Finite-state dimensions
Lebesgue measure
1901
Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Algorithmic randomness
Martin-Löf 1966

Lebesgue measure
1901

Computability
Turing, Church 1936

Very Big Picture
Very Big Picture

Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Algorithmic
randomness
Martin-Löf 1966

Computability
Turing, Church 1936

Lebesgue measure
1901

Randomness via
martingales
Schnorr 1971
Very Big Picture

Probability
Kolmogorov 1933
Normal Numbers
Borel 1909
Algorithmic randomness
Martin-Löf 1966
Randomness via martingales
Schnorr 1971
Normality is finite-state randomness
Schnorr & Stimm 1972

Lebesgue measure 1901

Computability
Turing, Church 1936
Very Big Picture

Lebesgue measure 1901

Probability
Kolmogorov 1933

Algorithmic randomness
Martin-Löf 1966

Randomness via martingales
Schnorr 1971

Normal Numbers
Borel 1909

Computability
Turing, Church 1936

Normality is finite-state randomness
Schnorr & Stimm 1972

Hausdorff dimension 1918

Lebesgue measure 1901

Probability
Kolmogorov 1933

Algorithmic randomness
Martin-Löf 1966

Randomness via martingales
Schnorr 1971

Normal Numbers
Borel 1909

Computability
Turing, Church 1936

Normality is finite-state randomness
Schnorr & Stimm 1972

Hausdorff dimension 1918
Very Big Picture

Lebesgue measure 1901

Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Hausdorff
dimension 1918

Algorithmic dimensions
L 2003, AHLM 2007

Algorithmic randomness
Martin-Löf 1966

Computability
Turing, Church 1936

Randomness via martingales
Schnorr 1971

Normality is finite-state randomness
Schnorr & Stimm 1972

Finite-state dimensions
DLLM 2004, AHLM 2007
Normality

\[\Sigma = \{0, 1, \cdots, b - 1\} \quad (2 \leq b \in \mathbb{N}) \]

For \(S \in \Sigma^\infty \), \(w \in \Sigma^+ \), and \(n \in \mathbb{Z}^+ \),

\[
\text{freq}_n(w, S) = \frac{\left| \left\{ i < n \mid S[i \ldots i + |w| - 1] = w \right\} \right|}{n}
\]

\[= n \text{-th frequency of } w \text{ in } S \]
Normality

$\Sigma = \{0, 1, \cdots, b - 1\}$ (2 ≤ $b \in \mathbb{N}$)

For $S \in \Sigma^\infty$, $w \in \Sigma^+$, and $n \in \mathbb{Z}^+$,

$$\text{freq}_n(w, S) = \left| \{ i < n \mid S[i \cdots i + |w| - 1] = w \} \right|$$

$$= n\text{-th frequency of } w \text{ in } S$$

Definition (Borel 1909)

A sequence $S \in \Sigma^\infty$ is **normal** if

$$(\forall w \in \Sigma^+) \lim_{n \to \infty} \text{freq}_n(w, S) = b^{-|w|}.$$
Normality

\[\Sigma = \{0, 1, \cdots, b - 1\} \quad (2 \leq b \in \mathbb{N}) \]

For \(S \in \Sigma^\infty \), \(w \in \Sigma^+ \), and \(n \in \mathbb{Z}^+ \),

\[
freq_n(w, S) = \left| \left\{ i < n \mid S[i \ldots i + |w| - 1] = w \right\} \right|_n
= n\text{-th frequency of } w \text{ in } S
\]

Definition (Borel 1909)

A sequence \(S \in \Sigma^\infty \) is **normal** if

\[
(\forall w \in \Sigma^+) \lim_{n \to \infty} freq_n(w, S) = b^{-|w|}.
\]

A real number \(\alpha \) is **normal in base** \(b \) if the base-\(b \) expansion of \(\{\alpha\} \) is a normal sequence.
Martin-Löf’s 1966 definition of algorithmic randomness was compelling because it was based on measure theory. Specifically, he defined a sequence \(S \in \{0, 1\}^* \) to be \textit{random} if \(\{S\} \) does not have \textit{algorithmic} \((\Sigma^0_1) \) Lebesgue measure 0.

Many equivalent characterizations of randomness are now known. All use computability theory. Schnorr’s characterization in terms of martingales is especially useful: Martingales have nice linearity properties. The martingale characterization works at all levels of effectivity: \(\Sigma^0_1 \), computable, \(p \), \(\text{pspace} \), finite-state, etc.
Martin-Löf’s 1966 definition of algorithmic randomness was compelling because it was based on measure theory. Specifically, he defined a sequence $S \in \{0,1\}^*$ to be random if $\{S\}$ does not have algorithmic (Σ^0_1) Lebesgue measure 0.

Many equivalent characterizations of randomness are now known. All use computability theory.
Martin-Löf’s 1966 definition of algorithmic randomness was compelling because it was based on measure theory. Specifically, he defined a sequence $S \in \{0,1\}^*$ to be random if $\{S\}$ does not have algorithmic (Σ^0_1) Lebesgue measure 0.

Many equivalent characterizations of randomness are now known. All use computability theory.

Schnorr’s characterization in terms of martingales is especially useful:
Martin-Löf’s 1966 definition of algorithmic randomness was compelling because it was based on measure theory. Specifically, he defined a sequence $S \in \{0, 1\}^*$ to be random if $\{S\}$ does not have algorithmic (Σ^0_1) Lebesgue measure 0.

Many equivalent characterizations of randomness are now known. All use computability theory.

Schnorr’s characterization in terms of martingales is especially useful:

Martingales have nice linearity properties.

The martingale characterization works at all levels of effectivity: Σ^0_1, computable, p, pspace, finite-state, etc.
A **martingale** is a function \(d : \{0, 1\}^* \to [0, \infty) \) that satisfies

\[
d(w) = \frac{d(w0) + d(w1)}{2}
\]

for all \(w \in \{0, 1\}^* \).
A **martingale** is a function $d : \{0, 1\}^* \rightarrow [0, \infty)$ that satisfies

$$d(w) = \frac{d(w0) + d(w1)}{2}$$

for all $w \in \{0, 1\}^*$.

A martingale d **succeeds** on a sequence $S \in \{0, 1\}^\omega$ if

$$\limsup_{w \to S} d(w) = \infty.$$
A **martingale** is a function $d : \{0, 1\}^* \rightarrow [0, \infty)$ that satisfies

$$d(w) = \frac{d(w0) + d(w1)}{2}$$

for all $w \in \{0, 1\}^*$.

A martingale d **succeeds** on a sequence $S \in \{0, 1\}^\omega$ if

$$\limsup_{w \to S} d(w) = \infty.$$

A martingale d **succeeds strongly** on a sequence $S \in \{0, 1\}^\omega$ if

$$\liminf_{w \to S} d(w) = \infty.$$
A **martingale** is a function \(d : \{0, 1\}^* \rightarrow [0, \infty) \) that satisfies

\[
d(w) = \frac{d(w0) + d(w1)}{2}
\]

for all \(w \in \{0, 1\}^* \).

A martingale \(d \) **succeeds** on a sequence \(S \in \{0, 1\}^\omega \) if

\[
\limsup_{w \to S} d(w) = \infty.
\]

A martingale \(d \) **succeeds strongly** on a sequence \(S \in \{0, 1\}^\omega \) if

\[
\liminf_{w \to S} d(w) = \infty.
\]

\(S^\infty[d] = \text{the success set of } d = \{S \mid d \text{ succeeds on } S\} \).
A **martingale** is a function \(d : \{0, 1\}^* \rightarrow [0, \infty) \) that satisfies

\[
d(w) = \frac{d(w0) + d(w1)}{2}
\]

for all \(w \in \{0, 1\}^* \).

A martingale \(d \) **succeeds** on a sequence \(S \in \{0, 1\}^\omega \) if

\[
\limsup_{w \to S} d(w) = \infty.
\]

A martingale \(d \) **succeeds strongly** on a sequence \(S \in \{0, 1\}^\omega \) if

\[
\liminf_{w \to S} d(w) = \infty.
\]

\(S^\infty[d] \) = the **success set** of \(d = \{S \mid d \text{ succeeds on } S\} \).

\(S_{str}[d]^\infty \) = the **strong success set** of \(d = \{S \mid S \text{ succeeds strongly on } S\} \).
Theorem (Ville 1939)

A set $E \subseteq \{0, 1\}^\omega$ has Lebesgue measure 0 if and only if there exists a martingale d such that $E \subseteq S^\infty[d]$.

Theorem (Schnorr 1971)

A sequence $S \in \{0, 1\}^\omega$ is random in the sense of Martin-Löf (algorithmically random) if and only if there is no lower semicomputable martingale that succeeds on S.

Note: d is lower semicomputable if there is a computable function \hat{d}: $\{0, 1\}^* \times \mathbb{N} \to \mathbb{Q}$ satisfying the following two conditions for all $w \in \{0, 1\}^*$.

1. For all $t \in \mathbb{N}$, $\hat{d}(x, t) \leq \hat{d}(x, t+1) \leq d(x)$.
2. $\lim_{t \to \infty} \hat{d}(x, t) = d(x)$.
Theorem (Ville 1939)

A set $E \subseteq \{0, 1\}^\omega$ has Lebesgue measure 0 if and only if there exists a martingale d such that $E \subseteq S^\infty[d]$.

Theorem (Schnorr 1971)

A sequence $S \in \{0, 1\}^\omega$ is random in the sense of Martin-Löf (algorithmically random) if and only if there is no lower semicomputable martingale that succeeds on S.

Note: d is lower semicomputable if there is a computable function $\hat{d} : \{0, 1\}^* \times \mathbb{N} \rightarrow \mathbb{Q}$ satisfying the following two conditions for all $w \in \{0, 1\}^*$.

1. For all $t \in \mathbb{N}$, $\hat{d}(x, t) \leq \hat{d}(x, t+1) \leq d(x)$.
2. $\lim_{t \to \infty} \hat{d}(x, t) = d(x)$.
Theorem (Ville 1939)
A set \(E \subseteq \{0, 1\}^\omega \) has Lebesgue measure 0 if and only if there exists a martingale \(d \) such that \(E \subseteq S^\infty[d] \).

Theorem (Schnorr 1971)
A sequence \(S \in \{0, 1\}^\omega \) is random in the sense of Martin-Löf (algorithmically random) if and only if there is no lower semicomputable martingale that succeeds on \(S \).

Note: \(d \) is lower semicomputable if there is a computable function \(\hat{d} : \{0, 1\}^* \times \mathbb{N} \rightarrow \mathbb{Q} \) satisfying the following two conditions for all \(w \in \{0, 1\}^* \).

1. For all \(t \in \mathbb{N} \), \(\hat{d}(x, t) \leq \hat{d}(x, t + 1) \leq d(x) \).
2. \(\lim_{t \to \infty} \hat{d}(x, t) = d(x) \).
But today we want **finite-state** martingales!

Example

![Diagram](image)

\[\beta(q)(0) = 0.3, \beta(r)(0) = 0.7 \]
\[\beta(q)(1) = 0.7, \beta(r)(1) = 0.3 \]
But today we want **finite-state** martingales!

Example

![Graph](#)

\[\beta(q)(0) = .3, \beta(r)(0) = .7 \]
\[\beta(q)(1) = .7, \beta(r)(1) = .3 \]

\[d_G(w) = \text{capital that } G \text{ has after } w \text{ if payoffs are fair.} \]
But today we want **finite-state** martingales!

Example

\[
\begin{align*}
\beta(q)(0) &= .3, \beta(r)(0) = .7 \\
\beta(q)(1) &= .7, \beta(r)(1) = .3
\end{align*}
\]

\[d_G(w) = \text{capital that } G \text{ has after } w \text{ if payoffs are fair.}\]

\[d_G(\lambda) = \text{always 1}\]
But today we want finite-state martingales!

Example

\[\beta(q)(0) = .3, \beta(r)(0) = .7 \]
\[\beta(q)(1) = .7, \beta(r)(1) = .3 \]

\[d_G(w) = \text{capital that } G \text{ has after } w \text{ if payoffs are fair.} \]

\[d_G(\lambda) = 1 \text{ always} \]

\[d_G(1) = 2(0.7)d_G(\lambda) = 1.4 \]
But today we want finite-state martingales!

Example

\[\beta(q)(0) = 0.3, \beta(r)(0) = 0.7 \]
\[\beta(q)(1) = 0.7, \beta(r)(1) = 0.3 \]

\[d_G(w) = \text{capital that } G \text{ has after } w \text{ if payoffs are fair.} \]

\[d_G(\lambda) = 1 \text{ always} \]

\[d_G(1) = 2(0.7)d_G(\lambda) = 1.4 \]

\[d_G(11) = 2(0.3)d_G(1) = 0.84 \]
But today we want **finite-state** martingales!

Example

\[\beta(q)(0) = .3, \beta(r)(0) = .7 \]
\[\beta(q)(1) = .7, \beta(r)(1) = .3 \]

\(d_G(w) \) = capital that \(G \) has after \(w \) if payoffs are fair.

\(d_G(\lambda) = 1 \text{ always} \)

\(d_G(1) = 2(0.7)d_G(\lambda) = 1.4 \)

\(d_G(11) = 2(0.3)d_G(1) = 0.84 \)

\(d_G(110) = 2(0.7)d_G(11) = 1.176 \)
Theorem (Schnorr, Stimm 1972)

A sequence $S \in \Sigma^\omega$ is normal in the sense of Borel (1909) if and only if there is no finite-state gambler that succeeds on S.

\[
\therefore \text{Normality is finite-state randomness!}
\]
Theorem (Schnorr, Stimm 1972)

A sequence $S \in \Sigma^\omega$ is normal in the sense of Borel (1909) if and only if there is no finite-state gambler that succeeds on S.

\[\therefore \text{Normality is finite-state randomness!} \]
They proved even more!

The Schnorr-Stimm dichotomy:

1. If \(S \in \Sigma^\omega \) is not normal, then there exist a finite-state gambler \(G \) and a real \(\alpha > 1 \) such that, for infinitely many prefixes \(w \sqsubseteq S \),

\[
d_G(w) > \alpha^{|w|}.
\]

2. If \(S \in \Sigma^\omega \), then, for every finite-state gambler \(G \) there is a real \(\alpha < 1 \) such that, for every prefix \(w \sqsubseteq S \),

\[
d_G(w) < \alpha^{|\#bets(w)|},
\]

where \(\#bets(w) \) is the number of times \(G \) actually bets on \(w \).
The Schnorr-Stimm dichotomy, more succinctly:

1. If S is not normal then there is a finite-state gambler that makes money at an infinitely-often exponential rate on S.
The Schnorr-Stimm dichotomy, more succinctly:

1. If S is not normal then there is a finite-state gambler that makes money at an infinitely-often exponential rate on S.

2. If S is normal, then every finite-state gambler loses money at an exponential rate when it actually bets on S.
Very Big Picture

Lebesgue measure
1901

Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Hausdorff
dimension
1918

Algorithmic dimensions
L 2003, AHLM 2007

Algorithmic
randomness
Martin-Löf 1966

Computability
Turing, Church 1936

Randomness via
martingales
Schnorr 1971

Normality is
finite-state
randomness
Schnorr & Stimm 1972

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Finite-state
dimensions
DLLM 2004, AHLM 2007
Next topic: A very recent quantitative refinement of the Schnorr-Stimm dichotomy (after some background).
Next topic: A very recent quantitative refinement of the Schnorr-Stimm dichotomy (after some background).

Schnorr and Stimm correctly noted that their dichotomy extends routinely to arbitrary probability measures on the alphabet Σ.
Next topic: A very recent quantitative refinement of the Schnorr-Stimm dichotomy (after some background).

Schnorr and Stimm correctly noted that their dichotomy extends routinely to arbitrary probability measures on the alphabet Σ.

A \textbf{(discrete) probability measure} on a nonempty finite set Ω is a function $\pi : \Omega \to [0, 1]$ satisfying

$$\sum_{w \in \Omega} \pi(w) = 1.$$
Next topic: A very recent quantitative refinement of the Schnorr-Stimm dichotomy (after some background).

Schnorr and Stimm correctly noted that their dichotomy extends routinely to arbitrary probability measures on the alphabet Σ.

A (discrete) probability measure on a nonempty finite set Ω is a function $\pi : \Omega \rightarrow [0, 1]$ satisfying

$$\sum_{w \in \Omega} \pi(w) = 1.$$

Today Ω will be Σ^l for some $l \in \mathbb{Z}^+$.
We use the economists’ notation $\Delta(\Omega)$ for the set of all probability measures on Ω.
We use the economists’ notation $\Delta(\Omega)$ for the set of all probability measures on Ω.

This is a great notation, because $\Delta(\Omega)$ is the set of all points on the $(|\Omega|-1)$-dimensional unit simplex in $|\Omega|$-dimensional Euclidean space.
Let \(w, x \in \Sigma^+ \) be nonempty strings.
Let $w, x \in \Sigma^+$ be nonempty strings.

The **number of block occurrences** of w in x is

$$\# \Box(w, x) = \left| \{ m \leq \frac{|x|}{|w|} - 1 \mid x[m|w|...(m+1)|w| - 1] = w \} \right|.$$

Note that $0 \leq \# \Box(w, x) \leq \left\lfloor \frac{|x|}{|w|} \right\rfloor$.

Jack H. Lutz, 2024
Let \(w, x \in \Sigma^+ \) be nonempty strings.

The **number of block occurrences** of \(w \) in \(x \) is
\[
\#(w, x) = |\{m \leq \frac{|x|}{|w|} - 1 \mid x[m|w|\ldots(m + 1)|w| - 1] = w\}|.
\]
Note that \(0 \leq \#(w, x) \leq \frac{|x|}{|w|} \).

For \(S \in \Sigma^\omega, n \in \mathbb{Z}^+, \) and \(w \in \Sigma^+ \), the **\(n^{th} \) block frequency** of \(w \) in \(S \) is
\[
\pi_{s,n}(w) = \frac{\#(w, S[0..|w| - 1])}{n}.
\]
Let $w, x \in \Sigma^+$ be nonempty strings.

The **number of block occurrences** of w in x is
$$
\#□(w, x) = |\{m \leq \frac{|x|}{|w|} - 1 \mid x[m|w|...(m + 1)|w| - 1] = w\}|.
$$
Note that $0 \leq \#□(w, x) \leq \frac{|x|}{|w|}$.

For $S \in \Sigma^\omega$, $n \in \mathbb{Z}^+$, and $w \in \Sigma^+$, the n^{th} block frequency of w in S is
$$
\pi_{s,n}(w) = \frac{\#□(w, S[0..n|w| - 1])}{n}.
$$

$$
\pi_{s,n}^{(l)} \overset{\text{def}}{=} \pi_{s,n} \upharpoonright \Sigma^l \in \Delta(\Sigma^l) \text{ is the } n^{th} \text{ empirical probability measure on } \Sigma^l \text{ given by } S.
$$
Let $\alpha \in \Delta(\Sigma), S \in \Sigma^\omega, l \in \mathbb{Z}^+$
Let $\alpha \in \Delta(\Sigma), S \in \Sigma^\omega, l \in \mathbb{Z}^+$

S is α-l-normal if, for all $w \in \Sigma^l$,

$$\lim_{n \to \infty} \pi_{S,n}(w) = \alpha^{(l)}(w) \overset{\text{def}}{=} \prod_{i=0}^{\lvert w \rvert - 1} \alpha(w[i]).$$
Let $\alpha \in \Delta(\Sigma)$, $S \in \Sigma^\omega$, $l \in \mathbb{Z}^+$

S is α-l-normal if, for all $w \in \Sigma^l$,

$$\lim_{n \to \infty} \pi_{s,n}(w) = \alpha^{(l)}(w) \overset{\text{def}}{=} \prod_{i=0}^{|w|-1} \alpha(w[i]).$$

S is α-normal if, for all $l \in \mathbb{Z}^+$, S is α-l-normal.
Let $\alpha \in \Delta(\Sigma)$, $S \in \Sigma^\omega$, $l \in \mathbb{Z}^+$

S is α-l-normal if, for all $w \in \Sigma^l$,

$$\lim_{n \to \infty} \pi_{s,n}(w) = \alpha^{(l)}(w) \overset{\text{def}}{=} \prod_{i=0}^{|w|-1} \alpha(w[i]).$$

S is α-normal if, for all $l \in \mathbb{Z}^+$, S is α-l-normal.

S is l-normal if S is μ-l-normal, where μ is uniform.
Let $\alpha \in \Delta(\Sigma), S \in \Sigma^\omega, l \in \mathbb{Z}^+$.

S is α-l-normal if, for all $w \in \Sigma^l$,

$$\lim_{n \to \infty} \pi_{s,n}(w) = \alpha^{(l)}(w) \overset{\text{def}}{=} \prod_{i=0}^{\lfloor |w| - 1 \rfloor} \alpha(w[i]).$$

S is α-normal if, for all $l \in \mathbb{Z}^+$, S is α-l-normal.

S is l-normal if S is μ-l-normal, where μ is uniform.

S is normal if, for all $l \in \mathbb{Z}^+$, S is l-normal.
Let $\alpha \in \Delta(\Sigma), S \in \Sigma^\omega, l \in \mathbb{Z}^+$

S is α-l-normal if, for all $w \in \Sigma^l$,

$$
\lim_{n \to \infty} \pi_{s,n}(w) = \alpha^{(l)}(w) \overset{\text{def}}{=} \prod_{i=0}^{\lvert w \rvert - 1} \alpha(w[i]).
$$

S is α-normal if, for all $l \in \mathbb{Z}^+$, S is α-l-normal.

S is l-normal if S is μ-l-normal, where μ is uniform.

S is normal if, for all $l \in \mathbb{Z}^+$, S is l-normal.

Theorem (Niven and Zuckerman 1951)

This is equivalent to the “sliding window” definition that we used earlier.
Let $\alpha, \beta \in \Delta(\Omega)$. The **Kullback-Leibler divergence (KL-divergence)** of β from α is

$$D(\alpha||\beta) = \mathbb{E}_\alpha \log \frac{\alpha}{\beta}$$
Let $\alpha, \beta \in \Delta(\Omega)$. The **Kullback-Leibler divergence (KL-divergence)** of β from α is

$$D(\alpha \parallel \beta) = \mathbb{E}_\alpha \log \frac{\alpha}{\beta}$$

$$= \sum_{w \in \Omega} \alpha(w) \log \frac{\alpha(w)}{\beta(w)},$$

where $\log = \log_2$.
Properties of KL-Divergence.

1. $D(\alpha||\beta) \geq 0$, with equality if and only if $\alpha = \beta$.
Properties of KL-Divergence.

1. $D(\alpha \| \beta) \geq 0$, with equality if and only if $\alpha = \beta$.

2. But KL-divergence is not a metric!
Properties of KL-Divergence.

1. $D(\alpha||\beta) \geq 0$, with equality if and only if $\alpha = \beta$.

2. But KL-divergence is not a metric!

3. Entropy is divergence from certainty:

$$H(\alpha) = \mathbb{E}_\alpha D(\pi_w||\alpha).$$
Properties of KL-Divergence.

1. $D(\alpha||\beta) \geq 0$, with equality if and only if $\alpha = \beta$.

2. But KL-divergence is not a metric!

3. Entropy is divergence from certainty:

 $$H(\alpha) = \mathbb{E}_\alpha D(\pi_w || \alpha).$$

4. Mutual information is divergence from independence:

 $$I(\alpha; \beta) = D(\alpha\beta || \gamma),$$

 where γ is the joint probability measure of α and β.
Properties of KL-Divergence.

1. $D(\alpha||\beta) \geq 0$, with equality if and only if $\alpha = \beta$.

2. But KL-divergence is **not** a metric!

3. Entropy is divergence from certainty:

 $$H(\alpha) = \mathbb{E}_\alpha D(\pi_w||\alpha).$$

4. Mutual information is divergence from independence:

 $$I(\alpha; \beta) = D(\alpha\beta||\gamma),$$

 where γ is the joint probability measure of α and β.

∴ KL-divergence is **fundamental** to Shannon information theory.
Let $l \in \mathbb{Z}^+, S \in \Sigma^\omega, \alpha \in \Delta(\Sigma)$.

Asymptotic Divergences
Asymptotic Divergences

Let $l \in \mathbb{Z}^+$, $S \in \Sigma^\omega$, $\alpha \in \Delta(\Sigma)$.

The upper l-divergence of α from S is

$$Div_l(S||\alpha) = \limsup_{n \to \infty} D(\pi_{s,n}^{(l)}||\alpha^{(l)}).$$
Let \(l \in \mathbb{Z}^+ \), \(S \in \Sigma^\omega \), \(\alpha \in \Delta(\Sigma) \).

The **upper l-divergence** of \(\alpha \) from \(S \) is

\[
\text{Div}_l(S||\alpha) = \limsup_{n \to \infty} D(\pi_{s,n}^{(l)}||\alpha^{(l)}).
\]

The **upper divergence** of \(\alpha \) from \(S \) is

\[
\text{Div}(S||\alpha) = \sup_{l \in \mathbb{Z}^+} \frac{\text{Div}_l(S||\alpha)}{l}.
\]
Theorem (Huang, J. Lutz, Mayordomo, and Stull 2021)

For all $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^\omega$, the following conditions are equivalent.

1. S is α-normal.
2. $\text{Div}(S||\alpha) = 0$.

A finite-state gambler is a 4-tuple

$$G = (Q, \delta, s, B),$$

where

- Q is a finite set of states,
- $\delta : Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state, and
- $B : Q \to \Delta_Q(\Sigma)$ is the betting function.
A **finite-state gambler** is a 4-tuple

\[G = (Q, \delta, s, B), \]

where

- \(Q \) is a finite set of **states**,
- \(\delta : Q \times \Sigma \to Q \) is the **transition function**
- \(s \in Q \) is the **start state**, and
- \(B : Q \to \Delta_Q(\Sigma) \) is the **betting function**.

Given \(\alpha \in \Delta(\Sigma) \), the \(\alpha \)-payoffs give \(G \) the martingale (capital function)

\[d_{G,\alpha}(\lambda) = 1, \]

\[d_{G,\alpha}(wa) = d_{G,\alpha}(w) \frac{B(\delta(w))(a)}{\alpha(a)}. \]
If $\delta(w) = q$ is a state of G in which $B(q) = \alpha$, then $d_{G,\alpha}(wa) = d_{G,\alpha}(w)$ for all $a \in \Sigma$. In this case, we say that G does not bet in state q. We thus define the risk that G takes in a state q to be $\text{risk}_{G}(q) = D(\alpha || B(q))$, i.e., the KL-divergence of $B(q)$ from not betting. The total risk that G takes along a string $w \in \Sigma^*$ is $\text{Risk}_{G}(w) = \sum_{u \in \mathcal{R}w} \text{risk}_{G}(\delta(u))$.
If $\delta(w) = q$ is a state of G in which $B(q) = \alpha$, then $d_{G,\alpha}(wa) = d_{G,\alpha}(w)$ for all $a \in \Sigma$. In this case, we say that G does not bet in state q. We thus define the risk that G takes in a state q to be

$$\text{risk}_G(q) = D(\alpha \Vert B(q)),$$

i.e., the KL-divergence of $B(q)$ from not betting.
If $\delta(w) = q$ is a state of G in which $B(q) = \alpha$, then $d_{G,\alpha}(wa) = d_{G,\alpha}(w)$ for all $a \in \Sigma$. In this case, we say that G does not bet in state q. We thus define the **risk** that G takes in a state q to be

$$risk_G(q) = D(\alpha \| B(q)),$$

i.e., the KL-divergence of $B(q)$ from not betting. The **total risk** that G takes along a string $w \in \Sigma^*$ is

$$Risk_G(w) = \sum_{u \subseteq w} risk_G(\delta(u))$$
Theorem (Huang, J. Lutz, Mayordomo, and Stull 2021)

1. If S is not α-normal, then there is a finite-state gambler G such that, for infinitely many prefixes $w \sqsubseteq S$,

\[d_{G,\alpha}(w) > 2^{0.99} \text{Div}(S||\alpha)|w|. \]
Theorem (Huang, J. Lutz, Mayordomo, and Stull 2021)

1. If S is not α-normal, then there is a finite-state gambler G such that, for infinitely many prefixes $w \sqsubseteq S$,

$$d_{G,\alpha}(w) > 2^{0.99} \text{Div}(S||\alpha)|w|.$$

2. If S is α-normal, then, for every finite-state gambler G, for all but finitely many prefixes $w \sqsubseteq S$,

$$d_{G,\alpha}(w) < 2^{-0.99} \text{Risk}_G(w).$$
Let $G = (Q, \delta, s, B)$ be a finite-state gambler, let $\alpha \in \Delta(\Sigma)$, and let $s \in [0, \infty)$ be a “fairness parameter”. The s-α-gale of G is the function

$$d^{(s)}_{G,\alpha} : \Sigma^* \to [0, \infty)$$

$$d^{(s)}_{G,\alpha}(w) = \frac{d_G(w)}{|\Sigma|^{|w|} \alpha(w)^s},$$

where d_G is the martingale of G.
For each $\alpha \in \Delta(\Sigma)$ and each $S \in \Sigma^\omega$, let

$$G^\alpha_{FS}(S) = \{s \in [0, \infty) | (\exists \text{ FSG } G)d^{(s)}_{G,\alpha} \text{ succeeds on } S\},$$

$$G^{\alpha,\text{str}}_{FS}(S) = \{s \in [0, \infty) | (\exists \text{ FSG } G)d^{(s)}_{G,\alpha} \text{ succeeds strongly on } S\}.$$
For each $\alpha \in \Delta(\Sigma)$ and each $S \in \Sigma^\omega$, let

$$G_{FS}^\alpha(S) = \{ s \in [0, \infty) \mid (\exists \text{ FSG } G)d_{G,\alpha}^{(s)} \text{ succeeds on } S \},$$

$$G_{FS}^{\alpha,\text{str}}(S) = \{ s \in [0, \infty) \mid (\exists \text{ FSG } G)d_{G,\alpha}^{(s)} \text{ succeeds strongly on } S \}.$$

Definition (Dai, Lathrop, J. Lutz, and Mayordomo 2004)

The **finite-state α-dimension** of S is

$$\dim_{FS}^\alpha(S) = \inf G_{FS}^\alpha(S).$$
For each $\alpha \in \Delta(\Sigma)$ and each $S \in \Sigma^\omega$, let

$$G^\alpha_{FS}(S) = \{s \in [0, \infty) \mid (\exists \text{ FSG } G)d_{G,\alpha}^{(s)} \text{ succeeds on } S\},$$

$$G^{\alpha,\text{str}}_{FS}(S) = \{s \in [0, \infty) \mid (\exists \text{ FSG } G)d_{G,\alpha}^{(s)} \text{ succeeds strongly on } S\}.$$

Definition (Dai, Lathrop, J. Lutz, and Mayordomo 2004)

The **finite-state α-dimension** of S is

$$\dim_{FS}^\alpha(S) = \inf G^\alpha_{FS}(S).$$

Definition (Athreya, Hitchcock, J. Lutz, and Mayordomo 2007)

The **strong finite-state α-dimension** of S is

$$\Dim_{FS}^\alpha(S) = \inf G^{\alpha,\text{str}}_{FS}(S).$$
Observations.

1. If G never bets in any state and $s > 1$, then $d_{G,\alpha}^{(s)}(w) = |\Sigma|^{(s-1)|w|}$ for all $w \in \Sigma^*$. This implies that, for all $S \in \Sigma^\infty$, $0 \leq \dim_{FS}^\alpha(S) \leq \Dim_{FS}^\alpha(S) \leq 1$.

2. Since $d_{G,\alpha}^{(1)}(w) = d_{G,\alpha}(w)$, every α-normal sequence $S \in \Sigma^\omega$ has $\dim_{FS}^\alpha(S) = 1$.

3. (Bourke, Hitchcock, and Vinodchandran 2005) The Schnorr-Stimm dichotomy tells us that, if S is not α-normal, then $\dim_{FS}^\alpha(S) < 1$.

Jack H. Lutz, 2024
Observations.

1. If G never bets in any state and $s > 1$, then $d_{G,\alpha}^{(s)}(w) = |\Sigma|^{(s-1)|w|}$ for all $w \in \Sigma^*$. This implies that, for all $S \in \Sigma^\infty$,

$$0 \leq \dim_{FS}^\alpha(S) \leq \Dim_{FS}^\alpha(S) \leq 1.$$

2. Since $d_{G,\alpha}^{(1)} = d_{G,\alpha}$, every α-normal sequence $S \in \Sigma^\omega$ has $\dim_{FS}^\alpha(S) = 1$.
Observations.

1. If G never bets in any state and $s > 1$, then $d_{G,\alpha}^{(s)}(w) = |\Sigma|^{(s-1)|w|}$ for all $w \in \Sigma^*$. This implies that, for all $S \in \Sigma^\infty$,

$$0 \leq \dim_{FS}^\alpha(S) \leq \dim_{FS}^\alpha(S) \leq 1.$$

2. Since $d_{G,\alpha}^{(1)} = d_{G,\alpha}$, every α-normal sequence $S \in \Sigma^\omega$ has $\dim_{FS}^\alpha(S) = 1$.

3. (Bourke, Hitchcock, and Vinodchandran 2005)

The Schnorr-Stimm dichotomy tells us that, if S is not α-normal, then $\dim_{FS}^\alpha(S) < 1$.
Hence a sequence $S \in \Sigma^\omega$ is α-normal if and only if $\dim_{FS}^\alpha(S) = 1$.
Hence a sequence $S \in \Sigma^\omega$ is α-normal if and only if $\dim^\alpha_{FS}(S) = 1$.

The finite-state world is the only world that we know of where dimension 1 implies randomness.
Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Hausdorff
dimension
1918

Algorithmic dimensions
L 2003, AHLM 2007

Algorithmic
computability
Turing, Church 1936

Algorithmic
dimension
1901

Lebesgue measure

Lebesgue measure
1901

Algorithmic
computability
Turing, Church 1936

Algorithmic
dimension
1901

Hausdorff
dimension
1918

Algorithmic dimensions
L 2003, AHLM 2007

Algorithmic randomness
Martin-Löf 1966

Randomness via
martingales
Schnorr 1971

Randomness via
martingales
Schnorr 1971

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Finite-state
dimensions
DLLM 2004, AHLM 2007

Finite-state
dimensions
DLLM 2004, AHLM 2007

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Randomness via
martingales
Schnorr 1971

Randomness via
martingales
Schnorr 1971

Probability
Kolmogorov 1933

Normal Numbers
Borel 1909

Hausdorff
dimension
1918

Algorithmic dimensions
L 2003, AHLM 2007

Algorithmic randomness
Martin-Löf 1966

Randomness via
martingales
Schnorr 1971

Normality is
finite-state
dimension 1
SS 1972, BHV 2005

Finite-state
dimensions
DLLM 2004, AHLM 2007

Jack H. Lutz, 2024
Thank you!

Thanks to CBMS and to NSF grants 2329555 and 1900716.