
Lecture 7  

Causal Discovery Based on  
Linear, Non-Gaussian Models 

Instructor: Kun Zhang

CBMS Conference -- Foundations of Causal 
Graphical Models and Structure Discovery



Distinguishing Cause from Effect: 
Examples (Tübingen Cause-Effect Pairs)
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A Causal Process
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Functional Causal Model

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chan, ’06; Zhang 
& Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )

• A functional causal model represents effect as a 
function of direct causes and noise: Y = f (X, E), with X⫫E



(Conditional) Independence
• X⫫Y iff  p(X,Y) = p(X)p(Y) 

• or p(X|Y) = P(X): Y not informative to X 

• X⫫Y | Z iff  p(X,Y|Z) = p(X|Z)p(Y|Z) 

• or, p(X|Y,Z) = p(X|Z): given Z, Y not 
informative to X 

• Divide & conquer, remove irrelevant info...  

• By construction, regression residual is 
uncorrelated (but not necessarily 
independent !) from the predictor
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Gaussian vs. Non-Gaussian 
Distributions
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Causal Asymmetry the Linear 
Case: Illustration
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Super-Gaussian Case
Data generated by Y = aX + E (X →Y):
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More Generally, LiNGAM Model
• Linear, non-Gaussian, acyclic causal model (LiNGAM) 
(Shimizu et al., 2006):

• Disturbances (errors) Ei are non-Gaussian (or at most 
one is Gaussian) and mutually independent

• Example:
X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1

X2 = E2,

X3 = 0.5X2 + E3,

X1 = �0.2X2 + 0.3X3 + E1.

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.



Independent Component Analysis 
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• Assumptions in ICA

• At most one of Si is Gaussian

• #Source <= # Sensor, and A is of full column rank


.5 .3 1.1 �0.3 ...
.8 �.7 .3 .5 ...

�
=


? ?
? ?

�
·

? ? ? ? ...
? ? ? ? ...

�

Hyvärinen et al., Independent Component Analysis, 2001

Then A can be estimated up to 
column scale and permutation 

indeterminacies

A
s1
s2

X1
X2



Intuition: Why ICA works?
• (After preprocessing) ICA aims to find a 

rotation transformation Y = W·X to making 
Yi independent

• By maximum likelihood log p(X|A), 
mutual information MI(Y1,...,Ym) 
minimization, infomax...
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A Demo of 
the ICA 

Procedure







LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2
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So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X

Question 1. How to find W?

Question 2. How to see B from W?



LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2
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So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .



Can You See Causal Relations 
fromW? Example

• ICA gives Y = WX and

• Can we find the causal model?

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .

W =

2
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Faithfulness Assumption Needed?

health 
condition

• One might find independence between health condition & risk of 
mortality. Why?

mortality 
risk

healthy 
lifestyle

-

- -

• E.g., if a=-bc, then health_condition ⫫ mortality_risk, which 
cannot by seen from the graph!

• No faithfulness assumption is needed in LiNGAM

• Minimality (a zero coefficient corresponds to edge absence) is 
sufficient

a
b c X

Y Z

Possible to have 
Y ⫫ Z | X ?



Step-by-Step Demo & Application

• Galton family height data

• Result of PC?

• Linear, non-Gaussian methods: 
let’s do causal discovery step by 
step with 
‘illust_LiNGAM_Galton.m’

Galton’s height data
family father mother Gender Height

1 78.5 67 0 73.2
1 78.5 67 1 69.2
1 78.5 67 1 69
1 78.5 67 1 69
2 75.5 66.5 0 73.5
2 75.5 66.5 0 72.5
2 75.5 66.5 1 65.5
2 75.5 66.5 1 65.5
3 75 64 0 71
3 75 64 1 68
4 75 64 0 70.5
4 75 64 0 68.5
4 75 64 1 67
4 75 64 1 64.5
… … … … …



Some Estimation Methods 
for LiNGAM

• ICA-LiNGAM

• ICA with Sparse Connections 

• DirectLiNGAM...

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.

Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science, 5441:195–
202, 2009

Shimizu, et al. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation 
model. Journal of Machine Learning Research, 12:1225–1248.

*
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Application: Causal diagram in HK 
Stock Market (Zhang & Chan, 2006)

1. Ownership relation: 
x5 owns 60% of x8; 

x1 holds 50% of x10.

2. Stocks belonging to 
the same subindex 

tend to be 
connected.

3. Large bank 
companies (x5 and 
x8) are the cause of 

many stocks.

4. Stocks in Property 
Index (x1, x9, x11) 
depend on many 
stocks, while they 
hardly influence 

others.



Independent Noise (IN) Condition

• (Z, ) follows the IN condition iff  regression residual  is 
independent from Z 

• Estimate the Linear, Non-Gaussian Acyclic Causal model 
(LiNGAM), because (Z, ) satisfies the IN condition iff   

• All variables in Z are causally earlier than & 

• the common cause for  and each variable in Z, if  there is any, is in Z. 

• Can then estimate the LiNGAM (the DirectLiNGAM algorithm)

Y Y � w̃|Z

Y

Y

Y

Z            Y

X2 X3

X1 X4



Independence Test / 
Dependence Measure

• Measure: mutual information MI(Y1,Y2) ≥0 with equality 
holds iff Y1⫫Y2

• Statistical test for independence

• Y1⫫Y2 if and only if all functions of them are uncorrelated

• The functional space can be narrowed down to the 
reproducing kernel Hilbert space

• HSIC independence test; Kernel-based (conditional) 
independence test; other tests also exist

Gretton et al. (2008). A kernel statistical test of independence. In Advances in Neural Information Processing 
Systems, 585–592.

Zhang et al. (2011). Kernel-based conditional independence test and application in causal discovery. In Proc. 
UAI, 804–813.

*
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p-value for ind 
test. is 0.93; 
MI = 0.002

p-value for ind 
test. is 0.53; 
MI = 0.042

Real Examples: By Checking Independence in 
Both Directions



Why Was Gaussianity Widely 
Used?

• Central limit theorem: An illustration

• “Simplicity” of the form; completely characterized by mean 
and covariance

• Marginal and conditionals are also Gaussian

• Has maximum entropy, given values of the mean and the 
covariance matrix

E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.
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Gaussianity or Non-Gaussianity?

• Non-Gaussianity is actually ubiquitous

• Linear closure property of Gaussian distribution: If the 
sum of any finite independent variables is Gaussian, then 
all summands must be Gaussian (Cramér, 1936)

• Gaussian distribution is “special” in the linear case

• Practical issue: How non-Gaussian they are?

26



Practical Issues in Causal Discovery…
• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19; Xie et al., 

NeurIPS’20); latent causal representation learning (Xie et al., NeurIPS’20; Cai et al., NeurIPS’19)

• Cycles (Richardson 1996; Lacerda et al., 2008)

• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, UAI’09; Huang 
et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Spirtes 1995; Zhang et al., UAI’16) 

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., ECML’09; 
Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., ICML’15 & 
UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, Ghassami et al., 
NIPS’18; Huang et al., ICML’19 & NIPS’19; Huang et al., JMLR’20) 



With Confounders
• Confounders cause trouble in causal discovery

• Assuming independent confounders:

• Possible solutions I: Overcomplete ICA for 
Linear-Non-Gaussian case 

• Assuming causally related confounders! 

• Possible solutions II: GIN for Linear-Non-
Gaussian case

• Possible solution II: Rank deficiency for 
Linear-Gaussian case



Are They Confounders ?
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Identifiability of 
Overcomplete ICA

• More independent sources than observed variables, i.e., n>m

Theorem: Suppose the random vector X = (X1, ..., Xm)| is
generated by X = AS, where the components of S, S1, ..., Sn, are
statistically independent. Even when n > m, the columns of A are
still identifiable up to a scale transformation if

• all Si are non-Gaussian, or

• A is of full column rank and at most one of Si is Gaussian.

X1

Xm

observed 
signals

A

… …s1

sn

unknown mixing system

independent 
sources

mixing

…

Kagan et al., Characterization Problems in Mathematical Statistics. New York: Wiley, 1973
Eriksson and Koivunen (2004). Identifiability, Separability and Uiiiqueness of Linear ICA Models, IEEE 

Signal Processing Lett.: vol. 11, no. 7, pp. GOI-604, Jul. 2004.

n>m
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Overcomplete ICA: Illustration
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Discussions I: Confounders

• Can we see the causal direction ?

• Can we determine a3 ?  a1 and a2 ?

• Observationally equivalent model:
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Two Examples: Causal Effect Identifiable?
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Confounders: Example
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Some Simulation Result I

• Simulate 2500 data points with non-
Gaussian noise using this model:

• Output of the algorithm:

true model estimated model(s)

a

b

c

d

e

Figure 6: Left column: original generating model. Right column: estimated set of models. See
main text for details.
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true model estimated model(s)

a

b

c

d

e

Figure 6: Left column: original generating model. Right column: estimated set of models. See
main text for details.

18

Hoyer et al. (2008). Estimation of causal effects using linear nonGaussian causal models with hidden variables. 
International Journal of Approximate Reasoning, 49(2):362– 378.



Some Simulation Result II

• Simulate 2500 data points with non-
Gaussian noise using this model:

• Output of the algorithm:

true model estimated model(s)

a

b

c

d

e

Figure 6: Left column: original generating model. Right column: estimated set of models. See
main text for details.

18
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c

d

e

Figure 6: Left column: original generating model. Right column: estimated set of models. See
main text for details.
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With Cycles

• Interpretation of cyclic causal relations

• ICA-based approach to estimating cyclic causal 
models



Discussion II: Feedback
• Causal relations may have cycles; Consider an example

X1 → X2

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component 
analysis. In Proc. UAI.
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X1 = E1

X2 = 1.2X1 � 0.3X4 + E2

X3 = 2X2 + E3

X4 = �X3 + E4

X5 = 3X2 + E5

Or in matrix form, X = BX+E, where

B =

2
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0 0 0 0 0

1.2 0 0 �0.3 0

0 2 0 0 0

0 0 �1 0 0

0 3 0 0 0

3

77775

A conditional-independence-based method is given in T. Richardson (1996) - A Polynomial-Time Algorithm for 
Deciding Markov Equivalence of Directed Cyclic Graphical Models. Proc. UAI



Why Feedbacks?
• Some situations where we can recover cycles with ICA:

• Each process reaches its equilibrium state & we observe the 
equilibrium states of multiple processes

• On temporally aggregated data

X1 → X2

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B B

Xt = BXt�1 + Et.

At convergence we have Xt = Xt�1 for each
dynamical process, so

Xt = BXt + Et, or Et = (I�B)Xt.

Suppose the underlying process is X̃t = BX̃t�1 + Ẽt, but we just observe
Xt =

1
L

PL
k=1 X̃t+k. Since

1

L

LX

k=1

X̃t+k = B
1

L

LX

k=1

X̃t+k�1 +
1

L

LX

k=1

Ẽt+k.

We have Xt = BXt +Et as L ! 1.

✗ ✗

✗✗



Examples
• Some situations where we can recover cycles with ICA:

• Each process reaches its equilibrium state & we observe the 
equilibrium states of multiple processes

• On temporally aggregated data

X1 → X2

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B B
Consider the price and demand of the same

product in di↵erent states:

pricet = b1 · pricet�1 + b2 · demandt�1 + E1

demandt = b3 · pricet�1 + b4 · demandt�1 + E2

Suppose the underlying process is X̃t = BX̃t�1 + Ẽt, but we just observe
Xt =

1
L

PL
k=1 X̃t+k.

Consider the causal relation between two stocks: the causal influence takes
place very quickly (⇠ 1-2 minutes) but we only have daily returns.



Can We Recover Cyclic Relations?

• E = (I-B)X; ICA can give Y = WX 

• Without cycles: unique solution to B

• With cycles: solutions to B not 
unique any more; why?               :-(

• A 2-D example?

• Only one solution is stable (assuming 
no self-loops), i.e., s.t. |product of 
coefficients over the cycle| < 1      :-)

Summary:
1. Still m independent components;
2. W cannot be permuted to be 
lower-triangular
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Can You Find the Alternative 
Causal Model ?

• For this example...

X1 → X2

X1 = E1

X2 = 1.2X1 � 0.3X4 + E2

X3 = 2X2 + E3

X4 = �X3 + E4

X5 = 3X2 + E5

Or in matrix form, X = BX+E, where

B =

2
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0 0 0 0 0

1.2 0 0 �0.3 0

0 2 0 0 0

0 0 �1 0 0

0 3 0 0 0

3

77775
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Can You Find the Alternative 
Causal Model ?

• For this example...

X1 → X2

X1 = E1

X2 = 1.2X1 � 0.3X4 + E2

X3 = 2X2 + E3

X4 = �X3 + E4

X5 = 3X2 + E5

Or in matrix form, X = BX+E, where

B =

2

66664

0 0 0 0 0

1.2 0 0 �0.3 0

0 2 0 0 0

0 0 �1 0 0

0 3 0 0 0

3

77775

I�B =

2

66664

1 0 0 0 0
�1.2 1 0 0.3 0
0 �2 1 0 0
0 0 1 1 0
0 �3 0 0 1

3

77775
.

W0 =

2

66664

1 0 0 0 0
0 �2 1 0 0
0 0 1 1 0

�1.2 1 0 0.3 0
0 �3 0 0 1

3

77775
. That is,

B0 =

2

66664

0 0 0 0 0
0 0 0.5 0 0
0 0 0 �1 0
4 �3.3 0 0 0
0 3 0 0 0

3

77775
.

X2

X3

X1

1.E1

E3

X5

X4

3

2
-1

-0.3

E2

E5

E4 X2

X3

X1
4

E1

E’3

X5

X4

3
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Some Simulation Result

• Simulate 15000 data points with non-
Gaussian noise using this model:

• Output of the algorithm:
X2

X3

X1

1.2E1

E3
X5

X4

3

2
-1

-0.3

E2

E5

E4

Fig. 3: The output of LiNG-D: Candidate #1 and Candi-
date #2

assuming linearity and no dependence between error
terms:

• DGs G1 and G2 are zero partial correlation equiv-
alent if and only if the set of zero partial correla-
tions entailed for all values of the free parameters
(non-zero linear coe�cients, distribution of the er-
ror terms) of a linear SEM with DG G1 is the same
as the set of zero partial correlations entailed for
all values of the free parameters of a linear SEM
with G2. For linear models, this is the same as
d-separation equivalence. [13]

• DGs G1 and G2 are covariance equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DG G1, there is
a set of parameter values for the free parameters
of a linear SEM with DG G2 such that the two
SEMs entail the same covariance matrix over the
substantive variables, and vice-versa.

• DGs G1 and G2 are distribution equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DG G1, there is a
set of parameter values for the free parameters of
a linear SEM with DG G2 such that the two SEMs
entail the same distribution over the substantive
variables, and vice-versa. Do not confuse this with
the notion of distribution-entailment equivalence
between SEMs: two SEMs with fixed parameters
are distribution-entailment equivalent i↵ they en-
tail the same distribution.

It follows from well-known theorems about the Gaus-
sian case [13], and some trivial consequences of known
results about the non-Gaussian case [12], that the fol-
lowing relationships exist among the di↵erent senses of
equivalence for acyclic graphs: If all of the error terms
are assumed to be Gaussian, distribution equivalence
is equivalent to covariance equivalence, which in turn
is equivalent to d-separation equivalence. If not all of

the error terms are assumed to be Gaussian, then dis-
tribution equivalence entails (but is not entailed by)
covariance equivalence, which entails (but is not en-
tailed by) d-separation equivalence.

So for example, given Gaussian error terms, A  B
and A! B are zero partial correlation equivalent, co-
variance equivalent, and distribution equivalent. But
given non-Gaussian error terms, A  B and A ! B
are zero-partial-correlation equivalent and covariance
equivalent, but not distribution equivalent. So for
Gaussian errors and this pair of DGs, no algorithm
that relies only on observational data can reliably se-
lect a unique acyclic graph that fits the population dis-
tribution as the correct causal graph without making
further assumptions; but for all (or all except one) non-
Gaussian errors there will always be a unique acyclic
graph that fits the population distribution.

While there are theorems about the case of cyclic
graphs and Gaussian errors, we are not aware of any
such theorems about cyclic graphs with non-Gaussian
errors with respect to distribution equivalence. In
the case of cyclic graphs with all Gaussian errors,
distribution equivalence is equivalent to covariance
equivalence, which entails (but is not entailed by) d-
separation equivalence [14]. In the case of cyclic graphs
in which at most one error term is non-Gaussian, dis-
tribution equivalence entails (but is not entailed by)
covariance equivalence, which in turn entails (but is
not entailed by) d-separation equivalence. However,
given at most one Gaussian error term, the important
di↵erence between acyclic graphs and cyclic graphs is
that no two di↵erent acyclic graphs are distribution
equivalent, but there are di↵erent cyclic graphs that
are distribution equivalent.

Hence, no algorithm that relies only on observational
data can reliably select a unique cyclic graph that fits
the data as the correct causal graph without mak-
ing further assumptions. For example, the two cyclic
graphs in Fig. 3 are distribution equivalent.

5.2 The output of LiNG-D is correct and as
fine as possible

Theorem 1 The output of LiNG-D is a set of SEMs
that comprise a distribution-entailment equivalence
class.

Proof: First, we show that any two SEMs in the out-
put of LiNG-D entail the same distribution.

The weight matrix output by ICA is determined only
up to scaling and row permutation. Intuitively, then,
permuting the error terms does not change the mix-
ture. Now, more formally:

Lacerda, Spirtes, Ramsey and Hoyer (2008). Discovering cyclic causal models by independent component 
analysis. In Proc. UAI.



Summary of the Two Situations

• Can you distinguish between the following situations from ICA 
result Y = WX ?

• cycles:

• confounders:

• Either of them makes causal discovery more difficult

• They happen very often, even in the same problem

1. Y still has m independent components;
2. W cannot be permuted to be lower-triangular


X1

X2

�
=


1 0 1
a3 1 a3 +

a2
a1

�
·

2

4
E1

E2

a1Z

3

5 Y produced 
by ordinary 
ICA does 
not have 
independent 
components



Take-Home Message
• Constraint-based causal discovery makes use of conditional 

independence relationships

• Asymptotically correct, but behavior on finite samples not 
guaranteed

• Wide applicability! Worth trying on complex problems

• Equivalence class!

• Linear non-Gaussian case: Causal model fully identifiable

• Based on ICA or its variants

• How to tackle practical issues, e.g., confounders, cycles, and error-
in-measurements, related to identifiability of the mixing procedure

• Nonlinearities?


