-Gaussian methods:
let’s do causal discovery step by
step with
‘illust_LiNGAM_Galton.m’

Galton’s height data

family | father mother|Gender | Height
1 785 | 67 0 73.2
1 785 | 67 1 69.2
1 785 | 67 1 69
1 785 | 67 1 69
2 75.5 | 66.5 0 73.5
2 75.5 | 66.5 0 72.5
2 75.5 | 66.5 1 65.5
2 75.5 | 66.5 1 65.5
3 75 64 0 71
3 75 64 1 68
4 75 64 0 70.5
4 75 64 0 68.5
4 75 64 1 67
4 75 64 1 64.5




Some Estimation Methods
for LINGAM

¢ [CA-LINGAM
® JCA with Sparse Connections

® DirectLINGAM...

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003—-2030.
Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science, 544 1:195—
202, 2009
Shimizu, et al. (201 1). DirectLiNGAM:A direct method for learning a linear non-Gaussian structural equation
model. Journal of Machine Learning Research, 12:1225—1248.



Application: Causal diagram in HK
Stock Market (Zhang & Chan, 2006)

x1: ChelmgKene 10001 hk)
x2: CLP Hidgs (0002.hk)
x3: HK & China Gas (0003.hk)

x4: Wharf (Hldgs) (0004.hk)

x5: HSBC Hldg (0005.hk),

x6: HK Electric (0006.hk)

x7: Hang Lung Dev (0010.hk)

x8: Hang Seng Bank (0011.hk)
x9: Henderson Land (0012.hk)
x10: Hutchison (0013.hk)

x11: Sun Hung Kai Prop (0016.hk)
x12: Swire Pacific 'A’ (0019.hk)
x13: Bank of East Asia (0023.hk)
x14: Cathay Pacific Air (0293 hk)

1.

4.

Ownership relation:
x5 owns 60% of x8;
x1 holds 50% of x10.

Stocks belonging to
the same subindex
tend to be
connected.

Large bank
companies (x5 and
x8) are the cause of

many stocks.

Stocks in Property
Index (x1, x9, x11)
depend on many
stocks, while they
hardly influence
others.




Independent Noise (IN) Condition

/Z >y

o (Z,Y)tollows the IN condition iff regression residual ¥ — w'Z 1s
independent from Z

® [stimate the Linear, Non-Gaussian Acyclic Gausal model

(LINGAM), because (Z, Y') satisfies the IN condition iff

® All variables in Z are causally earlier than Y &

® the common cause for Y and each variable in Z, it there 1s any, 1s in Z.

® (an then estimate the LINGAM (the DirectLINGAM algorithm)




Independence Test /
Dependence Measure

® Measure: mutual information MI(Y},Y?2) >0 with equality
holds iff Y;1.Y>

® Statistical test for independence

® Y;1Y>if and only if all functions of them are uncorrelated

® The functional space can be narrowed down to the
reproducing kernel Hilbert space

® HSIC independence test; Kernel-based (conditional)
independence test; other tests also exist

Gretton et al. (2008).A kernel statistical test of independence. In Advances in Neural Information Processing
Systems, 585-592.

Zhang et al. (201 1). Kernel-based conditional independence test and application in causal discovery. In Proc.
UAI, 804-81 3.



Real Examples: By Checking Independence in

Both Directions
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Why Was (Gaussianity Widely
Used?

Central limit theorem: An illustration

hist(Ui) hist( (U1+U2)/sqrt(2) ) hist( (U1+U2+U3)/sqrt(3) )

120 ; 200 ; ; ; 200

100
150 | 150 ¢
80
60 100 ¢ 100}
40
50 50
20

0
-0.5 0 0.5 -1

“Simplicity” of the form; completely characterized by mean
and covariance

Marginal and conditionals are also (Gaussian

Has maximum entropy, given values of the mean and the

covariance matrix
E. T. Jaynes. Probability Theory: e Logic of Science. 1994. Chapter 7.



(Gaussianity or Non-(Gaussianity?

® Non-Gaussianity is actually ubiquitous

® [inear closure property of GGaussian distribution: If the
sum of any finite independent variables is (Gaussian, then
all summands must be Gaussian (Cramér, 1936)

® (Gaussian distribution is “special” in the linear case

® Practical issue: How non-(Gaussian they are?

26



Practical Issues in Causal Discovery...

Confounding (SGS 1993; :
); latent causal representation learning

Cycles (Richardson 1996; Lacerda et al., 2008)

Nonlinearities ( Hoyer et al., NIPS’08;
)
Categorical variables or mixed cases ( )
Measurement error ( )
Selection bias (Spirtes 1995; )
Missing values ( )

Causality in time series

® Time-delayed + instantaneous relations (Hyvarinen ICMLo8;
)

® Subsampling / temporally aggregation (Danks & Plis, NIPS WS'14;
)

® From partially observable time series ( )

Nonstationary/heterogeneous data (



With Confounders

® Confounders cause trouble in causal discovery
® Assuming independent confounders:

® Possible solutions I: Overcomplete ICA for
Linear-Non-Gaussian case



?
E 1.2 V .
E2"' 3 \\E3

v




Identifiability of T h

Overcomplete ICA A NS
. independent observed
sources signals

unknown mixing system
® More independent sources than observed variables, i.e., n>m

X, 5 3 11 —03 .1 [rmme |22 070 s
SISO I RO O R (S
S S I £ 2 S (IS

Theorem: Suppose the random vector X = (Xy,...,X,,)T is
cenerated by X = AS, where the components of S, 51,...,.5,, are
statistically independent. Even when n > m, the columns of A are
still 1dentifiable up to a scale transformation if

e all S; are non-Gaussian, or

e A is of full column rank and at most one of S, is Gaussian.
Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973

Eriksson and Koivunen (2004). Identifiability, Separability and Uliiqueness of Linear ICA Models, IEEE
Signal Processing Lett.:vol. | 1, no. 7, pp. GOI-604, Jul. 2004.



Overcomplete ICA: Illustration
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Discussions I: Confounders

EI/ Ezj
X1 [1 0 a1 [P 1o R I
X2 - as 1 a103 + a9 . E2 - as 1 as + az | E2
<4 i - L / ] - a1 - ap Z_
® (Can we see the causal direction ?
® (Can we determine a3 ? a; and a2 ?
® Observationally equivalent model:
az+az/a; _ LT .
1/ “ax/a X, 1 0 1 =
X} ~ | (as + “—2) + == 1 (a + %) |
@ . C 2 (a3 4 - stTa)] ez
ol [l

aj]/

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables. /AR,
Salehkaleybar, Ghassami, Kiyavash, Zhang (2020), Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables, JMLR



Two Examples: Causal Eftect Identifiable?

aj

a2

X)——>Xa

1 a1as + a9

EJ/ E2/
Example 1
Example 1: X1 L0
X2| a3
' X 1.0 0
Example 2: | X; 0 1 0
_X2_ _O as 1

aq

dg~ d]

a2

S

Example 2
o 1 0 1
F as 1 as+ 22|
7 as 3T o,
Two possible solutions
T
Eq
Eo
_Z_

as identifiable!




a=0.6 @2=0.8
5
O—>B

b

Confounders: Example

o
EI/ Egj
X [1 0 a £y 1 0 1 £
Xo|  a 1aa+a'E2:a 1CL—|—%.E2
A2 a3 143 2 | _Z_ | ¢3 3T a1 _alZ_
<0
% “20 “10 )é) 10 20 30




Some Simulation Result I <

® Simulate 2500 data points with non-
(Gaussian noise using this model:

® Qutput of the algorithm:

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables.
International Journal of Abproximate Reasoning, 49(2):362— 378.
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Some Simulation Result IT /...

/

® Simulate 2500 data points with non-
(Gaussian noise using this model:

® Qutput of the algorithm:

\
70573 1
/ |

\

|
0.7637
\

| \

05059 +0.01776




With Cycles

® [nterpretation of cyclic causal relations

® [CA-based approach to estimating cyclic causal
models



Discussion II: Feedback x% X

® (ausal relations may have cycles; Consider an example

X, =1.2X; — 0.3X, + Es @
X3 =2Xo+ L3
Er 1.0
X4 =—X3+ by '
X5 = 3Xs + F; vV 013 T E,
Or in matrix form, X = BX + E, where 1@\2 -
0 0 0 0 O L2 3 ®V
1.2 0 0 —-03 0 v Es
B=|0 2 0 0 0 @
0 0 —1 0 0 -
0 3 0 0 0 Es

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component
analysis. In Proc. UAI.
A conditional-independence-based method is given in T. Richardson (1996) - A Polynomial-Time Algorithm for
Deciding Markov Equivalence of Directed Cyclic Graphical Models. Proc. UAI



Why Feedbacks? x5

® Some situations where we can recover cycles with ICA:

® Each process reaches its equilibrium state & we observe the
equilibrium states of multiple processes

Xt — BXt—l —I— Et-
- ALl ALt ALeel | A convergence we have X; = X,_; for each
dynamical process, so
X1 X X2, 441 -
S Ity I X, =BX,+E, or E,=(I1-B)X,.

® On temporally aggregated data

Suppose the underlying process is X; = BX;_; + E;, but we just observe
Xt = T Zk 1Xt—|—k Since

1 < < 1 < < 1 o~ -
17 ZXt—I—k — BZ ZXt—l—k—l + T ZEHko
k=1 k=1

k=1

We have Xt = BXt —|—Et as L. — oo.




Examples x5

® Some situations where we can recover cycles with ICA:

® Each process reaches its equilibrium state & we observe the
equilibrium states of multiple processes

Consider the price and demand of the same

v X1l —— X1t ——> X1,0+1 - product in different states:

o X211 :Xz,z 1

—_— A2 ——

X241 -+ price, = by - price; ; + by - demand; | + F;

demand; = b3 - price,_; + b4 - demand;_; + E5

® On temporally aggregated data

Suppose the underlying process is X, = BX;_; + E;, but we just observe
-
Xt = 7D g Xtk

Consider the causal relation between two stocks: the causal influence takes
place very quickly (~ 1-2 minutes) but we only have daily returns.




59 Can We Recover Cyclic Relations?

Era b Fs ® E =(I-B)X; ICA can give Y = WX
v
@ w” ® Without cycles: unique solution to B
Suppose we have the process ® With CYCICS: solutions to B not
' . / -
X, [2 8] X B unique any more; why: -(
= ® A2-D example’?
Fhats, ® Only one solution is stable (assuming
(I-B)X=E, or [fa _1[)] X, = E, no self-loops), i.e., s.t. |product of
T 0 1 coefficients over the cycle\ <] :-)
“ 1 —b]Xt_ [1 o] e
N —1/a,] <. _ [ 0 —1/a] - Summary:
-1/6 1 [T =1/ 0 | |'1.Still m independent components;

X, = [ y 1/&] X, + [_0 —1/61 E,| |2. W cannot be permuted to be
lower-triangular




Can You Find the Alternative
Causal Model ?

® For this example...

X1 =E4

Xo=1.2X7 —0.3X4 + E>
X3 =2X7+ E3

Xy =—Xz+ Ly

X5 = 3Xo + L5

Or in matrix form, X = BX + E., where

"0 0 0 0 0]
1.2 0 0 —03 0
B=|(0 2 0 0 0
0 0 -1 0 0
0 3 0 0 0

X —= X0
1 0 0 0 O
4 .2 1 0 03 0
I-B= —2 1 0 0
Er 1 0
6(4 01
@ a
"= |0 @' . That is,
Ealys
0 v B3
'6(5 0 0O 0 O]
V0T 0 05 000
B =10 o0 0 —1 0
4 -33 0 0 0
0 3 0 0 0
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Some Simulation Result
Peo

® Simulate 15000 data points with non- 11 9
(Gaussian noise using this model: @% 1T TE,

® QOutput of the algorithm: 13 \2)®
TE;

(#1) (#2)
| o) X

E5

Fig. 3: The output of LING-D: Candidate #1 and Candi-
date #2

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component
analysis. In Proc. UAI.



Summary of the Two Situations

® (Can you distinguish between the following situations from ICA

— ’
result ¥ = WX : |. Y still has m independent components;

® cycles: 2. W cannot be permuted to be lower-triangular

{Xl} B {1 0 1 } | gl Y produced
Xo| ~las 1 ag+ 2 a12Z by ordinary
- 7 [ ICA does
not have
independent

® confounders:

® Lither of them makes causal discovery more difficult | €©MPONeNts

® They happen very often, even in the same problem



Take-Home Message

Constraint-based causal discovery makes use of conditional
independence relationships

® Asymptotically correct, but behavior on finite samples not
guaranteed

® Wide applicability! Worth trying on complex problems
® Equivalence class!

Linear non-Gaussian case: Causal model fully identifiable
® Based on ICA or its variants

How to tackle practical issues, e.g., confounders, cycles, and
, related to identifiability of the mixing procedure

Nonlinearities?



