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Outline

® Basic multivariate analysis & connection to causal analysis
o PCA, factor analysis, ICA...
® (onstraint-based methods for causal discovery

® Basic idea of score-based methods
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Two Ways ot Finding Simpler

Data Representations

® lewer “data points” vs. tewer dimensions (#variables)?
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Multivariate analysis (MVA): involves observation and
analysis of more than one outcome variable at a time.

| | |
l/-h w N - o - n w N

~ Find a projection of the data: ® Principal
- Y=wTX with certain properties. component
analysis

Fi... Fu |
Z/? A '/l ® Factor analysis:
“ N X =AF+¢g
X7 Xo... Xy

1 &2 & X=X, X, ..., Xa]T

Sicc. Sm ® Independent

o /XA\l component analysis:

X Xo.. Xy X = AS




Multiple Regression XX
L11 L21
® Regress Yon X = (X, X2)T Tio X9
X = : :
® y=ax; toaxztc : :
e For simplicity, assume all variables have e
zero mean e
Minimize Sg = (y — Xa)T(y — X) v — Y2
0SE
— — =9. XT — X
Hor (¥ ) YN

If XTX is invertible, setting % =0

5 a= (XX (xTy)




Simple Regression vs.
Multiple Regression

® [ect’s do simple regression
fromXtoY. y=ox +c

® Let’s do regression from (X, Z)T
toY: y=aix taxz+c

® Will the coefficient of x be
7ero?

Process 2



Major Information in the Data?

® Major information in the NY SE stock market? Better to analyze
returns...

Stock prices of majoy stocks in NYSE
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Principal Component Analysis

(PCA)

©  Original data
4r ©  Projected data
. . . Projection error
® Find a projection of the data —
2F
Y=wlX i
X gl
. . . -1 i
to give the maximum variance SR
(minimal squared reconstruction/ S\
projection error?) S —
X
PCA was invented in 1901 by Karl Pearson, as an analogue of the w. principal axis/ direction;

principal axis theorem in mechanics; it was later independently
developed and named by Harold Hotelling in the 1930s. Depending
on the field of application, it is also named the discrete Karhunen-
Loeve transform (KLT) in signal processing... (https://
en.wikipedia.org/wiki/Principal component analysis#History)

wIX: principal component



https://en.wikipedia.org/wiki/Principal_component_analysis#History
https://en.wikipedia.org/wiki/Principal_component_analysis#History

PCA: Effect of Weight Vector w

. |;|I!|



https://en.wikipedia.org/wiki/Principal_component_analysis#History
https://en.wikipedia.org/wiki/Principal_component_analysis#History

PCA

Q  Original data
O Projected data
Projection error

® [ind a projection of the data

Y=wlX
to give the maximum variance 2

® Find next ones if needed...

- Assume X has a zero mean. X

- Maximize the sample variance of Y, which is %YTY = %wTXXTw =
wTCw, where C = +XXT, s.t. |Jw|]? = wTw = 1.

- Let £ =wTCw — AwTw. Setting g—f) = (0 gives

20w — 2w =0 = Cw = \w.

- So w is an eigenvalue of C' and A is the corresponding eigenvalue.
- The sample variance of Y is then wTCw = wT - Aw = AwTw = A. So A
corresponds to the larges eigenvalue.



Principal Axis vs. Regression Line




Principal Axis vs. Regression Line

® First principal component PC; = wTX

4

3 L

ol \

1+
< 0

1 F _

C 2.0126 0.8013
2 \ ~ 10.8013 1.0009]|
* and the estimated weight vector is:
37 w = (0.88,0.48)7,
with the corresponding eigenvalue 2.45

-5 0 5



Principal Axis vs. Regression Line

® Regression line from X; to X»: 42 — Q1




Principal Axis vs. Regression Line

® Regression line from X2 to X;: 41 = Bxa




Principal Axis vs. Regression Line

4 |
First principal axis w
3+ S
r1 = P
2 I N .
5%2 — I
1+
<. 0
R
-2 -
-3 r




Principal Axis vs. Regression Line

4 |
First principal axis w
3+ S
r1 = P
2 I N .
5%2 — I
1+
<. 0
R
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-3 r
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Factor Analysis

® Assume a generating model
® X=AF+¢

® X=1[X, .., X4|".

® F=|Fy .. Iy, p<n.
® FiLg

® E[F|=0; Cov|F |=I.

X,
Xo

| Xi10_

® Cov[g]="Y, which is diagonal.

® Partial identifiability of A (up to.*’

right orthogonal transformation)

® Istimation: MLE, usually EM

CL11 aji2

| 10,1 @10,2

AAT+ V¥ =AUUTAT 4+ W,

x'where U is an orthogonal matrix.
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Estimated factors:

F = BX,

7
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where B = AT(AAT + W)

because {

X
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Factor Analy51s on the Returns

Stock returns R, (Pt Pt /P,
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® X=AF+¢

N\

A =

® X = [XI, e, Xd]T. 0.3656 | 0.0003 | 0.0089 | 0.1697

0.1175 0.7002 0.1001 0.2019

_ 0.0833 0.1122 0.9837 0.0889
® F=|Fy .. Iy, p<n.

0.3142 0.3506 0.1060 0.6585

0.6793 0.2985 0.1211 0.1736

® FJ.I_ g 0.5529 0.2267 0.1164 0.4120

0.3310 0.4828 0.0586 0.1436

¢ E[F]:()a COV[F ]:I 0.5881 | 0.5311 | 0.0819 | 0.1465

0.5598 0.3829 0.0210 0.0286

0.5908 0.4224 0.0516 0.1744

® Cov[g]="Y, which is diagonal.



Factor Analysis

® Assume a generating model

® X=AFTe Fi..F

o X-[X .. XII. 47|
® F=[F, .. F,)],p<n. 2(1 ;(2 ;(d
® Il ¢ &l &r.. &d
® E[F|=0; Cov|F |=I.
® Cov[e]="Y, which is diagonal.R ationship ;:;tyiesez,f fs(r:lti ,ZSA lc

® Partial identifiability of A & F N ;{ixlsz;ee ;ft;oiS? .te : . gj);sotrop

® Estimation: MLE; usually EM ] (PmZZle(S(t)l;)iso tropic noise’



Factor Analysis

® Assume a generating model

® X=AF+¢ Fr... F
® X=[X, .. XJT. /ﬁA;i
® F=|Fy .., Fpl, p<n. g(] )XZ ﬁ(d
o Fis El] &2... &d

® E[F|=0; Cov|F |=I.

® Cov[&]= W, which is ¢

o , o - A 1n FA consistent with w in PCA.
® Partial identifiability of A

, , - A estimated by FA stays the same; w 1n
® Estimation: MLE PCA may change.




Non-(Gaussianity is Informative in
the Linear Case...

® Smaller entropy, more structural,
more 1nteresting

® “Purer” according to the central

limit theorem

Which direction is
more interesting?

Hyvdrinen et al., Independent Component Analysis, 2001



Independent Component Analysis

— — — — —
—
—

,,,,,,, estimate T T~
s —— T
A\ g RATAAY,
0 Sy - ==-» R X — —
Do A o :1 1
; Sm-__'_,é -------- ;____, Xd y_»/ — Yn
_ /M mixing  : \/\ de-mixing \N
i independent observed - Output: as
tverernssssnasasssassessasassaseasassasassaseasassasassasssans : ICA system possible
unknown mixing system
X =A-S Y =W-X

3

5 3 1.1 —03 ] [l [2? 707 L s
8 -7 3 5 Tl 2 2 2 L 5,

® Assumptions in ICA Then A can be estimated up to

column scale and permutation

® . 1 1 : . .
At most one of §; is GGaussian indeterminacies

® #Source <= # Sensor, and A is of full column rank
Hyvdrinen et al., Independent Component Analysis, 200 |



A Dem() Of SIGNALS JOINT DENSITY

the ICA e+
| ] B
Procedure WWWW B
______________ _'r___.____.___
Input signals and density
SIGNALS JOINT DENSITY

bty

5
0
5
5[
UMWWWWMW
-5

Whitened signals and density




SIGNALS

A A A AR

Separated signals after 1 step of FastiCA

SIGNALS JOINT DENSITY

Separated signals after 3 steps of FastiCA



SIGNALS JOINT DENSITY
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Separated signals after 5 steps of FastiCA



Intuition: Why ICA works?

® (After whitening with Z=-QX) ICA aims to find X,
a rotation transformation Y="U-Z to making A
Y: independent

s1 & s2 bo=h Gaussian

® How to find Q such that cov(Z) =1?

® How to find U to achieve the
independence?

%’¢ . ]
. 42, +.
=
t(;’z*.w: }ii"?:‘
Wos pa ey

*;

.0
'&iﬁ’
v




Darmois-Skitovich Theorem

Darmois-Skitovitch theorem: Define two random variables,
Y: and Y5, as linear combinations of independent random variables

Si, 1 — 1, ceey TLL

}/1 — &151 -+ CMQSQ —+ ... + oann,
Yo = 0151 + BaSa + ... + BpShy.

If Y7 and Y5 are statistically independent, then all variables .S, for
which «o;5; = 0 are Gaussian.

Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973
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How ICA works? By Maximum Likelihood

® From a maximum likelihood perspective

X=A"S
d
Ps — H@:1PS@ Y — W'X
—PX = Hf:1p5i (WZTX)/‘A‘ (Change of variables)
n n d
:>210gpx(xt) :>:>:10gpsi(WiTX;)+nlog|W| log L

t=1 t=1 i=1
(Xt : the t-th point of X.)

® To be maximized by the gradient-based method or natural-gradient
based method

® Or by mutual information minimization, or by information
maximization...



How ICA works? By Mutual Information
Minimization
® Mutual information /(Y7,..., Ys) is the Kullback-Leiber divergence
from Py to [[:Py:

— ZH(Y;)—H(X) — log |W| because Y = WX

()

® Nonnegative and zero iff ¥; are independent

® H(X) =-Ellog px(X)}: differential entropy—how random the

variable is?
Hyvdrinen et al., Independent Component Analysis...



How ICA works? Some Interpretation

Some methods (e.g., FastICA) pre-whiten the data, and then aim
to find a rotation, for which |[W|=1

I(Yq,...,Y ZH X) —log |W| = ZH ) 4+ const.
Minimizing I < minimizing the entropies

Given the variance, the Gaussian distribution has the largest
entropy (among all continuous distributions)

Maximizing non-(Gaussianity !

FastICA adopts some approximations of negentropy of each
output Y;



Non-(Gaussianity is Informative in
the Linear Case

® Smaller entropy, more structural,
more 1nteresting

® “Purer” according to the central

limit therom

Which direction is
more interesting?

Hyvdrinen et al., Independent Component Analysis, 2001



Connecting ICA to Causal
Analysis

Si... §m
/A
X1 Xo... Xu

® With 1dentifiability of A4 (compare 1t with factor analysis)

® (Can we use 1t for causal analysis?



Outline

® (onstraint-based methods for causal discovery

® Basic idea of score-based methods



What Information Helps Find Causality?

e Connection between causal structure and statistical
data under suztable assumptions

e Note this “irrelevance”:

If there is no common cause of X and Y, the generating

process for cause X is irrelevant to (“independent” from)
that generates effect Y from X

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes...

slippery

wet ground



Causal Sufhciency

® A set of random variables V¥ is causally
sufficient if ¥ contains every common
cause (with respect to V) of any pair of

variables in V \ @

® V= {XY/Z}: causally sufficient
® V= {X7Y}: causally insufhicient

® Methods exist in causally insufficient
cases, €.g., FCI (Chapter 6 of the SGS
book)

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

@d winD <snow>
slipperyé

Why so interesting?



We can See CI Relations

from DAGs...

. Born an
(Peer Pressure
ven Day

Attention
Disorder
Coughing .

® ].ocal Markov condition
® (Global Markov condition

® d-separation implies conditional independence:

P(V), where V denotes the set of variables, obeys the global Markov con-

dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Zin § — X 1L Y |Z.




Going from CI to Graph?

X and Y are d-separated by Zin g — X I Y |Z.

® (Contrapositive:
® (Conditional dependence implies d-connection
® What if variables are conditionally independent?

® (Can we recover the property of the underlying graph from
CI relations with Markov condition?

® Arbitrary P(V) would satisfy the global Markov condition
according to G in which there is an edge between each pair of
variables: trivial !

® Under what assumptions can we have CI = d-separation?



Causal Structure vs. Statistical Independence
(SGS, et al.)

Causal Markov condition: each variable is ind. of its non-
descendants conditional on its parents

causal structure Statistical
(causal graph) independence(s)

Y>> XL

Yo-X--Z1

Faithfulness: all observed (conditional) independencies
are entailed in the causal graph




(1ypical) Constraint-Based Causal

Discovery

® (Conditional independence constraints between each variable
pair
® Jllustration: the PC algorithm

® [Extensions: the FCI algorithm...

X1 X5 | X3
Xl X4 | X
Xl X5 | X3

X4l X5 | X3
X1 X3 [{ X2, X4§

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.



Constraint-Based Causal Discovery

® (Conditional) independence constraints
= candidate causal structures

® Relies on causal Markov condition &
faithfulness assumption

-------------------

® PC algorithm (Spirtes & Glymour, 1991)

® Step 1: X and Y are adjacent ift they are -------- .
dependent conditional on every subset of lmﬁ?” ring

the remaining variables (SGS, 1990)
Y—X—Z| 3 possibilities:
® Step 2: Orientation propagation
ADD

® Markov equivalence class, represented by
a pattern

® same adjacencies; — if all agree on Y / - v

orientation; — if disagree




Begin with:

Example I

Step I: finding skeleton

Independcies

X1 1l X2

11l x4| (X3} Step Il: finding v-structure and

x2 1l X4| 1X3} doing orientation propagation




Causal
Graph

Example I

Step I: finding skeleton

Independcies

X1 X111l x2
X3—& X4 X1 1L X4| {X3}
X2 X2 1l X4] {X3}
Begin with: ‘\ %3 <4
//
X2
From X1
~ L —
X1 1L X2 X3 X4
From X1
X1 1l X4| {X3 X3 X4
| {X3} //
X2
From
X1
x2 1l x4] {X3} N
X3 X4

X2

Step II: finding v-structure and
doing orientation propagation

X1 Xo

Pattern
Xl \
X
X, —
Xl
T X X
- 4
X2
X
1 \
X, _ y X,
X —

4



A.) Form the complete undirected graph C on the vertex set V.
B.)
n=20.
P C repeat
repeat
Al g O I‘ith m select an ordered pair of variables X and Y that are adjacent in C such

that Adjacencies(C,X )\{Y} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if

Test for ( Condil'ional) X and Y are d-separated given S delete edge X - Y from C and
independence with an record S in Sepset(X,Y) and Sepset(Y,X);
increased cardin Glity Of the until all ordered pairs of adjacent variables X and Y such that

Ce Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
conditioning set o -

subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is

of cardinality less than n.
Findin g V- ‘ ‘ C.) For each triple of vertices X, Y, Z such that the pair X, ¥ and the pair Y, Z are each
structures adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X > Y <- Zif




(Independence) Equivalent

Classes: Patterns

® Two DAGs are (independence) equivalent if and only if they have the
same skeletons and the same v-structures (Verma & Pearl, 1991)

® Patterns or CPDAG (Completed Partially Directed Acyclic Graph):
graphical representation of (conditional) independence equivalence

among models with no latent common causes (i.e., causally sufficient
models)

X7 and X are not adjacent in any Possible Edges Example
member of the equivalent class |.._
X X3 A —|X,
X1—X> in some members of the | \
equivalent class, and X/« X>in | 7" X | — | Xy
some others X; | —» (X,
X1—X> in every member of the |- AR How many DAGs
equivalent class in this class?




Example II (From SGS Book)

Step | Step ||

A_»/'\
N,

True Graph Complete Undirected Graph




Example II (From SGS Book)

Step | Step ||

//C \
A —» B A B /E
True Graph Complete Undirected Graph

n=0  No zero order independencies

Pattern

n=1 First order independencies Resulting Adjacencies
C
Allc B AllpB RN / \
A llE B ¢ lUb 1B A B E
\ N / /

n=2: Second order independencies Resulting Adjacencies

B LE 1{C.D} /
N




Result on the Archeology Data

Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from different locations

® Different dimensions (from 1 to 255) with nonlinear dependence

® By PC algorithm + kernel-based conditional independence test
(Zhang et al., 2011)

1. gender (1D)—>

3. diet (5D)|-.

2. cranmal size (1D)
\\eported

6. population history 7| 7. climate (6D)

represented by
geodistance (3D)

5. level of attrition (2D)

8. cranial shape

differentiation
(255D)

4. paramasticatory
behavior (5D)




Example 2: College Plans

Sewell and Shah (1968) studied five variables from a sample of
10,318 Wisconsin high school seniors.

SEX [male =0, female = 1]
IQ = Intelligence Quotient [lowest =0, highest = 3]
CP = college plans [yes =0,no0 = 1]

PE = parental encouragement [low =0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]




Dealing with Confounders?

Example I AT . /X2
A1 L As; Possible to have confounders . €

X1 L X4 | Xs; behind X3 and X4? C’ l .
X2 X4 Xg. '\.*X4 -)

E.g., X;: Ramning; X3: wet ground; Xy: slippery.

Example II

A1 XB? Are there confounders / L\

A1 LAy behind X> and X4? Xi1— X Xg—X3
Xo 1L Xs.

E.g., X;: I am not sick; X>: I am 1n this lecture room; X4: you
are 1n this lecture room; X3: you are not sick.
(See the FCI algorithm)




K

I know There Is No
Confounder: Example

In the 1970s, the Edison Electric Company in North Carolina was concerned about
the effects on plant growth of acid rain produced by emissions from its electric
generators.

The investigators chose samples from the Cape Fear estuary, where the Cape Fear
River flows into the Atlantic Ocean.

obtained 45 samples of Spartina grass up and down the estuary, and measured 13
variables in the samples, including concentrations of various minerals, acidity
(pH), salinity, and the outcome variable, the biomass of each sample

The PC algorithm found that among the measured variables the only dzrect

cause of biomass was pH. \ /
PH

|

Biomass

Y-structure: no confounder!

Later verified by intervention-based analysis



S
I Know There must Be N

X —> X  XeX
Confounders: examples *' o

® X;: I am not sick; X2: I am in class; Xs: you are in =~ ,. ™™ B
class; X3: you are not sick e
i? i Belgci::!al_Fianie-i—Finland

® X;: European/South American country; X2: leading *.  ..i..

Greece
Portugal Italy

= _£_ Spain

in science; X4: Chocolate consumption; X3: meat [
supply PET PErson Meat supply per person, 2000 OurWord

Average total meat supply per person measured in kilograms per year. Note that these figures do not correct for
waste at the household/consumption level so may not directly reflect the quantity of food finally consumed by a
given individual.

=3

World map

Chocolate Consumption

- High ll
4 Low :

Okg 20kg 60 kg 100 kg 140 kg

. Medium Nodata 10kg  40kg 80 kg 120 kg 160 kg
L e ——
. TARGET
o MAPRP Source: FAOstats OurWorldinData.org/meat-and-seafood-production-consumption/ - CC BY-SA

Note: Data excludes fish and other seafood solrces



ConstramntBased ve. Score-Based

® Score-based methods

X — X —> X5—> Xy

score 1
‘ Which

score 2 onhe IS

‘ the best?
q score 3

X4 (Score may be BIC,AIC, etc.)

X —Xo «—X;—> X,




GES (Greedy Equivalence Search):

Score Function

® Assumptions: The score is
® score equivalent (i.e., assigning the same score to equivalent DAGs)

® |ocally consistent: score of a DAG increases (decreases) when adding
any edge that eliminates a false (true) independence constraint

® decomposable: Score(G,D) =) Score(X;, Pay)

i—1
® FE.g., BIC: Sg(g,D) = log p(D|0,G") — glogm

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002



GES: Search Procedure

® Performs forward (addition) / backward (deletion) equivalence search
through the space of DAG equivalence classes

® Forward Greedy Search (FGS)

Start from some (sparse) pattern (usually the empty graph)

Evaluate all possible patterns with one more adjacency that entail
strictly fewer CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum

® Backward Greedy Search (BGY)

Start from the output of Stage (1)

Evaluate all possible patterns with one fewer adjacency that entail
strictly more CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum



GES °\

Suppose data were generated by

e/
o ©o_

(1) ° ) °

-




GES

Suppose data were generated by

Imagine the GES procedure...



Summary: Basic methods for causal
discovery

® Basic multivariate analysis: what to discover from
dependence among variables?

® (onstraint-based methods, especially PC
® Assumptions

® Procedure

® Basic idea of GES



