NSF-CBMS Research Conference
Algorithmic Fractal Dimensions
Lecture 3
Three great theories of information

Jack Lutz
Iowa State University

May 21, 2024
Drake University
Shannon’s 1948 *The Mathematical Theory of Communication* was a world-changing publication.
Shannon: Information Theory

Shannon’s 1948 *The Mathematical Theory of Communication* was a world-changing publication.

Definition

- A subprobability measure on a nonempty, countable set X is a function $p : X \to [0, 1]$ such that

$$\sum_{x \in X} p(x) \leq 1.$$ \hspace{1cm} (\ast)
Shannon’s 1948 *The Mathematical Theory of Communication* was a world-changing publication.

Definition

- A **subprobability measure** on a nonempty, countable set X is a function $p : X \rightarrow [0, 1]$ such that
 \[\sum_{x \in X} p(x) \leq 1. \]

- A **probability measure** on X is a subprobability measure p that satisfies (\ast) with equality.
Shannon’s 1948 *The Mathematical Theory of Communication* was a world-changing publication.

Definition

- A *subprobability measure* on a nonempty, countable set X is a function $p : X \to [0, 1]$ such that

 $$\sum_{x \in X} p(x) \leq 1.$$

- A *probability measure* on X is a subprobability measure p that satisfies (\ast) with equality.

A *discrete (sub)probability space* is an ordered pair (X, p) as above.
Shannon: Information Theory

Shannon’s 1948 *The Mathematical Theory of Communication* was a world-changing publication.

Definition

- **A subprobability measure** on a nonempty, countable set X is a function $p : X \to [0, 1]$ such that

$$\sum_{x \in X} p(x) \leq 1.$$ \hspace{1cm} (*)

- **A probability measure** on X is a subprobability measure p that satisfies (*) with equality.

A **discrete (sub)probability space** is an ordered pair (X, p) as above.

If X is finite, then a discrete probability space (X, p) is also called an **ensemble**.
Let (X, p) be a discrete subprobability space.
Let \((X, p)\) be a discrete subprobability space.

Definition

The **Shannon self-information** of a point \(x \in X\) is

\[
I_p(x) = \log \frac{1}{p(x)}.
\]

(All logarithms here are base-2.)
Let (X, p) be a discrete subprobability space.

Definition

The **Shannon self-information** of a point $x \in X$ is

$$I_p(x) = \log \frac{1}{p(x)}.$$

(All logarithms here are base-2.)

Intuition: The probability $p(x)$ suggests that x “acts like” one of $\frac{1}{p(x)}$ equiprobable points. $I_p(x)$ is the number of bits needed to specify each of these $\frac{1}{p(x)}$ points.
The Shannon entropy of (X, p) is

$$H(X) = E \mathcal{I}_p(x) = E \log \frac{1}{p(x)} = \sum_{x \in X} p(x) \log \frac{1}{p(x)}.$$
Shannon: Information Theory

Uniqueness of Entropy (Khinchin 1953)

Let \mathcal{E} be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : \mathcal{E} \to [0, \infty)$ with the following properties.

1. H is continuous.
2. H is invariant under permutations.
3. H is maximized by uniform probabilities.
4. If (X, p) and (Y, q) are ensembles with $X \subseteq Y$ and $q \equiv p$ on X, then $H(Y, q) = H(X, p)$.
5. If (X, p) and (Y, q) are ensembles, then $H(X \times Y, p \times q) = H(X, p) + H(Y, q)$.
Uniqueness of Entropy (Khinchin 1953)

Let \mathcal{E} be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : \mathcal{E} \to [0, \infty)$ with the following properties.

1. H is continuous
Uniqueness of Entropy (Khinchin 1953)

Let \mathcal{E} be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : \mathcal{E} \rightarrow [0, \infty)$ with the following properties.

1. H is continuous
2. H is invariant under permutations
Uniqueness of Entropy (Khinchin 1953)

Let \mathcal{E} be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : \mathcal{E} \rightarrow [0, \infty)$ with the following properties.

1. H is continuous
2. H is invariant under permutations
3. H is maximized by uniform probabilities
Let E be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : E \to [0, \infty)$ with the following properties.

1. H is continuous
2. H is invariant under permutations
3. H is maximized by uniform probabilities
4. If (X, p) and (Y, q) are ensembles with $X \subseteq Y$ and $q \equiv p$ on X, then $H(Y, q) = H(X, p)$.

Uniqueness of Entropy (Khinchin 1953)
Shannon: Information Theory

Uniqueness of Entropy (Khinchin 1953)

Let \mathcal{E} be the set of all ensembles (X, p). The Shannon entropy is, up to the base of the logarithm, the unique function $H : \mathcal{E} \to [0, \infty)$ with the following properties.

1. H is continuous
2. H is invariant under permutations
3. H is maximized by uniform probabilities
4. If (X, p) and (Y, q) are ensembles with $X \subseteq Y$ and $q \equiv p$ on X, then $H(Y, q) = H(X, p)$.
5. If (X, p) and (Y, q) are ensembles, then

$$H(X \times Y, p \times q) = H(X, p) + H(Y, q).$$
A set $A \subseteq \{0, 1\}^*$ is prefix-free (or is a prefix set) if no element of A is a prefix of any other element of A.

Definition
Kolmogorov Complexity

Definition

A set $A \subseteq \{0, 1\}^*$ is **prefix-free** (or is a **prefix set**) if no element of A is a prefix of any other element of A.

Definition

A **prefix Turing machine** is a Turing machine M whose domain (set of inputs π such that $M(\pi)$ halts) is a prefix set.
Kolmogorov Complexity

Definition
A set $A \subseteq \{0, 1\}^*$ is **prefix-free** (or is a **prefix set**) if no element of A is a prefix of any other element of A.

Definition
A **prefix Turing machine** is a Turing machine M whose domain (set of inputs π such that $M(\pi)$ halts) is a prefix set.

The theory of prefix Turing machines is much like the theory of Turing machines: There is a standard enumeration of M_0, M_1, M_2, \ldots, of prefix TMs, there is a universal prefix TM U such that each $U(0^n1x)$ simulates $M_n(x)$, etc.
Kolmogorov Complexity

Definition
A set $A \subseteq \{0, 1\}^*$ is **prefix-free** (or is a **prefix set**) if no element of A is a prefix of any other element of A.

Definition
A **prefix Turing machine** is a Turing machine M whose domain (set of inputs π such that $M(\pi)$ halts) is a prefix set.

The theory of prefix Turing machines is much like the theory of Turing machines: There is a standard enumeration of M_0, M_1, M_2, \ldots, of prefix TMs, there is a universal prefix TM U such that each $U(0^n1x)$ simulates $M_n(x)$, etc.

We **fix** a universal prefix TM U.

Jack H. Lutz, 2024
The following is Levin’s 1973 refinement of the notion of Kolmogorov complexity introduced by Solomonoff (1964), Kolmogorov (1965), and Chaitin (1966, 1969).

Recall that U is a fixed universal prefix Turing machine.
Kolmogorov Complexity

The following is Levin’s 1973 refinement of the notion of Kolmogorov complexity introduced by Solomonoff (1964), Kolmogorov (1965), and Chaitin (1966, 1969).

Recall that U is a fixed universal prefix Turing machine.

Definition

The **Kolmogorov complexity** of a string $x \in \{0, 1\}^*$ is

$$K(x) = \min\{|\pi| | \pi \in \{0, 1\}^* \text{ and } U(\pi) = x\},$$

i.e., the minimum number of bits required to cause U to print x.
Kolmogorov Complexity

The following is Levin’s 1973 refinement of the notion of Kolmogorov complexity introduced by Solomonoff (1964), Kolmogorov (1965), and Chaitin (1966, 1969).

Recall that U is a fixed universal prefix Turing machine.

Definition

The **Kolmogorov complexity** of a string $x \in \{0, 1\}^*$ is

$$K(x) = \min\{|\pi| : \pi \in \{0, 1\}^* \text{ and } U(\pi) = x\},$$

i.e., the minimum number of bits required to cause U to print x.

If $U(\pi) = x$, we call π a **program** for x.

Jack H. Lutz, 2024
Kolmogorov Complexity

Facts

\[K(x) \leq |x| + o(|x|) \]

\(K(x) \) is seldom much smaller than \(|x| \).

Different choices of \(U \) agree on \(K(x) \) to within small additive constants.

\(K(x) \) is also called the **algorithmic information content** of \(x \).

Theorem (Levin 1973)

A sequence \(R \in \{0, 1\}^\omega \) is random if and only if there is a constant \(c \in \mathbb{N} \) such that, for all \(x \subseteq R \),

\[K(x) \geq |x| - c \]
Facts

- $K(x) \leq |x| + o(|x|)$

Kolmogorov Complexity

Different choices of U agree on $K(x)$ to within small additive constants.

$K(x)$ is also called the algorithmic information content of x.

Theorem (Levin 1973)

A sequence $R \in \{0, 1\}^\omega$ is random if and only if there is a constant $c \in \mathbb{N}$ such that, for all $x \subseteq R$, $K(x) \geq |x| - c$.

Jack H. Lutz, 2024
Kolmogorov Complexity

Facts

- $K(x) \leq |x| + o(|x|)$
- $K(x)$ is seldom much smaller than $|x|$.

Theorem (Levin 1973)

A sequence $R \in \{0, 1\}^\omega$ is random if and only if there is a constant $c \in \mathbb{N}$ such that, for all $x \subseteq R$, $K(x) \geq |x| - c$.
Kolmogorov Complexity

Facts

- $K(x) \leq |x| + o(|x|)$
- $K(x)$ is seldom much smaller than $|x|$.
- Different choices of U agree on $K(x)$ to within small additive constants.
Kolmogorov Complexity

Facts

- \(K(x) \leq |x| + o(|x|) \)
- \(K(x) \) is seldom much smaller than \(|x| \).
- Different choices of \(U \) agree on \(K(x) \) to within small additive constants.
- \(K(x) \) is also called the algorithmic information content of \(x \).

Theorem (Levin 1973)

A sequence \(R \in \{0, 1\}^\omega \) is random if and only if there is a constant \(c \in \mathbb{N} \) such that, for all \(x \sqsubseteq R \),

\[
K(x) \geq |x| - c
\]
Kolmogorov Complexity

Facts

- $K(x) \leq |x| + o(|x|)$
- $K(x)$ is seldom much smaller than $|x|$.
- Different choices of U agree on $K(x)$ to within small additive constants.
- $K(x)$ is also called the *algorithmic information content* of x.

Theorem (Levin 1973)

A sequence $R \in \{0, 1\}^\omega$ is random if and only if there is a constant $c \in \mathbb{N}$ such that, for all $x \subseteq R$, $K(x) \geq |x| - c$.
Kraft’s Inequality

If $A \subseteq \{0, 1\}^*$ is prefix-free, then

\[
\sum_{x \in A} 2^{-|x|} \leq 1.
\]

(*)
Kraft’s Inequality

If $A \subseteq \{0, 1\}^*$ is prefix-free, then

$$\sum_{x \in A} 2^{-|x|} \leq 1.$$ (*)

Proof.
Choose the bits of a sequence $S \in \{0, 1\}^\omega$ by independent tosses of a fair coin.
If $A \subseteq \{0, 1\}^*$ is prefix-free, then

$$\sum_{x \in A} 2^{-|x|} \leq 1. \quad (\star)$$

Proof.

Choose the bits of a sequence $S \in \{0, 1\}^\omega$ by independent tosses of a fair coin.

The left-hand side of (\star) is the probability that S has a prefix in A. \qed
Kolmogorov Complexity

Definition

The **algorithmic a priori probability** of a string $x \in \{0,1\}^*$ is

$$m(x) = \sum_{\pi \in \{0,1\}^*, U(\pi) = x} 2^{-|\pi|}. \quad \text{(random programming!)}$$
Kolmogorov Complexity

Definition

The **algorithmic a priori probability** of a string \(x \in \{0, 1\}^* \) is

\[
m(x) = \sum_{\pi \in \{0, 1\}^* \atop U(\pi) = x} 2^{-|\pi|}. \quad \text{(random programming!)}
\]

By Kraft’s inequality, \(m \) is a subprobability measure on \(\{0, 1\}^* \).
The **algorithmic a priori probability** of a string $x \in \{0,1\}^*$ is

$$m(x) = \sum_{\pi \in \{0,1\}^* \atop U(\pi) = x} 2^{-|\pi|}. \quad \text{(random programming!)}$$

By Kraft’s inequality, m is a subprobability measure on $\{0,1\}^*$.

Trivially, $2^{-K(x)} \leq m(x)$.
Kolmogorov Complexity

Definition

The **algorithmic a priori probability** of a string $x \in \{0, 1\}^*$ is

$$m(x) = \sum_{\pi \in \{0, 1\}^* \atop U(\pi) = x} 2^{-|\pi|}. \quad (\text{random programming!})$$

By Kraft’s inequality, m is a subprobability measure on $\{0, 1\}^*$.

Trivially, $2^{-K(x)} \leq m(x)$.

Levin’s Coding Theorem (1974)

There is a constant $\alpha > 0$ such that, for all $x \in \{0, 1\}^*$,

$$m(x) \leq \alpha 2^{-K(x)}.$$
Kolmogorov Complexity

Definition

The **algorithmic a priori probability** of a string $x \in \{0, 1\}^*$ is

$$m(x) = \sum_{\pi \in \{0, 1\}^* \atop U(\pi) = x} 2^{-|\pi|}. \quad \text{(random programming!)}$$

By Kraft’s inequality, m is a subprobability measure on $\{0, 1\}^*$.

Trivially, $2^{-K(x)} \leq m(x)$.

Levin’s Coding Theorem (1974)

There is a constant $\alpha > 0$ such that, for all $x \in \{0, 1\}^*$,

$$m(x) \leq \alpha 2^{-K(x)}.$$

“x cannot have many long programs without having a short program.”

Jack H. Lutz, 2024
We just saw that there is a constant $\alpha > 0$ such that, for all strings $x \in \{0, 1\}^*$,

$$2^{-K(x)} \leq m(x) \leq \alpha 2^{-K(x)}.$$
We just saw that there is a constant $\alpha > 0$ such that, for all strings $x \in \{0, 1\}^*$,

$$2^{-K(x)} \leq m(x) \leq \alpha 2^{-K(x)}.$$

Taking logarithms, we thus have a constant $c \in \mathbb{N}$ such that, for all $x \in \{0, 1\}^*$,

$$\left| K(x) - \log \frac{1}{m(x)} \right| \leq c.$$
We just saw that there is a constant $\alpha > 0$ such that, for all strings $x \in \{0, 1\}^*$,

$$2^{-K(x)} \leq m(x) \leq \alpha 2^{-K(x)}.$$

Taking logarithms, we thus have a constant $c \in \mathbb{N}$ such that, for all $x \in \{0, 1\}^*$,

$$\left| K(x) - \log \frac{1}{m(x)} \right| \leq c.$$

This fact, due to Levin (1974) says that, to within an additive constant, Kolmogorov complexity is Shannon self-information with respect to m!
Our next task: Extend algorithmic dimension to define $\dim(x)$ for each $x \in \{0, 1\}^*$.
Dimensions of Finite Strings

Our next task: Extend algorithmic dimension to define \(\text{dim}(x) \) for each \(x \in \{0, 1\}^* \).

Notation:

\[
\mathcal{T} = \{0, 1\}^* \cup \{0, 1\}^*\square
\]
Our next task: Extend algorithmic dimension to define $\dim(x)$ for each $x \in \{0, 1\}^*$.

Notation:

$$\mathcal{T} = \{0, 1\}^* \cup \{0, 1\}^*\Box$$

terminated binary strings
Our next task: Extend algorithmic dimension to define \(\dim(x) \) for each \(x \in \{0, 1\}^* \).

Notation:

\[
\mathcal{T} = \{0, 1\}^* \cup \{0, 1\}^\square
\]

prefixes thereof \hspace{1cm} terminated binary strings
Dimensions of Finite Strings

Our next task: Extend algorithmic dimension to define $\dim(x)$ for each $x \in \{0, 1\}^*$.

Notation:

$$\mathcal{T} = \{0, 1\}^* \cup \{0, 1\}^* \square$$

- prefixes thereof
- terminated binary strings

Definition

For $s \in [0, \infty)$, an s-termgale is a function $d : \mathcal{T} \to [0, \infty)$ satisfying

$$d(\lambda) \leq 1$$

and

$$d(w) = 2^{-s}[d(w0) + d(w1) + d(w\square)]$$

for all $x \in \{0, 1\}^*$.

Jack H. Lutz, 2024
"d" bets on the successive bits \textit{and on the termination} of a finite string.
Dimensions of Finite Strings

d bets on the successive bits and on the termination of a finite string.

Example

Define \(d : \mathcal{T} \to [0, \infty) \) by \(d(\lambda) = 1 \),

\[
\begin{align*}
 d(w0) &= \frac{3}{2}d(w), \\
 d(w1) &= d(w\square) = \frac{1}{4}d(w).
\end{align*}
\]

This is a 1-termgale.
Dimensions of Finite Strings

\(d \) bets on the successive bits and on the termination of a finite string.

Example

Define \(d : \mathcal{T} \rightarrow [0, \infty) \) by \(d(\lambda) = 1 \),

\[
\begin{align*}
d(w0) &= \frac{3}{2} d(w), \\
d(w1) &= d(w\square) = \frac{1}{4} d(w).
\end{align*}
\]

This is a 1-termgale.

If \(w \in \{0, 1\}^n \) has \(n_0 \) 0s and \(n_1 \) 1s, then

\[
d(w\square) = \left(\frac{3}{2} \right)^{n_0} \left(\frac{1}{4} \right)^{n_1+1} = 2^{n_0(1+\log 3) - 2(n+1)}.\]
Dimensions of Finite Strings

\(d\) bets on the successive bits \textit{and on the termination} of a finite string.

\begin{example}

Define \(d : \mathcal{T} \to [0, \infty)\) by \(d(\lambda) = 1\),

\[
d(w0) = \frac{3}{2}d(w), \quad d(w1) = d(w□) = \frac{1}{4}d(w).
\]

This is a 1-termingale.

If \(w \in \{0, 1\}^n\) has \(n_0\) 0s and \(n_1\) 1s, then

\[
d(w□) = \left(\frac{3}{2}\right)^{n_0} \left(\frac{1}{4}\right)^{n_1+1} = 2^{n_0(1+\log 3) - 2(n+1)}.
\]

\(\therefore\) If \(n_0 >> 0.77(n + 1)\), then \(d(w□) >> d(\lambda)\), even though \(d\) loses \(\frac{3}{4}\) of its money when □ appears.

\end{example}
Dimensions of Finite Strings

Trivial Observation

If $2 - s \mid x \mid d(x) = 2 - s' \mid x \mid d'(x)$ for all $x \in T$, then d is an s-termgale iff d' is an s'-termgale.

Hence, if d is a 0-termgale, then $d'(x) = 2 s \mid x \mid d(x)$ is an s-termgale, and all s-termgales are of this form.
Trivial Observation

If

\[2^{-s|x|} d(x) = 2^{-s'|x|} d'(x)\] \((\star)\)

for all \(x \in \mathcal{T}\), then \(d\) is an \(s\)-termgale iff \(d'\) is an \(s'\)-termgale.
Dimensions of Finite Strings

Trivial Observation

If

\[2^{-s|x|} d(x) = 2^{-s'|x|} d'(x) \] (⋆)

for all \(x \in \mathcal{T} \), then \(d \) is an \(s \)–termgale iff \(d' \) is an \(s' \)-termgale. Hence, if \(d \) is a 0–termgale, then

\[d'(x) = 2^{s|x|} d(x) \]

is an \(s \)–termgale, and all \(s \)–termgales are of this form.
A termgale is a family

\[d = \{d^{(s)}|s \in [0, \infty)\} \]

of \(s\)–termgales, one for each \(s\), related by \((\ast)\).
A **termgale** is a family

\[d = \{ d^{(s)} | s \in [0, \infty) \} \]

of \(s\)-termgales, one for each \(s\), related by (\(\ast\)).

\(d\) is completely determined by any one of its elements.
Definition

A **termgale** is a family

$$d = \{d^{(s)} | s \in [0, \infty)\}$$

of s–termgales, one for each s, related by (\star).

d is completely determined by any one of its elements.

Definition

Let d be a termgale, $a \in \mathbb{Z}^+$, and $w \in \{0, 1\}^*$. The dimension of w relative to d at significance level a is

$$\dim^a_d(w) = \inf\{s | d^{(s)}(w\Box) > a\}.$$
Dimensions of Finite Strings

Definition

A *termgale* is a family

\[d = \{ d^{(s)} | s \in [0, \infty) \} \]

of \(s \)-termgales, one for each \(s \), related by \((\ast)\).

\(d \) is completely determined by any one of its elements.

Definition

Let \(d \) be a termgale, \(a \in \mathbb{Z}^+ \), and \(w \in \{0, 1\}^* \). The dimension of \(w \) relative to \(d \) at significance level \(a \) is

\[\dim^a_d(w) = \inf \{ s | d^{(s)}(w\Box) > a \} \]

We write \(\dim_d(w) = \dim^1_d(w) \).
We have now discretized Hausdorff dimension.
Dimensions of Finite Strings

We have now discretized Hausdorff dimension.

Definition

A termgale d is algorithmic if $d^{(0)}$ is lower semicomputable.
We have now discretized Hausdorff dimension.

Definition

A termgale d is **algorithmic** if $d^{(0)}$ is lower semicomputable.

Now optimize:

Definition

An algorithmic termgale \tilde{d} is **optimal** if, for every algorithmic termgale d, there is a constant $\alpha > 0$ such that, for all $s \in [0, \infty)$ and $w \in \{0, 1\}^*$,

$$\tilde{d}^{(s)}(w\Box) \geq \alpha d^{(s)}(w\Box).$$
If \tilde{d} is an optimal algorithmic termgale, then, for every algorithmic termgale d and every $a \in \mathbb{Z}^+$, there is a constant $\nu \in [0, \infty)$ such that, for all $w \in \{0, 1\}^*$,

$$\dim^a_d(w) \leq \dim_d(w) + \frac{\nu}{1 + |w|}.$$
Theorem (J. Lutz 2003)

If \(\tilde{d} \) is an optimal algorithmic termgale, then, for every algorithmic termgale \(d \) and every \(a \in \mathbb{Z}^+ \), there is a constant \(\nu \in [0, \infty) \) such that, for all \(w \in \{0, 1\}^* \),

\[
\dim_a^{\tilde{d}}(w) \leq \dim_d(w) + \frac{\nu}{1 + |w|}.
\]

Corollary

If \(d_1 \) and \(d_2 \) are optimal algorithmic termgales and \(a_1, a_2 \in \mathbb{Z}^+ \), then there is a constant \(\alpha \in [0, \infty) \) such that, for all \(w \in \{0, 1\}^* \),

\[
\left| \dim_{d_1}^{a_1}(w) - \dim_{d_2}^{a_2}(w) \right| \leq \frac{\alpha}{1 + |w|}.
\]
Dimensions of Finite Strings

Theorem (J. Lutz 2003)

If \(\tilde{d} \) is an optimal algorithmic termgale, then, for every algorithmic termgale \(d \) and every \(a \in \mathbb{Z}^+ \), there is a constant \(\nu \in [0, \infty) \) such that, for all \(w \in \{0, 1\}^* \),

\[
\dim_d^a(w) \leq \dim_d(w) + \frac{\nu}{1 + |w|}.
\]

Corollary

If \(d_1 \) and \(d_2 \) are optimal algorithmic termgales and \(a_1, a_2 \in \mathbb{Z}^+ \), then there is a constant \(\alpha \in [0, \infty) \) such that, for all \(w \in \{0, 1\}^* \),

\[
\left| \dim_{d_1}^{a_1}(w) - \dim_{d_2}^{a_2}(w) \right| \leq \frac{\alpha}{1 + |w|}.
\]

Hence it makes very little difference which optimal algorithmic termgale or which significance level we use.
Theorem (J. Lutz 2003)

There is an optimal algorithmic termgale $d\square$.

The proof uses Levin’s m.

Dimensions of Finite Strings

Theorem (J. Lutz 2003)

There is an optimal algorithmic termgale d.

The proof uses Levin’s m.

Definition

The dimension of a string $w \in \{0, 1\}^*$ is

$$\dim(w) = \dim_{d}^{1}(w).$$
Theorem (J. Lutz 2003)

There is an optimal algorithmic termgale d_{\square}.

The proof uses Levin’s m.

Definition

The **dimension** of a string $w \in \{0, 1\}^*$ is

$$\dim(w) = \dim_{d_{\square}}(w).$$

Theorem (J. Lutz 2003)

There is a constant $c \in \mathbb{N}$ such that, for all $x \in \{0, 1\}^*$,

$$|K(x) - |x| \dim(x)| \leq c.$$
Theorem (J. Lutz 2003)

There is an optimal algorithmic termgale d_{\square}.

The proof uses Levin’s m.

Definition

The dimension of a string $w \in \{0, 1\}^*$ is

$$\dim(w) = \dim_{d_{\square}}^1(w).$$

Theorem (J. Lutz 2003)

There is a constant $c \in \mathbb{N}$ such that, for all $x \in \{0, 1\}^*$,

$$|K(x) - |x| \dim(x)| \leq c.$$

$\therefore \dim(x)$ is the density of algorithmic information in x.

Jack H. Lutz, 2024
Summary:

Up to constant additive terms,

\[K(x) = \log \frac{1}{m(x)} = |x| \text{dim}(x). \]
Dimensions of Finite Strings

Summary:

Up to constant additive terms,

\[K(x) = \log \frac{1}{m(x)} = |x| \dim(x). \]

The great, and fundamentally different, theories of Hausdorff (1919), Shannon (1948), and Kolmogorov (1965) are in exquisite agreement on the information in finite strings.
Thank you!

Thanks to CBMS and to NSF grants 2329555 and 1900716.