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Statistics...

® Relationship between probability
theory & statistics



Discrete vs. Continuous
Random Variables

® A random variable is discrete if its range (the set of
values that it can take) is finite or at most countably
infinite

® E. g, the sum of what I got on the two dice

® P(X=k) = P(lo: X(®) = £}); tabular representation for the
probability mass function (PMF)

® A random variable is continuous (not discrete) if its
range (the set of values that it can take) is uncountably
infinite

® E.g, the height of a TAMU student
® Pla<X<b)=P(lo: a<Xm) <b})



How to Specity Prob. Measures
of Random Variables

® PMFs for discrete variables

® Cumulative distribution function (CDEF): T o
A function Fy:R—[0,1] which specifies as.
probability measure as |

Fx(x) 2P(X < x)

® Probability density function (PDF):
derivative of the CDF for continuous
variables whose CDVFs are differentiable

everywhere

A dF' X (ZC) ,’

px(z) = dx



Some Distributions
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Conditional Distributions

® Joint/marginal PMFs, CDFs, and PDFs:
straightforward

® What is the probability distribution over X, when
we know Y must take a certain value y?

® Discrete case: Provided Py (y)#0, conditional PMF
of X given Y is

Pxvy(x,y
Px)y = (2,9)

Py (y)

® Continuous case: Provided py(y)#0, conditional

PDF of X given Y is
pXY(xa y)

py (y)

Px|y =



A Question...

® With 5 coins which are not necessarily fair, how Q | 2
many parameters to represent the joint Q
probability distribution P(O;,0;,...,05)?

® In practice we often need fewer parameters...

® Divide-and-conquer



Statistical Independence

® '[wo variables X and Y are independent if Fxy(x,))
= Fx(x) Fy(y) tor all values of x and y. Equivalently,

® For discrete variables, Pxy(x,y) = Px(x)Py(y), or
Pxy (x|y) = Px(x) whenever Py (y)#0

® For continuous variables: p instead of P



Pairwise Independence vs.
Mutual Independence

® Pairwise independent: every pair of random
variables is independent

® Mutually independent: Fx.x..x. (x,y) = Fxi (x1) Fx:
(x2)... Fxu(xn)

® Example of three coins: A || B; C is determined by A
and BbutC || BandC || A



Ways to Produce Dependence

® Common cause underlying them
® causal relations between them

® Selection (conditioning on the effect)!



Another Example

® What if Xi’s are not mutually independent
but we know they were generated the
following way?

X1 — Xog— ... = X, slippery ground

falling down




Conditional Independence

® Two variables X and Y are conditionally independent
given Z if Fxyz(x,y|z) = Fxz(x|z) Fyz(y|z) for all values
of x, y and z. Equivalently;

® For discrete variables, Pxyz (x,y|z) = Px 1z (x|2)Pyz (y|2),
or Pxiyz(x|y,z) = Pxiz(x|z) whenever Pyz(y,z)#0

® Lor continuous variables...

® X || Y|Z: If Z1is known, Y is not useful when modeling/
predicting X



Some Properties of
(Conditional) Independence

Symmetry
Decomposition
Weak union

Contraction

X1lY = Y1IX

X 1(A,B) = and{X'LLA

X 1 B

XU A|B

X 1(AB) = and{XJLB|A

X1 A|B

and = X 1(A4,B)
X 1 B



Some Properties of
(Conditional) Independence

P(A,B|X) = P(4,B)

=P(A|X) = P(4) (by marginalizing B out)

® Symmetry
® Decomposition
® Weak union

® (Contraction

X1llY = YI1IX
X 11 A
X (A B) = and{XlLB

X1 A|B
X U(A,B) = and{XJ_LB|A

XA A|B and = X 1(A4,B)
X 1 B



Some Properties of
(Conditional) Independence

P(X|4,B) = P(X);
P(X|4) = P(X).
—P(X|4,B) = P(X|A), i.e, X || B|A
® Symmetry XUY = YIX
® Decomposition X 1(4,B) = and { P
® Weak union X 1L(4,B) = wd{ﬁigii
® (Contraction . J;‘l' g} and = X 1(4,B)
dependence !



Covariance and Correlation

® (Covariance: Cov[X,Y]| = E[(X — E[X])(Y — E[Y])]

® Uncorrelated if Cov[ X Y] =0

® lation:
Correlation Corr[X,Y] & Cov|X,Y]
v/ Var[X|VarlY]




Independence and
Uncorrelatedness

® Independence = uncorrelatedness

® How about the reverse direction?

L
Normal distrlbutwn .



Normal Distribution

® Very common distribution (sometimes also informally
known as bell curve)

® PDF specified by mean p and standard deviation o (or
variance 02):

(| . 0) 1 oA
px(x|pu,0)= e 20
| V202 f—>
2 _'__,_.ll.l'-'a;""'____""----._
O{teﬁ 0 --1-:;'.- 20 &éﬁi 40 %—_ 6'0 70 80 90 IUIU



Multivariate Normal

Distribution  z- [ Vet - Cpti )

® PDF for point x = (Xi,..., Xk), specified by mean p and

covariance matrix :
1

(2m)*[%

px(x) = v exp(— %(X—M)Tz_l(x—u))

Sampled& maarginal



Some Distributions
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Some Properties of Normal
Distributions

® Simplicity
® Uncorrelatedness implies independence

® Approximately holds in many cases because of central limit

theorem (CLT)

. 1
® CLT: Under some conditions, S = - ) X converges to a normal
1=1
distribution for independent X; with finite mean and variance

® Are they really normal? Cramer’s decomposition theorem!

Interested students may refer to Chapter 7 of
“Probability theory: The logic of science”



Central Limit Theorem: An
[llustration

. BN
® CLT: Under some conditions, S=-)_Xi converges to a

1=1
normal distribution for independent X; with finite mean
and variance

1 72 73
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® Are they really normal? Cramer’s decomposition theorem!
E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.
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CHAPTER 7

THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION

“My own impression --- is that the mathematical results have outrun their in-
terpretation and that some simple explanation of the force and meaning of the
celebrated integral - - - will one day be found - -- which will at once render useless
all the works hitherto written.” - - - Augustus de Morgan (1838)

Here, de Morgan was expressing his bewilderment at the “curiously ubiquitous” success of methods
of inference based on the gaussian, or normal, “error law” (sampling distribution), even in cases
where the law is not at all plausible as a statement of the actual frequencies of the errors. But the
explanation was not forthcoming as quickly as he expected.
In the middle 1950’s the writer heard an after—dinner speech by Professor Willy Feller, in
which he roundly denounced the practice of using gaussian probability distributions for errors,
on the grounds that the frequency distributions of real errors are almost never gaussian. Yet in
spite of Feller’s disapproval, we continued to use them, and their ubiquitous success in parameter
estimation continued. So 145 years after de Morgan’s remark the situation was still unchanged, and
the same surprise was expressed by George Barnard (1983): “Why have we for so long managed
with normality assumptions?”
Today we believe that we can, at last, explain (1) the inevitably ubiquitous nse and (2) the
ubiquitous success, of the gaussian error law. Once seen, the explanation is indeec  [nterested students may
yet to the best of our knowledge it is not recognized in any of the previous liter
because of the universal tendency to think of probability distributions in terms ¢ ref er t0. Chap ter / Of
cannot understand what is happening until we learn to to think of probabilit P”'Obablllly theO”y-' The
terms of their demonstrable information content instead of their imagined (an lOgiC ofscience”
irrelevant) frequency connections.
A simple explanation of these properties — stripped of past irrelevancies — has been achieved
only very recently, and this development changed our plans for the present work. We decided that it
is so important that it should be inserted at this somewhat early point in the narrative, even though
we must then appeal to some results that are established only later. In the present Chapter, then,
we survey the historical basis of gaussian distributions and get a quick preliminary understanding
of their functional role in inference. This understanding will then guide us directly — without the
usual false starts and blind alleys — to the computational procedures which yield the great majority
of the useful applications of probability theory.



Three Ways to Derive
(Gaussian PDFs

Found by de Moivre (1733), without realizing its importance

Independence + 1sotropy (Herschel 1785)

Maximum likelihood estimate = arithmetic mean (Gauss,

1809)

Stability 1n 1ts form under small perturbation (Landon, 1941)

Interested students may refer to Chapter 7 of
“Probability theory: The logic of science”



Distance Between Distributions:
Are Two Distributions the Same?

® Kullback-Leibler divergence

Dra(PIQ) =3 P(i) s il

Qi)

Dia(p@la@) = [ " pla) log % dz.

® Non-negative; asymmetric; zero iff identical



Are Two Variables Independent?

® Natural measure of statistical dependence:
mutual information

I(X;Y) =) > Plx,y)log (P(x)

I(X§Y)=//p(x,y)log< Pz, y)

p(z) p(y)

® Non-negative; is zero ift X and Y are
independent



Making Use of Data:

Statistics...

® Relationship between probability YWeronabil ity
theory & statistics

theory

Population ) Sample
Collect data
Draw Describe
Conclusions Sample L
Statistical
Parameters , Inference Statistics

Using sample statistics to estimate population parameters.



Average dice roll by number of rolls

- Theoretical mean

Law of Large R
Numbers .|

0 200 400 600 800 1000
Number of trials

® [aw of large numbers (LLN) is a theorem that describes the
result of performing the same experiment a large number of
times: the average of the results obtained from a large number of
trials should be close to the expected value, and will tend to
become closer as more trials are performed.




Let’s Gome Closer to Reality...

Find knowledge from data,

2.5
which has randomness. E.g., .|
1.5_ . .o.. ...:.-o
Bayesian inference 1| PR Nt
Parameter estimation and of
" -0.5f RN
hypothesis test g |
< -1.5F
Learning
2
. . -2.5 : ' ' . .
® Supervised learning S
. . %DD o .Il.
® Unsupervised learning... B2 o VA
. 0
. s O
® (ausal discovery T
m]



Linear Regression: The Two
Directions

® Data generated by Y=

aX +u + & where ¢ ~
N(0,02)

® Regression line in the
reverse direction:

T = Py + c2

® (onsider different
: 7 : : : : : : : :
SltuathnS. y 48" 52 56 60 64 68 72 76 80 84

4

66 T P

X

Question. 1. Interpretation of the parameter.
2. Are the regression lines from X to Y and from Y to X identical?



Linear Regression: The Two
Directions

® Data generated by Y=

aX +u + & where ¢ ~
N(0,02)

94 1

9 1

® Regression line in the 1

° ° 82 1
reverse direction:

T = Py + c2

78 1

74 1

70 1

® (onsider different

situations...

66 1 P . . . . . . . .
4§ 52 56 60 64 68 72 7T6 80 84
’

X

Question. 1. Interpretation of the parameter.
2. Are the regression lines from X to Y and from Y to X identical?



Graphical Models

Graphical models
d-separation

Connection between conditional independence 1n graphs
and that in data?

Causal interpretations?



Intuitive Way of Representing
and Visualizing Relationships

. Born an
Peer Pressure
ven Day
Yellow .
: Smoking
Fingers
Attention
Disorder
Coughing @

33



Probabilities & Graphical Models

® Why graphical models!?

® flexible, powerful and compact way to model relationships between
random variables and do inference

® Why probabilities?

The actual science of logic 1s conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Theretfore the true logic for this world 1s the calculus
of Probabilities, which takes account of the magnitude of the probability

which 1s, or ought to be, 1n a reasonable man’s mind.
James Clerk Maxwell (1850)

34



Graphical Models

® A graph comprises nodes (also called vertices) connected by links
(also known as edges or arcs)

® Probabilistic graphical models: graph-based representation as
the basis for compactly encoding a complex distribution

® Node: a random variable (or group of random variables)
® [.inks: direct probabilistic interactions between them

® (ategorization: Undirected graphs vs. directed acyclic graphs
(DAGs)

Probability theory + graph theory
/ AN

represent uncertainty & L L
. intuitively appealing interface for humans
interface models to data

35



Directed Acyclic Graphs

® Let G(V,E) be a directed acyclic @

graph, where V are the nodes and ‘E
are the edges of the graph. ! /

® Let{X,:v e V} be a collection of @
random variables indexed by the T~~~
nodes of the graph.
v
® o each node v e V, let 7, denote @
the subset of indices of its parents.
® X, denotes the vector of random Terms:

variables indexed by the parents of nodes, edge, adjacent, path;

vV, sometimes written as PAXV or Parents’ Chi'dren’ spouses,

PA(X)) ancestors, descendants,
36



Directed Acyclic Graphical Models

® Also known as Bayesian networks
belief nets

P(C=F) P(C=T)

® ‘[wo components

specification) :

T

0.8 02

T 02 0.8

05 05
® (raph structure (qualitative
p q C [PIS=R P(S=T) @ C | P(R=F) P(R=T)
05 05 i i 3
09 0.1 @

® prior knowledge of causal/modular
relationships, or expert knowledge

S R' P(W=F) P(W=T)
® Jearned from data EE| 10 00
TF 0.1 09
® Conditional probability cT| 01 oo
distributions (CPDs) T T| 001 0%

® discrete variables : conditional
distribution tables (CPTs)

® continuous variables: SEMs
37



Bayesian Networks: Story

® Breakthrough in early 1980s (by Pearl et al.)

® [n ajoint probability distribution, every variable is, in general,
related to all other variables.

® Pecarl and others realized:

® [t is often reasonable to make the assumption that each variable
is directly related to only a few other variables

® This leads to modularity: Allowing decomposing a complex
model into small manageable pieces

® Giving rise to Bayesian networks

38



What Independence
Relationships Can You See?

chat”
slippery ground

yellow finger

falling down

39



(Local) Markov Condition

chat®
slippery ground

yellow finger

® Fach variable is independent from its non-descendants given its
parents

falling down

40



For Instance, What Independence
Relations can You See?

Born an
ven Day
Yellow
: Smoki
Fingers MORINS @
Attention
Disorder
Coughlng Fatigue

41



Factorization According to
Directed Graphs

® (Chain rule of probability gives Cotondy)
P(C,S,R,W) = P(C) P(§|C) P(R|C,S) P(W|C,S,R) @
® According to the CI relationships:

P(C,S,R,W) = P(C) P(S|C) P(R|C) P(W]|S,R)

® The graph structure allows us to represent the joint
distribution more compactly (Markov factorization or
Markov decomposition of the joint distribution):

® P(Xy...Xn) =1PXi| P4y g s

If we aim to represent :

, .causal info, is CI info |
® Remember this example? enough? =

O+ —@~@  wer



Factorization According to
Directed Graphs: Procedure

® Associate a conditional probability with each node

® Then take the product of the local probabilities to yield the

global probabilities
P(DIC)

P(EIC)

43



Tasks Related to Bayesian Networks

P(C=F) P(C=T)

® Probabilistic inference:
Calculate P(variables of interest |
observed variables)

0.5 0.5
® Most common task where we ¢ |esee s = |pm=siER=s
05 05 . o I

09 01 @

want to use Bayesian i |0z o2
T
networks T Joz o
® How to find P(S=1|W=1)? S R [p(W=E) eOV=T)

EF 1.0 0.0

P(R:]| W:])? TFEF | Q1 09

. ET | Ol 09

® Parameter learning T | ool ose

® Structure learning: Learning the
structure of the graphical model
from observations

44



Is LLocal Markov Condition
Enough?

® (Can we see whether two arbitrary variables, X and Y, are
conditionally independent given an arbitrary set of variables, Z ?

Born an
<> Cinba

ven Day

Yellow .
Coanetio

Attention
Allergy @
Coughmg

45




D-Separation Tells
Conditional Independence

® [f every path from a node in X to a node in Y is d-separated by Z,
then X and Y are always conditionally independent given Z

® d: directional... You will see why

Born an
<> Gt

ven Day

Yellow .
<

Attention
Atersy D) s Canee
Coughing .
N




D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in X to a node in Y is blocked given Z.

® A path p is blocked by a set of nodes Z if

® ) contains a chain Z7—>2 e] or a common cause 7 < %] such
that the middle node » is in Z, or

® 5 contains a collider 2—>77 e_7 such that the middle node 7 is in

not Z and no descendant of 7z is in Z

X—pR—pS—> T ¢—U€—V—>Y
X—pR—pS—>T «—Ue—V—>Y l l l

X andY d-separated by {R,V}? W P 0
_ )
S and U d-separated by {R,V}? X and Y d-separated by {R, P}

47



D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in X to a node in Y is blocked given Z.

® A path p is blocked by a set of nodes Z

if -
e

® 5 contains a chain z’%mej or a

common cause Z e7729] such that
the middle node 72 is in Z, or

® ) contains a collider 7 %me] such

that the middle node 7 is not in Z
and no descendant of 72 is in Z

A and E d-separated by B ?
A and E d-separated by {B, M} ?

48



D-Separation: Intuition

. Born an
(Peer Pressure
ven Day

® Suppose X and Y are d-
separated by Z

® ThenifyoufixZ,Xand Y

Attention
Disorder
Coughing . @

® do not cause each other and

® do not share a common

4+—U
cause X\ - N\ e
R=—=T V
® X and Y are independent \Y/

. '
(conditional on Z)! 1. X and Y d-separated by {R}?

2. X and Y d-separated by {R, T}?
3. X and Y d-separated by {T, V}?
4. X and V d-separated by & ?




Local & Global Markov
Conditions

® l.ocal Markov condition:

® In a DAG, a variable X is
independent of all its non-
descendants given its parents

® (Global Markov condition:

® Given a DAG, let X and Y be
two variables and Z be a set of

variables that does not contain
XorY. It Z d-separates X and

Y, then XULYI|Z.

® Actually equivalent on DAGs!

50



Markov Blanket

® In a DAG, the Markov Blanket of a node X is the set consisting of
® Parents of X
® Children of X
® Parents of children (i.e., spouses) of X

® In a DAG, avariable X is conditionally independent from all other
variables given its Markov Blanket & (a) \ ﬁ\
® Implied by d-separation... %} %?

SNIPEN

® The Markov blanket of I?
ﬁ:) (1)
()

51



Representing CGausal Relations with

Directed Graphs

® A directed graph represents a causally sutficient causal

structure
s \
Smoking > Cancer

(adapted from “Causation, Prediction, and Search” by SGS, 1995)

® Directed edge from A to B means 4 1s a direct cause of
B relative to the given variable set V'

52



Causality vs. Dependence

® (lausality =» dependence ! Dependence =¥ causality

X 1s a cause of Y iff
Jx, # x, P(Y|do X=x,) # P(Y|do X=x,)

X and Y are associated 1iff

Ix, # x, P(Y|X=x,) # P(Y|X=x,)



http://imgs.xkcd.com/comics/correlation.png

Causal Bayesian Networks (CBN’s)

SEASON

® Bayesian networks: DAGs SPRINKLER '/ \ RAIN
® (Causal Bayesian networks WET
® More meaningful & able to represent and SLIPPERY
respond to external or spontaneous changes
Let P«(V) be the distribution of J resulting from @ SEASON
intervention do(X=x). A DAG G 1s a CBN 1f SP‘E%‘IE;LER . @ RAIN
1. P«(V) 1s Markov relative to G; . WET
2. P«(Vi=vi)=1 for all V;&X and v, consistent
with X=x: ‘ SLIPPERY
3. P«(Vi| PAi) = P(Vi| PA;) for all Vi€£X, i.e., .
P(Vi| PA;) remains invariant to interventions What1s
¢ £441) TCMAInS THvatiaht 1o ety Pxs=on(X1,X2,X4,X5)?
not involving V;

54



Structural Causal Models

o X;=fi(P4, E), i=1,...n /@\TEASON
SPRINKLER RAIN
N/

® [ exogenous variables / errors /

disturbances B!
® Fach equation represents an autonomous SRR
mechanism
PAi — X

® Describes how nature assigns values to

variables of interest X1 =E|,
o , X2 =f2(X1, E2),
® Distinction between structural equations & | X; =/3(X;, Es),

algebraic equations Xe = f2(X5, X2, E9),
Xs =f5 (X4, E5)

® Associated with graphical causal models

55



Three Types of

Problems in Current Al

ellow fingers Cough

e Three questions:

e Prediction: Would the person cough 1f we find he/she

has yellow fingers? _

e Intervention: Would the person cough 1f we make sure
that he/she has yellow fingers?

PX3|  (X2=1))

e Counterfactual: Would George cough /ad he had
yellow fingers, given that he does not have yellow

fingers and coughs’! P(X3 xo-i ﬂ)@ =0, X3 =1)

-

1
0
0
1
0
0
1
1
0
1
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Summary

Probability theory & statistics: (conditional) independence,
Gaussian distribution, regression...

Directed acyclic graph
d-separation
Local and global Markov condition

Causal graphical representation
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