CBMS Conference -- Foundations of Causal

 Graphical Models and Structure Discovery
Lecture 5

Multivariate Analysis and
 Traditional constraint- or score-based causal discovery
 Instructor: Kun Zhang

Carnegie Mellon University

Outline

- Basic multivariate analysis \& connection to causal analysis
- PCA, factor analysis, ICA...
- Constraint-based methods for causal discovery
- Basic idea of score-based methods

Two Ways of Finding Simpler Data Representations

- Fewer "data points" vs. fewer dimensions (\#variables)?

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	5	T	U
1	Id	Population	Sex	Cranial size	Diet or subs	sistence				Paramastic	Dental wear		Geographic	location per popul	lation	Climate per	Qulation				
2			(Male, fem	(CentroidS	Gathering	Hunting	Fishing	Pastoralism	Agriculture	Yes $=1, \mathrm{no}=1$	Average ati	Attrition pr	Distance to	Longitude	Latitude	Tmean	Tmin	Tmax	Vpmean	Vpmin	Vpmax
3	AINU31_1	Ainu	Unknown	713.2942	2	3	4	0	1	-	1.5	2	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
4	ANU7_1	Ainu	Unknown	676.148	2		4	0	1	0	1.5	1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
5	ANVU_2	Ainu	Unknown	675.4924	2	3	4	0	1	0	1.5	1 1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
6	AINU_1016	Ainu	Male	684.3304	2	3	4	0	1	0	1.5	2.5	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
7	AINU_1016	Ainu	Female	686.285	- 2	3	4	0	1	0	1.5	4 4	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
8	AUSM245	Australia	Male	673.8749	- 6	4	0	0	0	1	2.5	1	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
9	AUSM246	Australia	Male	647.4586	6	4	0	0	0	1	2.5	4 4	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
10	AUSM8217	Australia	Male	658.6616	6	4	0	0	0	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
11	AUSM8177	Australia	Male	667.5444	6	4	0	0	0	1	2.5	道	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
12	AUSM8173	Australia	Male	629.7138	6	4	0	0	0	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
13	AUSM8173	Australia	Male	648.7064	6	4	0	0	0	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
14	AUSM8171	Australia	Male	543.0378	-6	4	0	0	0	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
15	AUSM8165	Australia	Male	616.55	6	4	0	0	0	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
16	AUSM8154	Australia	Male	635.0605	6	4	0	0	0	- 1	2.5	25	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
17	AUSM8153	Australia	Male	650.6959	6	4	0	0	0	1	2.5	3 3	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
18	AUSF1412	Australia	Female	618.4781	6	4	0	0	0	1	2.5		20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
19	AUSF8179	Australia	Female	634.3122	6	4	0	0	0	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
20	AUSF8175	Australia	Female	605.1759	6	4	0	0	0	1	2.5	1.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
21	AUSF8172	Australia	Female	613.8324	- 6	4	0	0	0	1	2.5	3	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
22	AUSF8169	Australia	Female	619.1206	- 6	- 4	0	0	0	- 1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
23	AUSF8157	Australia	Female	628.2819	6	4	0	0	0	1	2.5		20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
24	AUSF8155	Australia	Female	628.4609	6	4	0	0	0	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
25	AUSF1578	Australia	Female	640.6311	6	4	0	0	0	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
26	AUSF243	Australia	Female	606.164	6	4	0	0	0	1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
27	AUSF8158	Australia	Female	631.6258	6	4	0	0	0	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
28	DENM1432	Denmark	Male	663.6198	0	0	1	3	6	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
29	DENM1011	Denmark	Male	651.4847	0	0	1	3	6 6	0	2.1	- 3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
30	Denm120s	Denmark	Male	636.9831	0	0	1	3 ${ }^{3}$	[6	0	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
31	DENM116,	Denmark	Male	642.9192	0	0	1	[3	6	0	2.1	3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
32	DENM116	Denmark	Male	646.6609	0	0	1	[3	6	0	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
33	DENM116	Denmark	Male	674.9799	0	0	1	[3	[6	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
34	DENM7_77	Denmark	Male	666.53	0	0	1	3	6	0	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
35	DENM1_58	Denmark	Male	627.4583	0	0	- 1	 	6	0	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
36	DENM903	Denmark	Male	662.5953	0	0	1	3	- 6	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
37	DENM901	Denmark	Male	672.8408	0	0	1	3	6	0	2.1	NaN	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
38	DFNEIS59	nenmark	Epmalo	fros arsa		0					21	ns	noman	55717055	11711426	8 Ol	$\triangle m$	15.66	967	559	15.27

Multivariate analysis (MVA): involves observation and analysis of more than one outcome variable at a time.

- Regression...

Find a projection of the data: $Y=w^{\mathrm{T}} \mathrm{X}$ with certain properties.

- Principal component analysis

- Factor analysis:
$\mathbf{X}=\mathbf{A} \cdot F+\varepsilon$
$\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{d}\right]^{\mathrm{T}}$
- Independent component analysis: $\mathbf{X}=\mathbf{A} \cdot \mathbf{S}$

Multiple Regression

- Regress Y on $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T}$
- $\hat{y}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+c$
- For simplicity, assume all variables have zero mean

Minimize $S_{E}=(\mathbf{y}-\mathbf{x} \boldsymbol{\alpha})^{\top}(\mathbf{y}-\mathbf{x} \boldsymbol{\alpha})$

$$
\frac{\partial S_{E}}{\partial \boldsymbol{\alpha}}=2 \cdot \mathbf{x}^{\boldsymbol{\top}}(\mathbf{y}-\mathbf{x} \boldsymbol{\alpha})
$$

X_{1}
$\mathbf{x}=\left[\begin{array}{cc}X_{2} \\ x_{11} & x_{21} \\ x_{12} & x_{22} \\ \vdots \\ x_{1 N} & \vdots \\ x_{2 N}\end{array}\right]$
$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right]$

If $\mathbf{X}^{\top} \mathbf{X}$ is invertible, setting $\frac{\partial S_{E}}{\partial \alpha}=0$

$$
\Rightarrow \quad \alpha=\left(\mathrm{x}^{\top} \mathbf{x}\right)^{-1}\left(\mathrm{x}^{\top} \mathbf{y}\right)
$$

Simple Regression vs. Multiple Regression

- Let's do simple regression from X to $Y: \quad \hat{y}=\alpha x+c$
- Will α be zero?

- Let's do regression from $(X, Z)^{\mathrm{T}}$ to $Y: \quad \hat{y}=\alpha_{1} x+\alpha_{2} z+c$
- Will the coefficient of x be zero?

Major Information in the Data?

- Major information in the NYSE stock market? Better to analyze returns...

Major

Information in the Data?

- Major information in the NYSE stock market?

Principal Component Analysis (PCA)

- Find a projection of the data

$$
Y=w^{\mathrm{T}} \boldsymbol{X}
$$

to give the maximum variance (minimal squared reconstruction/ projection error?)

w : principal axis/direction; $w^{\mathrm{T}} \boldsymbol{X}$: principal component

PCA was invented in 1901 by Karl Pearson, as an analogue of the principal axis theorem in mechanics; it was later independently developed and named by Harold Hotelling in the 1930s. Depending on the field of application, it is also named the discrete KarhunenLoève transform (KLT) in signal processing... (https:// en.wikipedia.org/wiki/Principal component analysis\#History)

PCA: Effect of Weight Vector w

PCA

- Find a projection of the data

$$
Y=w^{\mathrm{T}} X
$$

to give the maximum variance

- Find next ones if needed...

- Assume \mathbf{X} has a zero mean.
- Maximize the sample variance of Y, which is $\frac{1}{N} \mathbf{Y}^{\top} \mathbf{Y}=\frac{1}{N} w^{\top} \mathbf{X} \mathbf{X}^{\top} w=$ $w^{\boldsymbol{\top}} C w$, where $C=\frac{1}{N} \mathbf{X X}^{\boldsymbol{\top}}$, s.t. $\|w\|^{2}=w^{\boldsymbol{\top}} w=1$.
- Let $\mathcal{L}=w^{\boldsymbol{\top}} C w-\lambda w^{\boldsymbol{\top}} w$. Setting $\frac{\partial \mathcal{L}}{\partial w}=0$ gives

$$
2 C w-2 \lambda w=0 \Rightarrow C w=\lambda w .
$$

- So w is an eigenvalue of C and λ is the corresponding eigenvalue.
- The sample variance of Y is then $w^{\boldsymbol{\top}} C w=w^{\boldsymbol{\top}} \cdot \lambda w=\lambda w^{\boldsymbol{\top}} w=\lambda$. So λ corresponds to the larges eigenvalue.

Principal Axis vs. Regression Line

Principal Axis vs. Regression Line

- First principal component $P C_{l}=w^{\mathrm{T}} \boldsymbol{X}$

Principal Axis vs. Regression Line

- Regression line from X_{1} to $X_{2}: \hat{x}_{2}=\alpha x_{1}$

Principal Axis vs. Regression Line

- Regression line from X_{2} to $X_{1}: \hat{x}_{1}=\beta x_{2}$

Principal Axis vs. Regression Line

Principal Axis vs. Regression Line

Underlying Factors?

- Major information in the NYSE stock market?

Factor Analysis

- Assume a generating model
- $\mathbf{X}=\mathbf{A F}+\boldsymbol{\varepsilon}$

$$
\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{10}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\vdots & \vdots & \vdots & \vdots \\
a_{10,1} & a_{10,2} & a_{10,3} & a_{10,4}
\end{array}\right] \cdot\left[\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{10}
\end{array}\right]
$$

- $\mathbf{X}=\left[X_{1}, \ldots, X_{d}\right]^{\mathrm{T}}$.
- $\boldsymbol{F}=\left[F_{1}, \ldots, F_{p}\right], p<n$.
- $\boldsymbol{F} \Perp \boldsymbol{\varepsilon}$
- $\mathrm{E}[\boldsymbol{F}]=\mathbf{0} ; \operatorname{Cov}[\boldsymbol{F}]=\mathrm{I}$.

- $\operatorname{Cov}[\boldsymbol{\varepsilon}]=\boldsymbol{\Psi}$, which is diagonal.
- Partial identifiability of \mathbf{A} (up to $0 \cdot{ }^{\circ}$ Estimated factors: right orthogonal transformation)
- Estimation: MLE, usually EM

Factor Analysis on the Returns

- $\mathbf{X}=\mathbf{A F}+\boldsymbol{\varepsilon}$
- $\mathbf{X}=\left[X_{1}, \ldots, X_{d}\right]^{\mathrm{T}}$.
- $\boldsymbol{F}=\left[F_{1}, \ldots, F_{p}\right], p<n$.
- $\boldsymbol{F} \Perp \boldsymbol{\varepsilon}$
- $\mathrm{E}[\boldsymbol{F}]=\mathbf{0} ; \operatorname{Cov}[\boldsymbol{F}]=\mathrm{I}$.
- $\operatorname{Cov}[\boldsymbol{\varepsilon}]=\boldsymbol{\Psi}$, which is diagonal.

$\hat{\mathbf{A}}=$			
0.3656	0.0003	0.0089	0.1697
0.1175	0.7002	0.1001	0.2019
0.0833	0.1122	0.9837	0.0889
0.3142	0.3506	0.1060	0.6585
0.6793	0.2985	0.1211	0.1736
0.5529	0.2267	0.1164	0.4120
0.3310	0.4828	0.0586	0.1436
0.5881	0.5311	0.0819	0.1465
0.5598	0.3829	0.0210	0.0286
0.5908	0.4224	0.0516	0.1744

Factor Analysis

- Assume a generating model
- $\mathbf{X}=\mathbf{A F}+\varepsilon$
- $\mathbf{X}=\left[X_{l}, \ldots, X_{d}\right]^{\mathrm{T}}$.
- $\boldsymbol{F}=\left[F_{1}, \ldots, F_{p}\right], p<n$.
- $\boldsymbol{F} \Perp \boldsymbol{\varepsilon}$

- $\mathrm{E}[\boldsymbol{F}]=\mathbf{0} ; \operatorname{Cov}[\boldsymbol{F}]=\mathrm{I}$.
- $\operatorname{Cov}[\varepsilon]=\boldsymbol{\Psi}$, which is diagonal.
- Partial identifiability of A \& F (suppose there is one factor)?
- Estimation: MLE; usually EM -What if the noise terms are isotropic - What if we add (non)isotropic noise?

Factor Analysis

- Assume a generating model
- $\mathbf{X}=\mathbf{A F}+\boldsymbol{\varepsilon}$
- $\mathbf{X}=\left[X_{l}, \ldots, X_{d}\right]^{\mathrm{T}}$.
- $\boldsymbol{F}=\left[F_{1}, \ldots, F_{p}\right], p<n$.
- $\boldsymbol{F} \Perp \boldsymbol{\varepsilon}$

- $\mathrm{E}[\boldsymbol{F}]=\mathbf{0} ; \operatorname{Cov}[\boldsymbol{F}]=\mathrm{I}$.

Relationship between FA and PCA:

- $\operatorname{Cov}[\boldsymbol{\varepsilon}]=\boldsymbol{\Psi}$, which is d_{-}What if the noise terms are isotropic?
- Partial identifiability of \mathbf{A}_{-}- What if we add (non) isotropic noise?
- Estimation: MLE
- A estimated by FA stays the same; w in PCA may change.

Non-Gaussianity is Informative in the Linear Case...

- Smaller entropy, more structural, more interesting
- "Purer" according to the central limit theorem

Independent Component Analysis

unknown mixing system

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{S} \quad \mathbf{Y}=\mathbf{W} \cdot \mathbf{X}
$$

$$
\begin{gathered}
X_{1} \\
X_{2}
\end{gathered}\left[\begin{array}{ccccc}
.5 & .3 & 1.1 & -0.3 & \ldots \\
.8 & -.7 & .3 & .5 & \ldots .
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & A^{2}
\end{array}\right] \cdot\left[\begin{array}{lllll}
? & ? & ? & ? & \ldots \\
? & ? & ? & ? & \ldots
\end{array}\right] \begin{aligned}
& s_{1} \\
& s_{2}
\end{aligned}
$$

- Assumptions in ICA
- At most one of S_{i} is Gaussian

Then A can be estimated up to column scale and permutation indeterminacies

- \#Source <= \# Sensor, and \mathbf{A} is of full column rank

A Demo of the ICA
 Procedure
 JOINT DENSITY

Input signals and density

Whitened signals and density

Separated signals after 1 step of FastICA

Separated signals after 3 steps of FastICA

Separated signals after 5 steps of FastICA

Intuition: Why ICA works?

- (After whitening with $\mathbf{Z}=\mathbf{Q X}$) ICA aims to find a rotation transformation $\mathbf{Y}=\mathbf{U} \cdot \mathbf{Z}$ to making Y_{i} independent
- How to find \mathbf{Q} such that $\operatorname{cov}(\mathbf{Z})=\mathbf{I}$?
- How to find \mathbf{U} to achieve the independence?

Darmois-Skitovich Theorem

Darmois-Skitovitch theorem: Define two random variables, Y_{1} and Y_{2}, as linear combinations of independent random variables $S_{i}, i=1, \ldots, n$:

$$
\begin{aligned}
& Y_{1}=\alpha_{1} S_{1}+\alpha_{2} S_{2}+\ldots+\alpha_{n} S_{n} \\
& Y_{2}=\beta_{1} S_{1}+\beta_{2} S_{2}+\ldots+\beta_{n} S_{n}
\end{aligned}
$$

If Y_{1} and Y_{2} are statistically independent, then all variables S_{j} for which $\alpha_{j} \beta_{j} \neq 0$ are Gaussian.

Cool! Can you then see the identifiability of the ICA problem?

Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973

Overcomplete ICA: Illustration

How ICA works? By Maximum Likelihood

- From a maximum likelihood perspective

$$
\begin{array}{rlr}
& p_{\mathbf{S}}=\Pi_{i=1}^{d} p_{S_{i}} & \mathbf{Y}=\mathbf{W} \cdot \mathbf{X} \\
\Rightarrow & p_{\mathbf{X}}=\Pi_{i=1}^{d} p_{S_{i}}\left(W_{i}^{\boldsymbol{\top}} \mathbf{X}\right) /|\mathbf{A}| & \text { (Change of variab } \\
\Rightarrow & \sum_{t=1}^{n} \log p_{\mathbf{X}}\left(\mathbf{x}_{t}\right)=\sum_{t=1}^{n} \sum_{i=1}^{d} \log p_{S_{i}}\left(W_{i}^{\top} \mathbf{x}_{t}\right)+n \log |\mathbf{W}| & \log L \\
& \left(\mathbf{x}_{t}: \text { the } t \text {-th point of } \mathbf{X} .\right) &
\end{array}
$$

- To be maximized by the gradient-based method or natural-gradient based method
- Or by mutual information minimization, or by information maximization...

How ICA works? By Mutual Information Minimization

- Mutual information $I\left(Y_{1, \ldots}, Y_{d}\right)$ is the Kullback-Leiber divergence from P_{Y} to $\prod_{i} P_{Y i}$:
$I\left(Y_{1}, \ldots, Y_{d}\right)=\int \ldots \int p_{Y_{1}, \ldots, Y_{d}} \log \frac{P_{Y_{1}, \ldots, Y_{d}}}{p_{Y_{1}} \ldots p_{Y_{d}}} d y_{1} \ldots d y_{n}$

$$
\begin{aligned}
& =\int \ldots \int p_{Y_{1}, \ldots, Y_{d}} \log P_{Y_{1}, \ldots, Y_{d}} d y_{1} \ldots d y_{d}-\int p_{Y_{1}, \ldots, Y_{d}} \sum_{i=1}^{d} \log p_{Y_{i}} d y_{i} \\
& =\sum_{i} H\left(Y_{i}\right)-H(Y) \\
& =\sum_{i} H\left(Y_{i}\right)-H(X)-\log |\mathbf{W}| \quad \text { because } \mathbf{Y}=\mathbf{W} \mathbf{X}
\end{aligned}
$$

- Nonnegative and zero iff Y_{i} are independent
- $H(\mathrm{X})=-\mathrm{E}\left[\log p_{X}(\mathrm{X})\right]:$ differential entropy--how random the variable is?

Hyvärinen et al., Independent Component Analysis...

How ICA works? Some Interpretation

- Some methods (e.g., FastICA) pre-whiten the data, and then aim to find a rotation, for which $|\mathbf{W}|=1$
$I\left(Y_{1}, \ldots, Y_{d}\right)=\sum_{i} H\left(Y_{i}\right)-H(X)-\log |\mathbf{W}|=\sum_{i} H\left(Y_{i}\right)+$ const.
- Minimizing $I \Leftrightarrow$ minimizing the entropies
- Given the variance, the Gaussian distribution has the largest entropy (among all continuous distributions)
- Maximizing non-Gaussianity!
- FastICA adopts some approximations of negentropy of each output Y_{i}

Non-Gaussianity is Informative in the Linear Case

- Smaller entropy, more structural, more interesting
- "Purer" according to the central limit therom

Hyvärinen et al., Independent Component Analysis, 200 I

Connecting ICA to Causal Analysis

- With identifiability of \boldsymbol{A} (compare it with factor analysis)
- Can we use it for causal analysis?

Outline

- Basic multivariate analysis \& connection to causal analysis
- PCA, factor analysis, ICA...
- Constraint-based methods for causal discovery
- Basic idea of score-based methods

What Information Helps Find Causality?

- Connection between causal structure and statistical data under suitable assumptions
- Note this "irrelevance":

If there is no common cause of X and Y, the generating process for cause X is irrelevant to ("independent" from) that generates effect Y from X


```
- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes...
```


Causal Sufficiency

- A set of random variables \boldsymbol{V} is causally sufficient if \boldsymbol{V} contains every common cause (with respect to \boldsymbol{V}) of any pair of variables in \boldsymbol{V}

- $\boldsymbol{V}=\{X, Y, Z\}$: causally sufficient
- $\boldsymbol{V}=\{X, Y\}$: causally insufficient
- Methods exist in causally insufficient cases, e.g., FCI (Chapter 6 of the SGS book)

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)

V-Structures

Why so interesting?

We can See CI Relations from DAGs...

- Local Markov condition
- Global Markov condition
- d-separation implies conditional independence:
$P(\mathbf{V})$, where \mathbf{V} denotes the set of variables, obeys the global Markov condition (or property) according to DAG \mathcal{G} if for any disjoint subsets of variables \mathbf{X}, \mathbf{Y}, and \mathbf{Z}, we have

$$
\mathbf{X} \text { and } \mathbf{Y} \text { are d-separated by } \mathbf{Z} \text { in } \mathcal{G} \Longrightarrow \mathbf{X} \Perp \mathbf{Y} \mid \mathbf{Z} .
$$

Going from CI to Graph?

$$
\mathbf{X} \text { and } \mathbf{Y} \text { are d-separated by } \mathbf{Z} \text { in } \mathcal{G} \Longrightarrow \mathbf{X} \Perp \mathbf{Y} \mid \mathbf{Z} .
$$

- Contrapositive:
- Conditional dependence implies d-connection
- What if variables are conditionally independent?
- Can we recover the property of the underlying graph from CI relations with Markov condition?
- Arbitrary $P(\mathbf{V})$ would satisfy the global Markov condition according to G^{\dagger} in which there is an edge between each pair of variables: trivial!
- Under what assumptions can we have $\mathrm{CI} \Rightarrow \mathrm{d}$-separation?

Causal Structure vs. Statistical Independence (SGS, et al.)

Causal Markov condition: each variable is ind. of it nondescendants conditional on its parents
causal structure (causal graph)

Statistical independence(s) $Y \rightarrow X \rightarrow Z$
Y -- X -- Z ?

Faithfulness: all observed (conditional) independencies are entailed by Markov condition in the causal graph

$$
\text { Recall: } \mathrm{Y} \Perp \mathrm{Z} \Leftrightarrow \mathrm{P}(\mathrm{Y} \mid \mathrm{Z})=\mathrm{P}(\mathrm{Y}) ; \mathrm{Y} \Perp \mathrm{Z} \mid \mathrm{X} \Leftrightarrow \mathrm{P}(\mathrm{Y} \mid \mathrm{Z}, \mathrm{X})=\mathrm{P}(\mathrm{Y} \mid \mathrm{X})
$$

(Typical) Constraint-Based Causal Discovery

- Conditional independence constraints between each variable pair
- Illustration: the PC algorithm
- Extensions: the FCI algorithm...

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.

Constraint-Based Causal Discovery

- (Conditional) independence constraints \Rightarrow candidate causal structures
- Relies on causal Markov condition \& faithfulness assumption
- PC algorithm (Spirtes \& Glymour, 1991)
- Step r: X and Y are adjacent iff they are dependent conditional on every subset of the remaining variables (SGS, 1990)
- Step 2: Orientation propagation
- v -structure
- Markov equivalence class, represented by a pattern
- same adjacencies; \rightarrow if all agree on orientation; - if disagree

Example I

Causal
Graph

Step I: finding skeleton
Independcies
$\mathrm{X} 1 山 \mathrm{X} 2$
$\mathrm{X} 1 \mathrm{H} 4 \mid\{\mathrm{X} 3\}$
$\mathrm{X} 2 山 \mathrm{X} 4 \mid\{\mathrm{X} 3\}$
Step II: finding v-structure and doing orientation propagation

Example I

Step I：finding skeleton

Independcies
$\mathrm{X} 1 山 \mathrm{X} 2$
$\mathrm{X} 1 山 \mathrm{X} 4 \mid\{\mathrm{X} 3\}$
$\mathrm{X} 2 山 \mathrm{X} 4 \mid\{\mathrm{X} 3\}$

Begin with：

From
$X 1 山 X 2$

From
$\mathrm{X} 1 \Perp \mathrm{X} 4 \mid\{\mathrm{X} 3\}$

From
$X 2 山 X 4 \mid\{X 3\}$

Begin with：	$\underbrace{\mathrm{X} 1}_{X 2} \times 43$
From $X 1 山 X 2$	
From $X 1 山 X 4 \mid\{X 3\}$	$\overbrace{2}^{\mathrm{X} 1} \times 3 \square \times 4$
From $\mathrm{X} 2 山 \mathrm{X} 4 \mid\{\mathrm{X} 3\}$	

Step II：finding v－structure and doing orientation propagation
A.) Form the complete undirected graph C on the vertex set \mathbf{V}.
B.)

$$
n=0 .
$$

repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C such that Adjacencies $(C, X) \backslash\{Y\}$ has cardinality greater than or equal to n, and a subset \mathbf{S} of $\operatorname{Adjacencies}(C, X) \backslash\{Y\}$ of cardinality n, and if X and Y are d-separated given \mathbf{S} delete edge $X-Y$ from C and record \mathbf{S} in $\operatorname{Sepset}(X, Y)$ and $\operatorname{Sepset}(Y, X)$;
until all ordered pairs of adjacent variables X and Y such that Adjacencies $(C, X) \backslash\{Y\}$ has cardinality greater than or equal to n and all subsets \mathbf{S} of Adjacencies $(C, X) \backslash\{Y\}$ of cardinality n have been tested for d-separation;
$n=n+1$;
until for each ordered pair of adjacent vertices X, Y, Adjacencies $(C, X) \backslash\{Y\}$ is
 of cardinality less than n.
C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each adjacent in C but the pair X, Z are not adjacent in C, orient $X-Y-Z$ as $X->Y<-Z$ if and anlv if Y is not in Senset (X)

(Independence) Equivalent Classes: Patterns

- Two DAGs are (independence) equivalent if and only if they have the same skeletons and the same v-structures (Verma \& Pearl, 1991)
- Patterns or CPDAG (Completed Partially Directed Acyclic Graph): graphical representation of (conditional) independence equivalence among models with no latent common causes (i.e., causally sufficient models)

X_{1} and X_{2} are not adjacent in any member of the equivalent class	\cdots	Possible Edges
$X_{1} \rightarrow X_{2}$ in some members of the equivalent class, and $X_{1} \leftarrow X_{2}$ in some others	$\cdots \cdots \mathrm{X}_{1}$	X_{2}
$X_{1} \rightarrow X_{2}$ in every member of the equivalent class	$\cdots \cdots \mathrm{X}_{1}$	X_{2}

Example II (From SGS Book)

Step I
Step II

Example II (From SGS Book)

Step I

True Graph

$\mathrm{n}=0 \quad$ No zero order independencies
$\mathrm{n}=1 \quad$ First order independencies

Resulting Adjacencies
$B \Perp E \mid\{C, D\}$

$\mathrm{n}=2: \quad$ Second order independencies

Pattern

Resulting Adjacencies

Result on the Archeology Data

Thanks to collaborator Marlijn Noback

- 8 variables of 250 skeletons collected from different locations
- Different dimensions (from 1 to 255) with nonlinear dependence
- By PC algorithm + kernel-based conditional independence test (Zhang et al., 20II)

Example 2: College Plans

Sewell and Shah (r968) studied five variables from a sample of 10,318 Wisconsin high school seniors.

$S E X$	$\quad[$ male $=0$, female $=1]$
$I Q=$ Intelligence Quotient	$[$ lowest $=0$, highest $=3]$
$C P=$ college plans	$[$ yes $=0$, no $=1]$
$P E=$ parental encouragement $[$ low $=0$, high $=1]$	
$S E S=$ socioeconomic status [lowest $=0$, highest $=3]$	

Dealing with Confounders?

Example I

$X_{1} \Perp X_{2}$;
$X_{1} \Perp X_{4} \mid X_{3} ;$
$X_{2} \Perp X_{4} \mid X_{3}$.
Possible to have confounders behind X_{3} and X_{4} ?

E.g., X_{1} : Raining; X_{3} : wet ground; X_{4} : slippery.

Example II
$X_{1} \Perp X_{3} ;$
Are there confounders behind X_{2} and X_{4} ?

$X_{1} \Perp X_{4} ;$
$X_{1} \rightarrow X_{2}$
$X_{4} \leftarrow X_{3}$
$X_{2} \Perp X_{3}$.
E.g., X_{1} : I am not sick; X_{2} : I am in this lecture room; X_{4} : you are in this lecture room; X_{3} : you are not sick.
(See the FCl algorithm)

I know There Is No Confounder: Example

- In the 1970 s, the Edison Electric Company in North Carolina was concerned about the effects on plant growth of acid rain produced by emissions from its electric generators.
- The investigators chose samples from the Cape Fear estuary, where the Cape Fear River flows into the Atlantic Ocean.
- obtained 45 samples of Spartina grass up and down the estuary, and measured 13 variables in the samples, including concentrations of various minerals, acidity ($\mathbf{p H}$), salinity, and the outcome variable, the biomass of each sample
- The PC algorithm found that among the measured variables the only direct cause of biomass was $\mathbf{p H}$.
- Y-structure: no confounder!

- Later verified by intervention-based analysis

* I Know There must Be Confounders: examples

- $X_{1}: \mathrm{I}$ am not sick; $X_{2}: \mathrm{I}$ am in class; X_{4} : you are in class; X_{3} : you are not sick
- X_{I} : European/South American country; X_{2} : leading in science; X_{4} : Chocolate consumption; X_{3} : meat

supply per person

World map of chocolate consumption

Meat supply per person, 2000
Average total meat supply per person measured in kilograms per year. Note that these figures do not correct for waste at the household/consumption level so may not directly reflect the quantity of food finally consumed by a given individual.

Constraint-Based vs. Score-Based

- Constraint-based methods

- Score-based methods

GES (Greedy Equivalence Search): Score Function

- Assumptions: The score is
- score equivalent (i.e., assigning the same score to equivalent DAGs)
- locally consistent: score of a DAG increases (decreases) when adding any edge that eliminates a false (true) independence constraint
- decomposable: $\operatorname{Score}(\mathcal{G}, \mathbf{D})=\sum_{i=1}^{n} \operatorname{Score}\left(X_{i}, \mathbf{P a}_{i}^{\mathcal{G}}\right)$
- E.g., BIC: $S_{B}(\mathcal{G}, \mathbf{D})=\log p\left(\mathbf{D} \mid \hat{\boldsymbol{\theta}}, \mathcal{G}^{h}\right)-\frac{d}{2} \log m$

GES: Search Procedure

- Performs forward (addition) / backward (deletion) equivalence search through the space of DAG equivalence classes
- Forward Greedy Search (FGS)
- Start from some (sparse) pattern (usually the empty graph)
- Evaluate all possible patterns with one more adjacency that entail strictly fewer CI statements than the current pattern
- Move to the one that increases the score most
- Iterate until a local maximum
- Backward Greedy Search (BGS)
- Start from the output of Stage (I)
- Evaluate all possible patterns with one fewer adjacency that entail strictly more CI statements than the current pattern
- Move to the one that increases the score most
- Iterate until a local maximum

GES

Suppose data were generated by

GES

Suppose data were generated by

Imagine the GES procedure...

Summary: Basic methods for causal discovery

- Basic multivariate analysis: what to discover from dependence among variables?
- Constraint-based methods, especially PC
- Assumptions
- Procedure
- Basic idea of GES
- Go beyond equivalence classes?

