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Abstract

These lecture notes accompany a ten-lecture course on computational mathematics and ar-
tificial intelligence held as part of the Research at the Interface of Applied Mathematics and
Machine Learning conference in Houston in December 2025. The course exposes the bidirec-
tional exchange between these fields: how computational mathematics provides rigorous foun-
dations, precise language, and design principles for AI, and how AI enables new capabilities
for tackling previously intractable computational problems. Topics span machine learning fun-
damentals, optimization theory and practice, regularization techniques, generative modeling,
scientific machine learning, high-dimensional PDEs, inverse problems, and AI-assisted mathe-
matical discovery.
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1 Introduction

1.1 The Bidirectional Bridge Between Fields

The bidirectional exchange between computational mathematics and artificial intelligence has
strong traditions and has been rapidly accelerating recently. This workshop explores both directions
of this exchange and how they create a virtuous cycle of innovation. This relationship, visualized
in Figure 1, is built on strong common foundations and continues to strengthen as advances in each
field enable breakthroughs in the other.
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Figure 1: The bidirectional exchange between computational mathematics and artificial intelli-
gence. Mathematical foundations, including linear algebra, optimization theory, partial differential
equations, statistics, approximation theory, and probability, provide the structural support for rig-
orous AI development. Simultaneously, AI provides new computational capabilities and techniques
for tackling previously intractable mathematical and scientific problems.

Computational Mathematics → AI Mathematics and statistics supply essential techniques,
tools, and theoretical frameworks that make AI possible. They offer a precise language and rigorous
framework for communicating, describing, analyzing, and understanding AI systems. Optimization
theory and dynamical systems provide foundations for understanding training: recent perspectives
view neural network training as gradient flows in high-dimensional spaces governed by partial dif-
ferential equations and optimal transport. Approximation theory guides architecture design choices
in depth and width, while statistical foundations enable principled approaches to generalization,
uncertainty quantification, and inference. Kernel methods and random matrix theory illuminate
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how networks learn feature representations and generalize despite overparameterization. Mathe-
matical insights continuously inform the foundation and design of new AI models and paradigms.
As a 2025 NSF workshop on AI and Mathematics and Physical Sciences [18] emphasizes, these
mathematical tools remain central to unlocking the potential of AI systems. Just as geometry
reshaped physics and Maxwell’s equations transformed electromagnetic theory, mathematical tools
are now reshaping artificial intelligence.

AI → Computational Mathematics Artificial intelligence enables us to tackle previously in-
tractable problems across computational mathematics. Neural networks break the curse of dimen-
sionality for high-dimensional partial differential equations and optimal control problems where
classical methods become prohibitively expensive. Data-driven approaches provide fast surrogate
models and discovered closure terms for large-scale simulations, while neural operators learn solu-
tion mappings for parametric families of equations. AI accelerates outer-loop problems including
uncertainty quantification, inverse problem solving with stable Bayesian inference, and optimal
control. Machine learning enables discovery and optimization of numerical algorithms themselves:
from learning iterative methods to discovering novel matrix multiplication schemes and proving
mathematical theorems with AI-assisted systems. Examples include AlphaFold2’s solution to pro-
tein structure prediction, reinforcement learning-based discovery of combinatorial counterexamples,
and Lean copilot systems achieving significant automation in proof generation. Computational
mathematicians are uniquely positioned to develop next-generation AI tools for scientific discovery
while advancing fundamental AI research. Just as quantum mechanics reshaped physics a century
ago and computational science transformed mathematics half a century ago, AI is now reshaping
computational mathematics.

The Virtuous Cycle This workshop shows how computational mathematicians can not only
benefit from AI but also develop tailored and often novel AI techniques that exploit problem struc-
ture (symmetries, conservation laws, multi-scale behavior). These domain-informed innovations,
in turn, advance AI itself, creating feedback loops where insights in one direction strengthen the
bridge. This creates a virtuous cycle between analyzing existing mathematical datasets and gen-
erating new ones, with computational mathematicians serving as essential connectors who deepen
the understanding and capabilities flowing in both directions across the bridge.

1.2 Historical Perspective: A Timeline of Convergence

The fusion of computational mathematics and artificial intelligence has deep historical roots, with
key mathematical breakthroughs consistently enabling subsequent AI advances. This convergence
reflects a pattern where fundamental theoretical advances in mathematics eventually unlock new
possibilities for computational systems.

The early foundations were laid through optimization theory and probability. In 1809, Carl
Friedrich Gauss developed the method of least squares, establishing optimization-based learning
long before modern computers existed. A century later, in 1922, Ronald Fisher introduced maxi-
mum likelihood estimation, providing the probabilistic framework that underpins statistical learn-
ing. In 1943, Warren McCulloch and Warren Pitts proposed the first mathematical model of a
neuron, bridging neurophysiology and computation in a way that would inspire generations of
researchers.

The computational era (1950s through 1980s) saw parallel developments: numerical meth-
ods for partial differential equations (finite differences, finite elements) alongside the emergence of
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scientific computing as a distinct discipline. This infrastructure (the numerical analysis, conver-
gence theory, and computational methods) proved essential for AI development. A milestone came
in 1986 when the backpropagation algorithm was popularized, finally making it computationally
tractable to train multi-layer neural networks via efficient gradient computation.

The 1990s brought rigorous statistical learning theory, which formalized what makes
learning possible. Concepts like VC dimension and PAC (Probably Approximately Correct) learning
provided theoretical foundations. Support vector machines elegantly bridged statistics and convex
optimization, demonstrating that machine learning could be a mathematically principled discipline.

The deep learning revolution began in 2012 with AlexNet’s remarkable performance on
image recognition, sparking renewed interest in neural networks. The success was driven by sheer
size of the datasets, advances in parallel computing, and optimization algorithms. Computational
mathematicians developed essential tools for understanding training dynamics, convergence prop-
erties, and generalization in these overparameterized systems. The introduction of transformer
architectures in 2017 leveraged mathematical concepts from kernel methods and attention mecha-
nisms, illustrating how decades of theoretical work enabled new architectural innovations.

The period from 2017 to present has witnessed genuine bidirectional flow. Physics-informed
neural networks (PINNs) integrate differential equations directly into neural architectures, bridging
classical scientific computing and deep learning. Large language models demonstrate emergent
capabilities in mathematical reasoning. Critically, AI now contributes to mathematical discovery
itself: Lean-based proof assistants achieve 74% automation in theorem proving, reinforcement
learning discovers combinatorial counterexamples, and AlphaTensor discovers novel fast matrix
multiplication algorithms. A 2024 NSF workshop on AI and the Mathematical and Physical Sciences
[17] formalized this understanding, concluding that “the link between AI and the mathematical
and physical sciences is becoming increasingly inextricable.” The workshop called for sustained
investment in bidirectional research, interdisciplinary communities, and workforce development.

This timeline illustrates not linear progress but an accelerating spiral: mathematical founda-
tions enable AI advances, which provide new tools and problems for computational mathematics,
strengthening the bridge in both directions.

2 Reading List

This section provides essential readings organized by lecture topic. References are extracted from
individual lecture outlines and consolidated here for convenient access. Full bibliographic details
are in the course bibliography. General foundational references are:

� [19]: Comprehensive modern textbook covering neural networks, optimization, and regularization

� [24]: Bridges applied mathematics and deep learning with computational perspective

� [40]: Two-part series on probabilistic machine learning and graphical models

� [22]: Foundational text on statistical learning theory and methods

2.1 Lecture 1: Machine Learning Overview

� [39]: Foundational machine learning textbook defining learning from experience

� [48]: SVD-based analysis explaining double descent phenomenon

� [58]: No Free Lunch theorems establishing fundamental limits
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� [24]: Bridges applied mathematics and deep learning

� [17]: Community white paper positioning course themes

2.2 Lecture 2: Neural Network Architectures and Loss Functions

� [19]: Comprehensive textbook covering feedforward networks, CNNs, RNNs, and optimization

� [6]: Unifying framework showing CNNs, GNNs, and Transformers as geometric deep learning

� [55]: Transformer architecture based on self-attention mechanism

� [23]: Residual networks with skip connections enabling very deep architectures

� [29]: Comprehensive thesis on neural ODEs, SDEs, and CDEs

2.3 Lecture 3: Optimization for Machine Learning

� [5]: Comprehensive SIAM Review survey establishing SA vs SAA framework for large-scale
optimization

� [46]: Foundational paper proving convergence of stochastic approximation methods

� [3]: JMLR survey of automatic differentiation covering forward/reverse mode AD

� [47]: Classic Nature paper introducing backpropagation algorithm

� [41]: Standard textbook on numerical optimization and second-order methods

2.4 Lecture 4: Modern Theory of Stochastic Gradient Descent

� [21]: Stability of SGD, early stopping, and implicit regularization

� [28]: Batch size effects on generalization and sharp vs. flat minima

� [11]: Edge of stability phenomenon in neural network training

� [26]: Neural tangent kernel theory and lazy training regime

� [38]: Mean-field view of two-layer networks and distributional dynamics

2.5 Lecture 5: Adaptive Optimization Methods

� [30]: Adam optimizer combining momentum and adaptive learning rates with bias correction

� [35]: AdamW decoupling weight decay from gradient-based updates

� [9]: Lion optimizer discovered via evolutionary program search

� [1]: Natural gradient framework for parameterization-invariant optimization

� [37]: K-FAC using Kronecker-factored Fisher approximations for tractable second-order methods
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2.6 Lecture 6: PDE Framework for Generative Modeling

� [4]: Dynamic formulation of optimal transport via continuity equation and kinetic energy mini-
mization

� [34]: Conditional flow matching for efficient generative modeling through supervised learning

� [43]: Optimal transport regularization for continuous normalizing flows

� [50]: Unified framework connecting score-based models to SDEs via Fokker-Planck equation

� [7]: Neural ODEs as the continuous-time foundation for normalizing flows

2.7 Lecture 7: Scientific Machine Learning for PDEs

� [45]: Foundational PINN framework for forward and inverse problems

� [36]: Universal approximation theorem for operators enabling DeepONet architecture

� [33]: Fourier Neural Operator leveraging spectral methods for parametric PDE solving

� [52]: PDEBench benchmarks revealing 2–3 order of magnitude accuracy gaps between ML and
classical methods

� [31]: Documented PINN failure modes including spectral bias and gradient pathologies

� [53]: GNN-enhanced preconditioners demonstrating hybrid classical/ML approach

2.8 Lecture 8: High-Dimensional PDEs

� [20]: Deep BSDE method breaking curse of dimensionality for d = 100 benchmark

� [44]: Forward-backward stochastic neural networks for high-dimensional parabolic PDEs

� [25]: Hutchinson trace estimation for scaling PINNs to 100,000+ dimensions

� [32]: Neural networks for high-dimensional stochastic optimal control with PMP-informed sam-
pling

2.9 Lecture 9: Machine Learning for Inverse Problems

� [2]: Demonstrates catastrophic instabilities of direct neural networks in medical imaging

� [10]: Diffusion posterior sampling for general inverse problems using score-based priors

� [12]: Comprehensive survey of simulation-based inference methods for likelihood-free problems

� [57]: Conditional optimal transport flows for efficient posterior approximation

� [27]: Denoising diffusion restoration models for linear inverse problems
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2.10 Lecture 10: Mathematical Discovery and Verification

� [16]: AlphaTensor discovers 48-multiplication algorithm for 4 × 4 matrices using RL

� [42]: AlphaEvolve achieves 48 multiplications for complex-valued matrices via LLM-guided code
evolution

� [14]: Lean 4 theorem prover with 210,000+ theorems in Mathlib

� [49]: AI-assisted proving achieving 74% proof step automation

3 Outline of the Ten Lectures

This section provides a overviews of each lecture, summarizing the key topics, mathematical con-
cepts, and connections to computational mathematics.

3.1 Module 1: Machine Learning Crash Course

Lecture 1: Machine Learning Overview This lecture establishes machine learning as a frame-
work for data-driven approximation, grounded in the mathematical foundations of optimization,
statistics, and approximation theory. Building on centuries of work from Gauss’s least squares
(1809) to modern statistical learning theory, we introduce machine learning through [39]’s defi-
nition: a program learns from experience E with respect to task T and performance measure P
if its performance at T improves with E. We explore the central tension between fitting train-
ing data and generalizing to unseen examples, introducing the classical bias-variance tradeoff and
the surprising modern phenomenon of double descent. The lecture emphasizes the bidirectional
exchange between computational mathematics and artificial intelligence, showing how mathemati-
cal tools enable rigorous understanding of machine learning while AI techniques solve challenging
computational problems.

The lecture opens with a motivating discussion of the bidirectional relationship between com-
putational mathematics and artificial intelligence, framed by the 2024 Nobel Prizes in Physics
(Hopfield and Hinton for foundational neural network methods) and Chemistry (Jumper and Hass-
abis for AlphaFold), which demonstrate how decades of basic research in mathematics and physical
sciences underpin modern AI breakthroughs. A recent workshop report ”[17]” identifies mathe-
matics and statistics as the foundational backbone of AI, highlighting four pillars: optimization
theory (gradient descent, stochastic optimization, non-convex landscape analysis), statistical learn-
ing (generalization theory, PAC-Bayes, concentration inequalities), approximation theory (universal
approximation, function spaces, kernel methods), and linear algebra (matrix factorizations, ran-
domized algorithms, high-dimensional geometry). The report also identifies computational math-
ematics opportunities at the AI frontier, and we covered a few examples: numerical optimization
for distributed and non-convex problems, numerical linear algebra with randomized algorithms and
preconditioning, numerical PDEs through physics-informed neural networks and neural operators,
high-dimensional problems combining Monte Carlo with deep learning, and uncertainty quantifica-
tion via Bayesian methods and error analysis. This bidirectional perspectiv, where computational
mathematics provides foundational tools for AI while AI enables new approaches to computational
challenges, motivates the course structure across three modules: ML fundamentals (Lectures 1–3),
computational mathematics for AI (Lectures 4–6), and AI for computational mathematics (Lectures
7–10).
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Machine learning is fundamentally a science of approximation, where we seek functions fθ that
approximate relationships in data while balancing approximation quality against generalization
to unseen examples. The [58] No Free Lunch theorem proves that without domain knowledge or
prior assumptions, no learning algorithm generalizes better than any other when averaged over all
possible problems, making domain expertise (and AI-literate domain experts) essential for success.
Using linear least squares as an example, we illustrate the differences of minimizing the empirical
risk 1

N ∥Xθ−y∥22 versus the expected risk E(x,y)[(Fθ(x)−y)2]. While both rely on the same normal
equations, the numerical techniques and thus results differ.

We survey five major machine learning tasks that we will see in the course. Supervised learning
learns mappings Fθ(x) ≈ y from labeled pairs, employing function approximation and regularization
theory (Lectures 2-3). Unsupervised learning discovers structure in unlabeled data using spectral
methods and manifold learning. Operator learning extends beyond finite-dimensional function
approximation to learn maps Fθ : X → Y between infinite-dimensional function spaces, leveraging
Green’s functions and operator theory (Lecture 7). Reinforcement learning finds optimal policies
π from states and rewards via optimal control and Hamilton-Jacobi-Bellman equations (Lectures
8 and 10), while generative modeling learns distributions p from samples using optimal transport,
stochastic differential equations, and PDEs (Lecture 6).

Classical statistical learning theory characterizes generalization through model capacity mea-
sures such as Vapnik-Chervonenkis (VC) dimension, which quantifies the maximum number of
points a hypothesis class can shatter. The bias-variance decomposition decomposes test error as
E[(f̂ − y)2] = Bias2 + Variance + σ2, where bias measures error from model assumptions (under-
fitting) and variance measures sensitivity to training data (overfitting). Classical wisdom suggests
choosing model capacity to balance these competing forces, visualized as a U-shaped curve where
test error is minimized at an intermediate ”sweet spot” capacity. For polynomial regression with
degree p and n training points, classical theory recommends stopping before the interpolation
threshold p = n− 1 to avoid overfitting.

Modern deep learning challenges classical intuition through the double descent phenomenon:
test error first decreases, then spikes at the interpolation threshold where parameters equal samples
(p = n), but surprisingly decreases again in the overparameterized regime (p ≫ n). [48] explain
this through the lens of singular value decomposition: at the interpolation threshold, small singular
values σr amplify noise in poorly-sampled directions, while overparameterization enables gradi-
ent descent to find minimum-norm solutions that implicitly regularize. In the overparameterized
regime, the minimum-norm interpolating solution θover = X⊤(XX⊤)−1y exhibits better generaliza-
tion than the unique interpolating solution at threshold. Regularization, whether explicit via ridge
regression minθ ∥Xθ − y∥22 + λ∥θ∥22 or implicit through gradient descent’s bias toward low-norm
solutions, stabilizes learning by preventing small singular values from dominating.

Machine learning emerges as a rigorous mathematical discipline where computational mathe-
matics provides essential tools for understanding approximation, optimization, and generalization,
while modern phenomena like double descent reveal gaps in classical theory that demand new
mathematical frameworks. The course explores this bidirectional exchange: Module 2 (Lectures
4-6) investigates how computational mathematics advances AI through optimization theory, loss
landscape analysis, and PDE-based generative modeling, while Module 3 (Lectures 7-10) exam-
ines how AI solves computational challenges in scientific machine learning, high-dimensional PDEs,
inverse problems, and mathematical discovery.

Lecture 2: Neural Network Architectures and Loss Functions Neural network architec-
tures constitute the fundamental building blocks for modern machine learning systems, where design
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choices in layer connectivity, depth, and loss functions determine what patterns can be learned from
data. This lecture bridges computational mathematics and AI by showing how mathematical struc-
tures such as convolution (sparse matrices), graph Laplacians, and transformers encode inductive
biases that improve generalization. We focus on three central questions: how layer structure creates
invariances (width), how composition depth enables feature learning (depth), and how loss func-
tions guide the learning process. The lecture provides the mathematical foundation for formulating
the optimization problem minθ E[ℓ(Fθ(x),y)] that will be solved in Lecture 3.

Architecture design begins with choosing how to connect features; that is, selecting the con-
nectivity pattern encoded in the weight matrix W for each layer y = σ(Wx + b). The fully-
connected baseline uses dense W, connecting every input to every output with no structural as-
sumptions, but real data (images, sequences, graphs) often has inherent structure that can be
exploited. Convolutional neural networks (CNNs) exploit this by making W block-sparse with
shared weights: each output channel yj depends on local convolutions C(θjk) applied to input
channels, yielding translation equivariance and dramatically fewer parameters than dense lay-
ers. Graph neural networks (GNNs) generalize local connectivity to arbitrary graphs through
the message-passing layer Y = σ(MXW), where X ∈ RN×d contains node features, M ∈ RN×N

is a fixed message-passing matrix (e.g., normalized adjacency M = D−1A or graph Laplacian),
and W transforms features. Since the same weights apply to all nodes, GNNs are permutation
equivariant. The “missing graph problem” arises when connectivity is unknown (e.g., which words
relate to which in a sentence?), motivating attention mechanisms that learn the adjacency struc-
ture from data itself. Transformers address this by projecting features into queries, keys, and
values (Q = XWQ, K = XWK , V = XWV ), then computing data-dependent edge weights via
Attention(Q,K,V) = softmax(QKT /

√
dk)V. This is essentially a GNN with learned (dense) adja-

cency plus feed-forward layers. The unifying insight from [6] is that architecture equals connectivity
pattern equals encoded invariance: CNNs encode translation equivariance through sparse weight
sharing on grids, GNNs encode permutation equivariance through message passing on fixed graphs,
and Transformers learn flexible connectivity adapted to the data.

Network depth controls how many transformations are composed to build increasingly ab-
stract feature representations. Multilayer perceptrons (MLPs) compose layers sequentially hℓ =
σ(Wℓhℓ−1 + bℓ−1), but training very deep MLPs is difficult due to vanishing or exploding gradi-
ents that grow exponentially with depth. Residual networks ([23]) solve this problem with skip
connections hℓ+1 = hℓ + Fθℓ

(hℓ) that create additive gradient paths, enabling training of 100+
layer networks by ensuring gradients flow directly through identity shortcuts. The ResNet update
resembles Euler discretization of an ODE, which motivates neural ordinary differential equations
that replace discrete layers with continuous dynamics dh/dt = Fθ(h, t), where depth becomes the
integration time T rather than layer count L—see [29] for a comprehensive treatment. A PDE per-
spective reveals that classification can be viewed as a transport equation ∂tu + F⊤

θ ∇u = 0, where

features follow characteristics; adding diffusion ∂tu+ F⊤
θ ∇u = σ2

2 ∆u yields smoother probabilistic
predictions. The Feynman-Kac formula connects this advection-diffusion PDE to an expectation
over stochastic trajectories u(x, t) = E[u0(hT )] where dh = Fθ(h, t)dt + σdW, motivating neural
stochastic differential equations that add controlled randomness to model uncertainty and improve
robustness.

The loss function ℓ(Fθ(x),y) defines the learning objective through expected risk minimization
L(θ) = E[ℓ(Fθ(X),Y)]. For regression tasks, mean squared error LMSE = E[∥Y − Fθ(X)∥2] is
the standard choice, used in autoencoders where the goal is to reconstruct the input L = E[∥X −
D(E(X))∥2] after passing through a bottleneck encoder-decoder architecture. Classification tasks
typically use cross-entropy loss LCE = −E[

∑C
c=1 Yc log pc] where pc = softmax(Fθ(X))c, as seen in
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autoregressive language models like GPT that minimize LGPT = −E[
∑T−1

i=1 log p(xi+1|x1:i)] through
next-token prediction. Other paradigms include generative adversarial networks with minimax
objectives, variational autoencoders combining reconstruction and KL regularization, score-based
models for generative modeling (previewing Lecture 6), and physics-informed neural networks that
blend data fitting with PDE constraints (covered in Lecture 7).

The central takeaway is that architecture and loss function choices directly encode our inductive
biases about the problem structure, where well-designed formulations lead to better generalization
through fewer parameters and stronger invariances. This lecture completes the problem formula-
tion phase: we now understand how to design Fθ (through architecture choices) and L (through
loss functions), which together define the optimization problem minθ E[ℓ(Fθ(x),y)]. This sets the
foundation for Lecture 3, where we address how to actually solve this optimization problem through
automatic differentiation and stochastic gradient descent.

Lecture 3: Optimization for Machine Learning Modern deep learning depends on our
ability to train neural networks with millions to billions of parameters, making optimization the
enabling technology for contemporary artificial intelligence. This lecture establishes the theoret-
ical foundations and practical guidance of optimization for machine learning by examining four
aspects: stochastic approximation versus sample average approximation formulations, efficient gra-
dient computation via backpropagation, the performance of traditional second-order methods, and
stochastic gradient descent as the prototype stochastic approximation algorithm.

Throughout this lecture, we develop the Peaks classification problem as a running example.
This dataset consists of 1000 balanced samples from a 2D Peaks function divided into 5 classes
based on level sets, which we classify using a multilayer perceptron. The visualization-friendly
nature of this problem allows us to directly compare optimization methods while illustrating the
transition from small networks where traditional methods excel to over-parameterized networks
where stochastic gradient descent becomes a natural fit.

Stochastic approximation and sample average approximation represent two complementary per-
spectives on optimizing over random data, originating from [46] and [54] respectively. The SA
formulation optimizes expectations via streaming independent samples using unbiased gradient es-
timates, making it natural for online learning scenarios, while the SAA formulation replaces expec-
tations with sample averages over fixed datasets and benefits from rich statistical learning theory.
Modern machine learning practice blends both perspectives through mini-batch SGD, which oper-
ates on SAA-style fixed datasets while using SA-style stochastic gradient approximations, thereby
achieving data parallelism on modern accelerators while maintaining the variance reduction benefits
of larger batches. The key insight from [5] is that this hybrid approach defines the contemporary
machine learning optimization paradigm.

Backpropagation emerged as the enabling technology for deep learning by providing exact gradi-
ents in O(p) operations through systematic application of the chain rule via reverse-mode automatic
differentiation. [47] demonstrated that backpropagation computes exact gradients with the same
asymptotic cost as a single forward pass by propagating derivatives backward through the computa-
tional graph, storing intermediate activations during the forward pass to enable efficient chain rule
application during the backward pass. Modern automatic differentiation frameworks like PyTorch
and JAX, surveyed comprehensively by [3], automate this process through built-in reverse-mode
AD capabilities while handling complex control flow and providing optimizations such as gradient
checkpointing that trade recomputation for memory by reducing storage requirements from O(L)
to O(

√
L) for networks with L layers.
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Classical methods like Newton’s method and Gauss-Newton achieve fast convergence and cur-
vature adaptation through Hessian information, yet are rarely used in modern deep learning. The
Gauss-Newton approximation ∇2L ≈ JTHJ emerges naturally from linearizing network predic-
tions and taking a quadratic Taylor expansion, where H captures the Hessian of the per-sample
loss with respect to predictions and depends critically on loss function structure (identity for least
squares, non-trivial for softmax cross-entropy). While Gauss-Newton dominates for small net-
works, it faces three fundamental limitations at scale: O(p2) memory requirements (2.5 petabytes
for ResNet-50’s Hessian), O(p3) computational cost for matrix operations, and tension between
SAA-style large batches needed for accurate curvature estimation versus SA-style small batches
that preserve implicit regularization benefits of gradient noise. As detailed in [41], these challenges
require structured approximations and matrix-free methods using Hessian-vector products.

Stochastic gradient descent serves as the prototype stochastic approximation method, achieving
convergence through unbiased gradient estimates while maintaining O(1) per-iteration cost com-
pared to O(n) for full-batch gradient descent. The Robbins-Monro convergence conditions require
learning rates satisfying

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞, guaranteeing convergence to station-

ary points in non-convex settings and achieving O(1/
√
t) convergence rates for convex objectives,

though a gap persists between theoretical guarantees (stationary points) and practical success (gen-
eralizable solutions). Mini-batch SGD balances variance reduction with computational efficiency
through the relationship Var[mini-batch gradient] = 1

bVar[single-sample gradient], where batch size
b is typically chosen as powers of 2 to exploit GPU parallelism. The Peaks experiment reveals a
striking regime shift: in the small regime (width 32, leading to 261 parameters), vanilla SGD with
hyperparameter tuning struggles to reach 80% training accuracy while Gauss-Newton achieves 94%.
In contrast, the lazy regime (width 8192, over 180k parameters), vanilla SGD effortlessly achieves
99% training accuracy and 92% test accuracy. This shows that over-parameterization transforms
the optimization landscape from challenging to benign.

This lecture established a fundamental dichotomy in neural network optimization: in the small
regime where p < n, optimization is genuinely difficult and benefits from second-order methods
like Gauss-Newton or careful hyperparameter tuning; in the lazy regime where p ≫ n, vanilla
SGD succeeds effortlessly because over-parameterization creates a benign loss landscape. The
Peaks experiment quantified this contrast. This mirrors Lecture 1’s double descent phenomenon
and motivates Lecture 4’s investigation into why SGD works so remarkably well through implicit
regularization mechanisms, continuous-time gradient flow perspectives, and the edge-of-stability
dynamics that characterize training in over-parameterized networks.

3.2 Module 2: Computational Mathematics for AI

Lecture 4: Modern Theory of Stochastic Gradient Descent Stochastic gradient descent
works remarkably well for training neural networks in the lazy regime, yet classical optimization
theory provides no guarantees for finding good solutions in non-convex problems. This lecture
addresses the theory-practice gap by examining the mechanisms that make SGD successful: flat
versus sharp minima and their connection to generalization, continuous-time dynamics that reveal
hidden biases, implicit regularization from finite step sizes via backward error analysis, and benign
loss landscape structure created by over-parametrization. Understanding these mechanisms bridges
computational mathematics perspectives on optimization with practical deep learning success, re-
vealing that the algorithm itself shapes which solutions are discovered.

The distinction between flat and sharp minima provides geometric intuition for why some so-
lutions generalize better than others. At a local minimum θ∗, the Hessian eigenvalues characterize
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local curvature: sharp minima have large maximum eigenvalues where loss rises quickly, while flat
minima have small eigenvalues where the loss surface is locally smooth. Empirical evidence from
[28] suggests that flat minima correlate with better test error, as they are robust to parameter
perturbations. However, as [15] demonstrated, Hessian eigenvalues are not reparameterization-
invariant, motivating the use of the Fisher information metric to define Information Geometric
Sharpness as a principled, reparameterization-invariant measure of curvature.

The continuous-time limit of gradient descent yields the gradient flow ODE dθ/dt = −∇L(θ),
which dissipates energy monotonically via dL/dt = −∥∇L∥2 ≤ 0. For linear models, gradient flow
exhibits two forms of implicit regularization: early stopping at time t is equivalent to Tikhonov
regularization with strength 1/t, and the asymptotic limit selects the minimum-norm solution
among all interpolators. Adding stochastic noise transforms gradient flow into Langevin dynamics
dθ = −∇L(θ) dt +

√
ϵ dW with stationary Gibbs distribution p(θ) ∝ exp(−2L(θ)/ϵ), where tem-

perature ϵ ∝ η/b governs exploration of the loss landscape. The edge of stability phenomenon,
where training operates at λmax(H) ≈ 2/η, reveals that finite step size effects extend beyond what
continuous-time analysis captures.

Backward error analysis reveals that discrete gradient descent with finite step size η implicitly
optimizes a modified loss Lmod(θ) = L(θ) + (η/4)∥∇L(θ)∥2 + O(η2). This gradient magnitude
penalty creates an implicit preference for flat minima where gradients are small throughout the
basin. Larger learning rates strengthen this implicit regularization effect, explaining why moderate
step sizes often generalize better than very small ones. The analysis extends to stochastic gradient
descent, where the same modified loss structure combines with noise-driven exploration, creating
two complementary mechanisms for preferring flat regions: the gradient penalty from finite steps
and the temperature-dependent sampling from stochastic noise.

Modern neural networks with parameters p far exceeding training samples n defy classical
learning theory predictions of catastrophic overfitting, instead exhibiting improved generalization
through over-parametrization. The Neural Tangent Kernel (NTK) theory of [26] explains the lazy
training regime: with appropriate scaling (1/

√
n for two-layer networks), the Hessian of the network

function vanishes as width increases while parameter changes remain bounded, ensuring that lin-
earization around initialization remains valid. In this regime, gradient descent on neural networks
becomes equivalent to kernel regression with the fixed NTK Gram matrix K = JJT , guaranteeing
convergence to global minima; numerical experiments demonstrate how the NTK eigenspectrum
converges as network width increases. The mean-field perspective of [38] provides a complementary
view where features can evolve, with SGD dynamics converging to a Wasserstein gradient flow on
the space of weight distributions, offering global convergence guarantees for two-layer networks with
feature learning. Numerical experiments comparing NTK and mean-field scaling on classification
tasks illustrate these theoretical predictions.

The success of SGD in neural network training emerges from the interplay of benign loss land-
scapes created by over-parametrization, implicit regularization from finite step sizes via backward
error analysis, and noise-driven exploration via Langevin dynamics that together guide optimization
toward flat, generalizable solutions. Building on Lecture 3’s introduction of SA/SAA frameworks,
backpropagation, and the observation that lazy training works surprisingly well, this lecture ex-
plains why these phenomena occur. This sets the foundation for Lecture 5, which explores efficient
optimization methods including momentum, adaptive gradient techniques like Adam and Lion, and
structured second-order approximations like K-FAC that improve upon vanilla SGD’s convergence
speed and robustness while preserving its implicit regularization benefits.
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Lecture 5: Efficient Optimization Methods Stochastic gradient descent (SGD) has proven
remarkably effective for training neural networks, but its basic formulation suffers from learning
rate sensitivity, poor conditioning, and lack of momentum that slow convergence on ill-conditioned
problems. This lecture explores three complementary strategies for accelerating optimization be-
yond vanilla SGD: momentum methods that accumulate velocity to smooth gradients and accelerate
in consistent directions, adaptive gradient methods that automatically tune per-parameter learn-
ing rates from gradient history, and structured second-order approximations that exploit network
architecture to make curvature information tractable. We analyze the memory-computation trade-
offs inherent to each approach and demonstrate through computational experiments on the peaks
classification problem that optimizer choice depends critically on problem constraints, network ar-
chitecture, and the training regime. The lecture synthesizes computational mathematics principles
such as preconditioning, natural gradients, and Kronecker factorization with modern AI practices to
provide a principled framework for selecting optimization algorithms. Building on the foundations
from Lectures 3 and 4, we continue using the peaks classification problem as a running example.

Standard SGD achieves stationary points with implicit regularization benefits, but exhibits three
key limitations that motivate more sophisticated methods: excessive sensitivity to learning rate
choice where small rates yield slow convergence and large rates cause divergence, poor handling of ill-
conditioning where a single global learning rate cannot effectively optimize all parameter directions
when the loss landscape has vastly different curvatures, and lack of memory where each gradient step
ignores historical gradient information that could accelerate convergence in consistent directions.
Gauss-Newton methods from Lecture 3 address these issues through explicit curvature information
but require prohibitive O(p2) memory, creating a fundamental trade-off between convergence speed
and computational tractability that motivates the three approaches explored in this lecture.

Momentum methods accumulate gradient history in a velocity vector to accelerate optimization
in consistent directions while damping oscillations in inconsistent ones. The heavy ball method
updates parameters via vt+1 = βvt+∇L(θt) and θt+1 = θt−ηvt+1, where the momentum coefficient
β ∈ [0, 1) (typically 0.9) controls memory, achieving provably optimal O(

√
κ) iteration complexity

for convex quadratics compared to gradient descent’s O(κ) dependence on the condition number.
Nesterov’s accelerated gradient refines this by computing gradients at the look-ahead position
θ̃t = θt + β(θt − θt−1) rather than the current position, achieving the theoretically optimal O(1/t2)
convergence rate for smooth convex functions.

Adaptive gradient methods address SGD’s global learning rate limitation by maintaining per-
parameter learning rates that automatically rescale based on gradient history, trading O(2p) mem-
ory for remarkable robustness across hyperparameter choices. Adam ([30]) combines three design
principles: exponential moving averages of gradients (first momentmt = β1mt−1+(1−β1)gt) for mo-
mentum, exponential moving averages of squared gradients (second moment vt = β2vt−1+(1−β2)g2t )
for adaptive scaling, and bias correction m̂t = mt/(1 − βt1) to account for zero initialization, with
update rule θt = θt−1 − ηm̂t/(

√
v̂t + ϵ) using default hyperparameters that work remarkably well

without tuning (η = 10−3, β1 = 0.9, β2 = 0.999). AdamW ([35]) decouples weight decay from the
loss gradient by applying regularization after adaptive scaling, fixing Adam’s interference between
adaptive learning rates and regularization strength, and has become the dominant choice for trans-
former and language model training. Lion ([9]), discovered via evolutionary program search, uses
sign-based updates θt = θt−1 − η · sign(ct) with only O(p) memory, providing a memory-efficient
alternative that achieves competitive performance on large-scale models while maintaining scale
invariance and robustness.

Extending Lecture 4’s continuous-time analysis to Adam reveals that in its deterministic limit,
Adam converges to zeros of the Adam vector field rather than zeros of the gradient, explaining
why Adam and SGD find different solutions even on the same problem. Furthermore, Adam’s
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adaptive scaling dampens the heavy-tailed noise structure observed in SGD, resulting in longer
escape times from sharp minima and potentially explaining the generalization gap between Adam
and SGD on vision tasks. Classical preconditioning with the full Hessian or Fisher information
matrix would provide optimal convergence but requires infeasible O(p2) memory. Natural gradient
descent ([1]) provides a parameterization-invariant optimization framework using the Fisher metric,
which is equivalent to Gauss-Newton for least-squares losses, and so it remains computationally
intractable for large networks without approximations. K-FAC ([37]) makes second-order methods
tractable by exploiting neural network layer structure through Kronecker-factored approximations,
factoring each layer’s Fisher block as a Kronecker product of activation and error correlations, which
dramatically reduces both memory and computational cost; however, implementation complexity
and the overhead of matrix inversions have limited its adoption compared to first-order adaptive
methods.

We summarized the optimization trilogy. Lecture 3 introduced the SA versus SAA framework,
backpropagation’s O(p) gradient computation, and SGD as the prototype scalable optimizer; Lec-
ture 4 explained why SGD works through convergence theory, implicit regularization mechanisms,
continuous-time perspectives, and benign landscape structure from over-parametrization; this lec-
ture demonstrates how to improve upon vanilla SGD by trading modest memory overhead (O(p)
for momentum, O(2p) for Adam) for faster convergence and greater robustness, or by exploit-
ing problem structure (K-FAC) when computational budgets permit. Four key insights emerge:
over-parametrization creates favorable landscapes where first-order methods suffice, optimization
algorithms implicitly regularize by selecting which minimum is found, fundamental trade-offs exist
between memory, compute, and tuning effort, and significant theory-practice gaps remain regarding
finite-width networks and generalization mechanisms.

Lecture 6: PDE Framework for Generative Modeling This lecture unifies modern gen-
erative AI methods through the lens of partial differential equations, demonstrating how state-of-
the-art models like diffusion and flow matching arise from classical PDEs. Generative modeling
reduces to the problem of matching distributions: finding a generator gθ : Rq → Rn that transforms
a simple latent distribution (e.g., Gaussian noise) into a complex data distribution. While classical
approaches like GANs, VAEs, and normalizing flows can be effective, we focus on today’s revalend
continuous-time models and cast them in a PDE framework to reveal their common structure and
links to dynamic optimal transport. The central insight is that computational mathematics princi-
ples (method of characteristics, optimal transport, superposition) explain modern AI systems that
generate realistic images and video.

Continuous normalizing flows (CNFs) [7] transform the continuity equation ∂ρt
∂t +∇ · (ρtvt) = 0

into a tractable generative model using the method of characteristics. By parameterizing the
velocity field vt(x, t) as a neural network vθ(x, t), the PDE perspective yields a system of ordinary
differential equations (ODEs) whose particle trajectories dx

dt = vθ(x, t) automatically satisfy the
transport equation. This approach enables exact likelihood computation via the instantaneous
change-of-variables formula log pθ(x) = log p0(x(1)) +

∫ 1
0 ∇ · vθ(x(t), t)dt, but requires expensive

ODE solving and trace computation at every training step. Moreover, maximum likelihood training
does not penalize complex, high-energy trajectories, leading to inefficient sampling that requires
many function evaluations.

Optimal transport theory provides structure to CNFs by penalizing the kinetic energy of trajec-
tories through the Benamou-Brenier formulation, which minimizes

∫ 1
0

∫
1
2∥vt(x)∥2ρt(x) dx dt subject

to the continuity equation. When the velocity field minimizes transport cost, it must be conser-
vative (vt = −∇Φt), enabling more efficient computation since ∇ · vt = −∆Φt (a Laplacian rather
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than a general trace). The OT-Flow method [43] exploits this structure by directly learning the
value function Φθ(x, t), yielding uniqueness and sample paths with smaller kinetic energy, which
reduces computational costs in sampling compared to vanilla CNFs. However, the maximum like-
lihood framework can struggle when data is supported on a lower-dimensional manifold and still
requires time integration during training, making it less scalable than modern alternatives for
high-dimensional imaging applications.

Flow matching [34] circumvents the computational bottlenecks of CNF and OT-Flow by con-
structing feasible probability paths through superposition rather than time integration. For each
pair of data point x0 ∼ pX and noise sample x1 ∼ pZ , we construct an explicit conditional path
ψt(x0, x1) = (1 − t)x0 + tx1 with conditional velocity ut(x|x0, x1) = x1 − x0. By linearity of the
continuity equation, the marginal density ρt(x) = Ex0,x1 [δ(x − ψt(x0, x1))] satisfies the PDE, and
the marginal velocity is the conditional expectation vt(x) = E[ut(x|x0, x1) | ψt(x0, x1) = x]. This
expectation can be computed via regression: minimizing Et,x0,x1 [∥vθ(ψt(x0, x1), t) − ut(x|x0, x1)∥2]
yields a supervised learning objective with no ODE solves or trace computations during training,
enabling the scalability behind models like Stable Diffusion 3, Sora, and AlphaFold 3.

Score-based diffusion provides a stochastic alternative through the Fokker-Planck equation
∂pt
∂t + ∇ · (ptvt) = g2(t)

2 ∆pt, where the diffusion term asymptotically maps data to a Gaussian
distribution [50]. The score function st(x) := ∇x log pt(x) transforms the second-order PDE

into an effective first-order transport equation with velocity vt − g2(t)
2 st, enabling deterministic

sampling via the probability flow ODE. Following the flow matching strategy, we construct con-
ditional Gaussian paths pt(x|x0) = N (x;αtx0, σ

2
t I) with analytically known conditional scores

st(x|x0) = −ϵ/σt (where x = αtx0 + σtϵ). The marginal score is recovered through regression:
minimizing Et,x0,ϵ[∥sθ(xt, t) − st(xt|x0)∥2] gives a simple supervised learning objective.

The PDE framework reveals that state-of-the-art generative models share a common compu-
tational mathematics foundation, differing primarily in their trade-offs between optimality and
computational feasibility. Flow matching and score-based diffusion both achieve scalable training
by constructing feasible solutions to transport PDEs through superposition and regression, avoid-
ing the optimization over velocity fields required by CNF and OT-Flow. While optimal transport
provides theoretical guarantees (unique maps, minimal energy paths), practical success in high-
dimensional imaging comes from feasible, efficient algorithms that exploit linearity and conditional
construction. Building on the optimization techniques from Lecture 5, this lecture demonstrates
how continuous-time perspectives and PDE formulations provide principled foundations for modern
generative AI. The concepts introduced here connect forward to Lecture 7, where we examine scien-
tific machine learning and physics-informed neural networks that incorporate domain-specific PDE
constraints, and to Lecture 8, where we consider high-dimensional stochastic control problems.

3.3 Module 3: AI for Computational Mathematics

Lecture 7: Scientific Machine Learning for PDEs Developing neural network algorithms to
improve numerical techniques for partial differential equations is a major research area of scientific
machine learning. The goal of this lecture is to discuss different approaches how ML augments clas-
sical solvers. This lecture examines the computational bottlenecks of classical PDE solvers (finite
element, finite volume, spectral methods) and evaluates whether ML methods ( physics-informed
neural networks (PINNs), neural operators, and hybrid approaches) can provide measurable im-
provements. Unlike generative AI where perceptual quality suffices, most scientific ML applications
require high accuracy for safety-critical applications, making rigorous benchmarking essential. Re-
cently, benchmarks such as PDEBench [52] revealed significant accuracy gaps between ML and

15



classical methods, and have helped steer the field into a more rigorous direction that emphasizes
discussion of computational costs and comparison to state-of-the-art methods.

Classical PDE solvers represent decades of mathematical engineering, achieving 10−6 to 10−12

accuracy with convergence guarantees and conservation law preservation through methods like finite
element (FEM), finite volume (FV), and spectral discretizations. However, these methods encounter
computational bottlenecks in specific scenarios: optimization studies requiring 10,000+ solves (e.g.,
airfoil optimization), inverse problems, and multi-scale phenomena where hand-crafted closures
prove inadequate (e.g., turbulence modeling). ML’s opportunity lies not in general replacement
but in targeting these specific gaps where classical methods struggle.

The theoretical justification for neural PDE solvers rests on two pillars: the universal approxima-
tion theorem [13] showing that neural networks can represent any continuous function u(x, t), and
the operator approximation theorem [8] proving that networks can approximate nonlinear operators
G : V → W between function spaces. Automatic differentiation provides the technical innovation
enabling these theories, allowing exact computation of PDE residuals like ut − αuxx through com-
putational graphs without finite difference approximations. However, the critical caveat is existence
of approximations does not imply they can be learned efficiently. The required network width may
be exponential, and finding good weights remains a non-convex optimization challenge. The funda-
mental distinction between PINNs (learning one solution u(x, t) via physics-informed optimization)
and neural operators (learning the operator G mapping inputs to solutions via supervised learning
on thousands of examples) determines their respective computational economics and use cases.

PINNs train neural networks to minimize PDE residuals, boundary conditions, and sparse
data simultaneously through composite loss functions L = λrLPDE + λbLBC + λdLdata, offering
mesh-free, dimension-agnostic approaches with seamless data fusion. Rigorous benchmarking by
[52] and [56] revealed that for 2-3D forward problems, PINNs are both slower and less accurate
than classical methods, with documented failure modes including spectral bias (networks struggle
with high frequencies and shocks), gradient pathologies (PDE, BC, and data loss terms operate at
vastly different scales), and extreme sensitivity to initialization requiring problem-specific tuning.
However, PINNs excel in their niche: inverse problems where sparse measurements combine with
known physics to infer unknown PDE parameters, achieving 5-10% parameter error where classical
methods require dense measurements, and data assimilation tasks where approximate models fuse
naturally with experimental corrections.

Neural operators learn mappings from initial conditions or parameters to PDE solutions through
supervised training on thousands of solved instances, enabling millisecond inference after expensive
upfront training. [33]’s Fourier Neural Operator and [36]’s DeepONet architecture achieve speedup
at inference but with significant training costs and orders of magnitude accuracy loss, creating
a fundamental tradeoff between speed and precision. Neural operators excel in four sweet spots
where classical methods prove impractical: outer loop problems like parametric optimization and
uncertainty quantification that require thousands of PDE solves and real-time control requiring
millisecond latency and can tolerate low-accuracy. However, their application is less promising in
safety-critical validation requiring 10−6 accuracy.

Hybrid methods enhance classical solvers at specific bottlenecks rather than replacing them, pre-
serving convergence guarantees, stability analysis, and conservation laws while achieving measurable
speedups. A concrete example is GNN-enhanced preconditioners [53], which learn corrections to
incomplete Cholesky factorizations using graph neural networks: starting from a standard IC(0)
preconditioner, the GNN adds a learned correction that preserves SPD structure while reducing
condition numbers by up to 79% (iteration counts from 95 to 52 on 2D diffusion problems). This
approach exemplifies the hybrid philosophy: classical numerical methods provide the foundation
and guarantees, while ML components target specific computational bottlenecks where learning
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can help.
The key insight from this lecture is that while universal approximation theory proves neural

PDE solvers are theoretically possible and automatic differentiation makes them technically feasi-
ble, rigorous benchmarking determines they are practically viable only for specific niches: inverse
problems (PINNs), parametric studies requiring thousands of solves (neural operators), and tar-
geted enhancements (hybrid methods). This lecture sets the foundation for Lecture 8, where we
examine high-dimensional PDEs (d > 6) where the curse of dimensionality makes classical grid
methods infeasible and ML becomes essential rather than optional, and for Lecture 9, which ex-
pands on the inverse problem capabilities introduced here through the Bayesian framework and
diffusion-based posterior sampling.

Lecture 8: High-Dimensional PDEs High-dimensional partial differential equations arise
naturally in optimal control, mean field games, and computational finance, but traditional grid-
based numerical methods fail beyond three or four dimensions due to the exponential scaling of
discretization: the curse of dimensionality. This lecture focuses on semilinear parabolic PDEs and
their concrete instantiation as Hamilton-Jacobi-Bellman (HJB) equations in stochastic optimal con-
trol, demonstrating how neural network methods combined with the forward-backward stochastic
differential equation (FBSDE) reformulation can break the curse of dimensionality in hundreds
of dimensions. However, neural approximation alone is insufficient: after deriving the backward
SDE under both random-walk and optimal-control-guided dynamics, we demonstrate that sampling
strategy is another critical ingredient, and Pontryagin’s Maximum Principle (PMP) provides the
key insight for concentrating computational effort where the solution matters most.

Throughout this lecture, we use a d = 100 dimensional optimal control benchmark as a running
example, contrasting random-walk sampling against PMP-informed sampling. This benchmark,
also used by [20], features a target state far from the origin in 100-dimensional space, illustrating
precisely why naive Monte Carlo methods fail in high dimensions: random trajectories rarely reach
the relevant regions of state space where the value function must be learned accurately.

The lecture begins with a stochastic optimal control problem: minimize expected cost subject
to controlled stochastic dynamics dXt = 2at dt+

√
2 dWt, where at is the control, L(x, a) = ∥a∥2 is

the running cost, and g(x) is the terminal cost. The value function satisfies the Hamilton-Jacobi-
Bellman (HJB) equation ∂tu + ∆u − ∥∇u∥2 = 0, a semilinear parabolic PDE arising throughout
optimal control, financial mathematics, and reaction-diffusion systems. This HJB equation admits
an analytical solution via the Hopf-Cole transform (showing v = e−u solves the heat equation),
providing ground truth for validating neural methods in d = 100 dimensions where grid-based
methods are completely intractable.

Physics-informed neural networks (PINNs) from Lecture 7 can be extended to high dimensions
by addressing the computational bottleneck of Hessian computation: the trace term tr(σσ⊤∇2u)
requires O(d2) operations to compute the full Hessian matrix. The Hutchinson trace estimator
provides an elegant solution: for any matrix A and random vector v with E[vv⊤] = I, we have
tr(A) = E[v⊤Av], which can be computed via Hessian-vector products in O(1) memory using
Taylor-mode automatic differentiation. This reduces computational complexity from O(d2) to O(1),
enabling PINNs to scale to d > 1000 dimensions, but the fundamental limitation remains: uniform
random sampling of collocation points does not beat the curse of dimensionality for problems where
the solution structure concentrates in specific regions of state space.

The forward-backward stochastic differential equation (FBSDE) formulation connects the semi-
linear parabolic PDE to a system of SDEs: a forward SDE generating sample paths and a backward
SDE whose solution Yt = u(t,Xt) and scaled gradient Zt = σ⊤∇u evolve along these paths. Apply-
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ing Itô’s lemma to the value function along an uncontrolled forward SDE dXt =
√

2 dWt reveals that
du = +∥∇u∥2 dt + Z⊤

t dWt—the drift is positive, meaning the value increases along random-walk
trajectories as they wander into high-cost regions. Deep BSDE [20] learns separate networks Zk

for each time step to match terminal conditions, while FBSNN [44] learns a single network uθ(t, x)
enforcing BSDE residuals; both avoid spatial grids but share a critical weakness: random-walk
sampling fails when the target region lies far from the initial state distribution.

Numerical experiments on the 100D HJB benchmark reveal the critical role of sampling strat-
egy: with centered targets at the origin, both methods (PINNs, FBSNN) achieve less than 1%
suboptimality because random sampling naturally covers the relevant region. However, shifting
the target to xtarget = (3, . . . , 3)⊤ (distance ∥xtarget∥ = 30 in 100D) causes catastrophic failure:
PINNs achieve 175% suboptimality and FBSNN achieves 131% suboptimality despite good loss
convergence, because random walks with typical distance

√
2d ≈ 14 rarely reach the target region.

This diagnostic experiment demonstrates that neural networks alone do not break the curse of
dimensionality: sampling is essential.

Pontryagin’s Maximum Principle (PMP) provides the key insight for identifying relevant parts of
the state space: for the HJB equation, the optimal control is a∗(t, x) = −∇u(t, x), so the controlled
forward SDE becomes dXt = −2∇uθ(t,Xt) dt +

√
2 dWt. Unlike random walks, this PMP-guided

drift uses the current network estimate to steer sample trajectories toward low-cost regions, creating
a feedback loop where improved value function estimates produce better sampling, which in turn
yields better training data. Applying Itô’s lemma to u(t,Xt) along these controlled trajectories
yields a different backward SDE: du = −∥∇u∥2 dt + Z⊤

t dWt, where the drift is now negative
meaning the value decreases along optimal paths as cost is accumulated. This contrast between the
two backward SDEs (positive drift for random walks versus negative drift for controlled dynamics)
illuminates why random-sampling methods fail: they train the network on trajectories where value
increases, while the optimal policy requires learning where value decreases. Neural SOC achieves
less than 1% suboptimality on the shifted-target benchmark where random-sampling methods fail
catastrophically, demonstrating that three ingredients are essential: FBSDE reformulation, neural
network approximation, and PMP-informed sampling.

The shift from spatial discretization to function approximation enables solving high-dimensional
PDEs through three essential components: neural networks for universal approximation, FBSDE
systems to derive loss functions, and sampling strategies informed by optimal control theory that
concentrate computational effort on relevant regions of state space. The lecture concludes with
three research directions that extend PMP-informed neural methods to broader problem classes.
First, the connection to reinforcement learning: when the dynamics model is unknown or complex,
actor-critic methods can learn control policies from observations, but exploiting known objective
structure through HJB-informed approaches can dramatically improve sample efficiency compared
to pure RL. Second, connections to global optimization: the Moreau envelope of a non-convex
function satisfies a Burgers-type HJB equation, and adding viscosity enables Cole-Hopf-based sam-
pling strategies similar to those developed for stochastic control. Third, mean field games extend
single-agent optimal control to populations of interacting agents, coupling an HJB equation (back-
ward in time) with a Fokker-Planck equation (forward in time) for the population density; neural
parameterizations of both the value function and density enable high-dimensional solutions with
applications to crowd dynamics, traffic, finance, and multi-agent reinforcement learning.

Lecture 9: Machine Learning for Inverse Problems Inverse problems require inferring un-
known parameters x ∈ Rn from observed data y = A(x) + ϵ ∈ Rm, where the forward operator
A maps parameters to observations. Unlike forward problems, which are typically well-posed and
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tractable, inverse problems are mathematically challenging as they commonly violate Hadamard’s
conditions of existence, uniqueness, and stability. This lecture demonstrates why direct neural
network approaches fail on inverse problems and how modern AI methods, specifically Bayesian
frameworks with diffusion priors and simulation-based inference, transform inverse problem solv-
ing from seeking a single unstable solution to characterizing posterior distributions that quantify
uncertainty. The central thesis is that uncertainty quantification is not a sign of failure but a
mathematical necessity, and generative AI from Lecture 6 becomes the principled tool for posterior
sampling.

Direct approaches that train neural networks x = Gθ(y) to map observations to parameters
inherit the mathematical ill-posedness of the inverse problem. [2] demonstrated catastrophically
unstable behavior: networks trained on clean or low-noise data hallucinate nonexistent features
(tumors in medical imaging) and fail to detect real structures when test-time noise levels slightly
exceed training distributions. Performance degrades exponentially as noise increases from σ = 0.01
to σ = 0.10, with reconstruction errors growing by factors of 10-20 while forward problem accuracy
remains stable. This is not overfitting or a training failure: it reflects the fundamental mathematical
fact that no amount of data or regularization can stabilize an inherently ill-posed inverse mapping.

The Bayesian formulation π(x|y) ∝ p(y|x)π(x) transforms inverse problems from optimization
to inference, where the posterior distribution encodes all plausible solutions consistent with ob-
servations and prior knowledge. Classical regularization methods like Tikhonov (minx{∥A(x) −
y∥2 + α∥x∥22}) correspond to maximum a posteriori (MAP) estimation but provide only point
estimates without uncertainty. Full posterior sampling reveals the solution space’s geometry: high-
uncertainty regions indicate where data are insufficient, while concentrated posterior mass identifies
well-constrained parameters. The key computational challenge is drawing samples x(i) ∼ π(x|y),
which requires either evaluating the likelihood p(y|x) (often intractable) or leveraging learned gen-
erative priors.

Many scientific inverse problems involve black-box simulators (e.g., climate models, agent-based
systems, complex PDEs) where we can generate observations y = A(x) + ϵ but cannot evaluate
the likelihood p(y|x) analytically. Simulation-based inference (SBI) addresses this likelihood-free
setting by learning surrogate posteriors or likelihood functions from simulator runs. [12] surveys
methods including sequential neural likelihood estimation, which trains autoregressive flows to
approximate p(y|x) from (x,y) pairs generated by the simulator, and neural posterior estimation,
which directly learns π(x|y) using conditional normalizing flows. [57] introduces COT-Flow, which
frames posterior approximation as conditional optimal transport and achieves orders-of-magnitude
speedups over MCMC by learning the posterior-to-prior transport map via flow matching, building
directly on the OT-Flow framework from Lecture 6.

Diffusion models trained on high-dimensional data (images, scientific fields) provide powerful
learned priors π(x) that capture natural data distributions without explicit likelihood formulas. For
inverse problems, [10] proposes Diffusion Posterior Sampling (DPS), which samples from π(x|y)
by modifying the reverse diffusion process to incorporate the measurement likelihood p(y|x) at
each denoising step. The algorithm alternates between score-based denoising (using the learned
prior) and data consistency projection (enforcing A(x) ≈ y), enabling exact posterior sampling for
linear operators and approximate sampling for nonlinear forward models. [27]’s Denoising Diffusion
Restoration Models (DDRM) exploit singular value decomposition for linear problems, achieving
state-of-the-art performance on MRI reconstruction, computed tomography, and super-resolution
by leveraging pretrained diffusion models as plug-and-play priors without task-specific retraining.

The lecture synthesizes several cross-cutting themes: inverse problems appear ubiquitously
across scientific domains (medical imaging, climate science, geophysics), all sharing the fundamental
challenge of ill-posedness; uncertainty quantification is information, not failure, revealing which
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parameters are constrained by data versus prior assumptions; and the generative models from
Lecture 6 (flows and diffusion) directly enable principled Bayesian inference here in Lecture 9.
The mathematical instability that dooms direct neural network approaches becomes manageable
through posterior sampling, which separates epistemic uncertainty (reducible by collecting more
data) from aleatoric uncertainty (irreducible measurement noise). This bidirectional connection—
computational mathematics providing the theoretical foundation for understanding inverse problem
structure, and AI supplying scalable posterior samplers—exemplifies the course’s central theme.

Machine learning transforms inverse problem solving by shifting focus from unstable point
estimates to full posterior distributions that faithfully represent solution uncertainty. Direct neural
network approaches fail because they inherit mathematical ill-posedness, while Bayesian methods
with AI-powered priors (diffusion models, normalizing flows) provide stable, principled inference
frameworks.

Lecture 10: Mathematical Discovery and Verification This lecture explores how artificial
intelligence has evolved from solving mathematical problems to discovering and proving new math-
ematics itself, establishing AI as a creative mathematical tool rather than merely a computational
one. The lecture presents a unified framework bridging two complementary paradigms: discovery
systems that search vast algorithmic spaces to propose novel solutions, and theorem proving sys-
tems that provide formal correctness guarantees through proof assistants. By examining how AI
broke a 50-year-old record in matrix multiplication and how large language models assist formal
theorem proving, we demonstrate that computational mathematics and AI are fully intertwined at
the research frontier. This convergence exemplifies the bidirectional CompMath ↔ AI relationship
that has structured the entire course, showing how mathematical structure guides AI systems while
AI advances computational mathematics.

To illustrate the discovery part of this lecture, we consider the 4×4 matrix multiplication prob-
lem as a running example. This seemingly simple question—finding the minimum number of scalar
multiplications needed to compute a 4 × 4 matrix product—remained unsolved for over 50 years
until AlphaTensor (2022) discovered algorithms with 48 multiplications (standard arithmetic) and
47 multiplications (modular arithmetic), while AlphaEvolve (2024) achieved 48 multiplications for
complex-valued matrices, all beating the previous best of 49. The case study illustrates key themes
including discrete optimization in combinatorial spaces, tensor decomposition as mathematical
structure, and the discovery-verification gap.

Algorithm discovery is formulated as discrete optimization: find a∗ = arg mina∈A f(a) where
A is the space of all valid algorithms and f measures cost. The fundamental challenge is that A
is discrete, combinatorial, and astronomically large (approximately 1050 candidates for 4×4 ma-
trix multiplication), prohibiting exhaustive search and eliminating gradient-based methods. [42]
addresses this by using large language models as informed proposal distributions qLLM(a′|a) that
concentrate probability mass on structurally valid algorithmic modifications rather than random
perturbations. This approach reduces sample complexity from millions to approximately 150 eval-
uations through quality-diversity search that maintains a Pareto front of non-dominated solutions
across multiple objectives.

Matrix multiplication serves as the canonical example of tensor decomposition: the operation
C = AB defines a trilinear form with tensor rank R equal to the minimum number of scalar
multiplications required. [51] showed in 1969 that 2×2 matrices require only 7 multiplications
(tensor rank R = 7) rather than the naive 8, yielding recursive complexity O(n2.807) instead of
O(n3). For the practically important 4×4 case, the best known algorithm used 49 multiplications
for over 50 years until [16] formulated tensor decomposition as a single-player game and used

20



reinforcement learning (AlphaTensor) to discover algorithms with 48 multiplications (standard)
and 47 multiplications (modular arithmetic). [42] subsequently achieved 48 multiplications for
complex-valued matrices by representing algorithms as executable code and evolving them using
LLM-guided mutations, demonstrating complementary strengths: RL discovers from scratch via
tensor structure while LLM evolution refines existing solutions through syntactic transformations.

Proof assistants like Lean 4 provide absolute certainty by converting informal mathematics
into machine-checkable formal proofs, but formalization faces a severe bottleneck: the expertise
barrier, library navigation difficulty (which of 210,000+ theorems in Mathlib are relevant?), and
the granularity gap where informal “obvious” steps expand to 50+ formal tactics. [49] addresses
this through AI assistance, achieving 74% automation of proof steps (versus 40% baseline) via
three mechanisms: tactic suggestion based on the current proof state, automated multi-step proof
search combining neural guidance with symbolic reasoning, and premise selection using learned
mathematical relevance patterns. The result is a human-AI collaboration pattern where humans
provide overall proof strategy and mathematical insight while AI handles boilerplate tactics, library
search, and routine sub-goal completion.

The future vision connects discovery and verification through four emerging mechanisms: discovery-
to-verification pipelines where AlphaEvolve candidates are auto-translated to Lean specifications
for human-assisted proof; verified code evolution that restricts search to provably correct algorithm
spaces; proof-guided search using partial proof progress as reward signals; and formal-informal
translation where LLMs bridge natural mathematical language and formal Lean syntax. Currently,
these capabilities exist separately—discovery systems find novel algorithms and verification sys-
tems formalize known mathematics—but integration remains an open problem. The medium-term
outlook (5-10 years) anticipates automated verification of AI discoveries and proof-guided evolution
systems that learn to search toward provable algorithms.

The lecture demonstrates that AI has transcended its role as a tool for solving mathematics to
become an active participant in mathematical discovery and verification, exemplifying the course’s
central thesis that computational mathematics and AI advance together. As the final lecture,
it completes the bidirectional arc: we began with machine learning as function approximation
and neural networks as computational tools (Lectures 1–3), progressed through how mathematical
theory informs AI (Lectures 4–6), explored how AI solves computational mathematics problems
(Lectures 7–9), and conclude here with AI discovering new mathematics itself while formal methods
provide rigorous certification, closing the loop to show that progress in one field necessarily advances
the other.

4 Basic Definitions and Mathematical Background

This section establishes notation and recalls essential mathematical concepts used throughout the
lectures. All notation below is extracted from the ten lecture outlines and organized systematically.

4.1 Notation

Sets and Spaces

� Rn or Rn: n-dimensional Euclidean space

� Rm×n: Space of m× n real matrices

� X : Input/feature space; also infinite-dimensional function space (domain) for operator learning
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� Y: Output/label space; also infinite-dimensional function space (codomain) for operator learning

� Θ or parameter space: Space of model parameters

� N (i): Local neighborhood of neuron i (CNN connectivity)

� V →W : Function space mapping from space V to space W

� A: Algorithm space (discrete, combinatorial space of valid algorithms)

Functions and Operators

� f : Generic function (true underlying function)

� fθ : X → Y: Parametric function with parameters θ ∈ Θ

� f̂ : Estimated/learned function

� F : Forward operator (inverse problems); also general operator map; context-dependent usage

� Fθ(x): Neural network function output (full network with capital F)

� fθ(h): Individual layer or residual block output (lowercase f)

� F (hℓ,θℓ): Residual block: F (hℓ,θℓ) = hℓ + fθ(hℓ)

� G: General operator between function spaces; also inverse mapping Gθ(y)

� {fθ : θ ∈ Θ}: Hypothesis class

� u(x, t): Solution to PDE depending on space x and time t

� Φ(x, t): Value function in optimal control and HJB equations

� π: Policy function (reinforcement learning)

Probability and Statistics

� E[X] or E[X]: Expectation of random variable X

� D: Data distribution

� p or pt: Probability density (time-dependent)

� pX : Data distribution to match (generative modeling)

� pZ : Latent/noise distribution (typically Gaussian)

� pc: Class probability (softmax output)

� p(y|x): Likelihood function

� π(x): Prior distribution (Bayesian inference)

� π(x|y): Posterior distribution given observations

� ρt: Population density (time-dependent)
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� σ2: Variance (noise variance, gradient variance)

� {(xi, yi)}ni=1: Training dataset with n samples

� R̂(θ): Empirical risk (training loss)

� R(θ): True risk (expected loss)

Optimization and Gradients

� ∇f or ∇f : Gradient of function f

� ∇2f or H or Hf : Hessian matrix of function f

� ∇xΦ: Gradient with respect to x

� ∆Φ: Laplacian operator (sum of second derivatives)

� ∂tΦ: Partial derivative with respect to time

� arg min: Argument that minimizes a function

� η or ηt: Learning rate/step size at iteration t

� αk: Step size at iteration k

� λ: Regularization parameter

� κ: Condition number (ratio of largest to smallest eigenvalues)

Loss Functions

� ℓ(·, ·): Per-sample loss function on single example

� ℓ(fθ(xi),yi): Loss on single training sample

� ℓ(x, u): Running cost/loss function (optimal control)

� L(θ) or Ln(θ): Batch/empirical loss over N samples: LN (θ) = 1
N

∑N
i=1 ℓ(fθ(xi),yi)

� L(θ): Expected risk/population loss (theoretical objective)

� LMSE: Mean squared error expected loss (regression)

� LCE: Cross-entropy expected loss (classification)

� LGPT: GPT objective expected loss (next-token prediction)

� L(θ, λ): Regularized expected loss: L(θ, λ) = L(θ) + λR(θ)

� Lmod(θ): Modified batch loss (backward error analysis)

� LPDE: PDE residual batch loss

� LBC: Boundary condition batch loss

� Ldata: Data fitting batch loss
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Vectors (bold lowercase)

� x or x: Input vector; parameter vector in inverse problems

� y or y: Output/target vector; observation vector in inverse problems

� θ or θ: Parameter vector (always boldface)

� θ0: Initial parameters

� h or h(ℓ): Hidden layer activations at layer ℓ

� b or b(ℓ): Bias vector at layer ℓ

� vt: Velocity vector (momentum methods); also second moment in Adam; also velocity field in
CNF

� mt: First moment (exponential moving average of gradients)

� gt: Gradient at time t

Matrices (bold uppercase)

� X: Data matrix/input features

� Y: Target matrix (multi-output)

� W or W(ℓ): Weight matrix at layer ℓ

� A: Adjacency matrix (graph structure)

� Aattn: Attention adjacency matrix (Transformers)

� Ã: Normalized adjacency matrix (GCN)

� L: Graph Laplacian (L = D −A)

� D: Degree matrix (graph diagonal degree matrix)

� D̃: Normalized degree matrix (GCN)

� H or H(ℓ): Hidden layer matrix at layer ℓ

� Q: Query matrix (Transformer attention)

� K: Key matrix (Transformer attention)

� V: Value matrix (Transformer attention)

� H: Hessian matrix of per-sample loss; also Fisher block for weights

� J : Jacobian matrix

� F(θ): Fisher information matrix

� FW : Fisher block for weight matrix (K-FAC approximation FW ≈ A⊗ S)

� A: Activation covariance matrix E[hhT ]

� S: Error covariance matrix E[δδT ]

� I: Identity matrix
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Norms and Distances

� ∥ · ∥: Generic norm

� ∥ · ∥2: Euclidean (L2) norm

� ∥ · ∥22: Squared L2 norm

� ∥ · ∥F : Frobenius norm
√∑

i,j a
2
ij =

√
tr(ATA)

� ∥ · ∥∞: Maximum norm (L-infinity)

� ∥A∥2: Spectral norm (operator norm) = σ1(A) (largest singular value)

Time and Indexing

� t: Time variable (continuous or discrete iteration index)

� k: Iteration index

� ℓ or L: Layer index; also total number of layers

� i: Sample/token index

� c or C: Class index; also total number of classes

� N : Number of training samples (uppercase)

� n: Number of features/input dimension (lowercase)

� p: Number of parameters (lowercase)

� d: Dimension parameter (problem dimension)

� dk: Key/query dimension (Transformer attention)

� b: Batch size (mini-batch size)

� M : Grid points per dimension; also time steps (Note: context-dependent)

� q: Latent dimension

� nin: Input dimension to a layer

� nout: Output dimension from a layer

� r: Singular value index
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Stochastic Processes and SDEs

� dW or dWt: Wiener process/Brownian motion increment

� Xt: State trajectory at time t

� Yt: Value function along trajectory

� Zt: Gradient term in backward SDE

� ut: Control input at time t

� ξ: Random sample/mini-batch (stochastic optimization)

� ϵ or ε: Noise variable; temperature parameter (Langevin); numerical stability constant (Adam)

� σ: Diffusion coefficient; noise level; gradient variance (Note: context-dependent)

Special Functions and Operators

� σ(·): Activation function (nonlinearity)

� softmax(·): Softmax function (classification output)

� sign(ct): Sign function (Lion optimizer)

� E(·): Encoder function (autoencoder)

� D(·): Decoder function (autoencoder)

� δ(·): Dirac delta function

� ⊗ or ⊗: Kronecker product operator

� K(x,x′): Neural tangent kernel

Continuous Normalizing Flows and Diffusion

� vt(x, t): Velocity field (time-dependent vector field)

� x(t): Trajectory at time t

� ψt(x0, x1): Conditional path (1 − t)x0 + tx1

� ut(x|x0, x1): Conditional velocity x1 − x0

� st(x) or ∇x log pt(x): Score function (gradient of log-density)

� αt: Mean schedule (time-dependent scaling)

� σt: Variance schedule (time-dependent noise level)

� g(t): Diffusion coefficient (noise schedule)
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Complexity Notation

� O(·): Big-O notation (asymptotic complexity)

� O(1/
√
t): Convex SGD convergence rate

� O(1/t2): Nesterov optimal convergence rate

� O(κ): Convergence complexity (condition number dependent)

� O(
√
κ): Momentum method convergence rate

� O(p): Linear complexity in parameters

� O(2p): Double parameter memory (Adam)

� O(p2): Quadratic complexity (Hessian memory)

� O(p3): Cubic complexity (matrix inversion)

� O(Md): Exponential in dimension (curse of dimensionality)

� O(N−1/2): Monte Carlo convergence rate

4.2 Notational Conventions Adopted

The following conventions are used throughout these notes for consistency and clarity:

Loss Functions

� ℓ(·, ·): Per-sample loss on individual examples

� L(θ) or LN (θ): Batch/empirical loss over N training samples

� L(θ): Expected/population loss (theoretical objective)

� Regularized loss: L(θ, λ) = L(θ) + λR(θ)

Parameters

� Parameters are always boldface: θ or θ

� Neural network: Fθ(x) for full network output; fθ(h) for individual layers

� Residual block: F (hℓ,θℓ) = hℓ + fθ(hℓ)

Dimensions

� N : Number of training samples (uppercase)

� n: Number of features/input dimension (lowercase)

� p: Number of parameters (lowercase)

� Layer indices: h(ℓ) (superscript in parentheses) for layer ℓ
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Matrices and Vectors

� All vectors and matrices use boldface: x, θ, F, H, etc.

� Fisher information matrix: F(θ)

� Hessian: H or ∇2f (non-bold, context-dependent meaning)

Context-Dependent Symbols The following symbols intentionally have multiple meanings
based on context (this is standard mathematical notation):

� vt: Velocity (momentum methods), second moment (Adam), velocity field (continuous normal-
izing flows)

� ϵ: Temperature (Langevin dynamics), numerical stability constant (Adam), noise variable (dif-
fusion models)

� F : Forward operator (inverse problems), Fisher information, general operator; context clarifies
meaning

� M : Grid points, time steps; context determines meaning

� σ: Gradient variance, diffusion coefficient, noise level; context determines meaning

� H: Hessian, Fisher block, hidden layer matrix; context clarifies meaning

Operator Notation

� Gradient: ∇ or ∇ used interchangeably (equivalent)

� Integration with implicit dependencies: Often A, b, etc. appear without explicit parameter
dependence when context is clear

4.3 Linear Algebra Essentials

Definition 4.1 (Singular Value Decomposition). For any matrix A ∈ Rm×n, the singular value
decomposition (SVD) is

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is diagonal with non-
negative entries σ1 ≥ σ2 ≥ · · · ≥ 0 (the singular values).

Definition 4.2 (Matrix Norms). For A ∈ Rm×n:

� Frobenius norm: ∥A∥F =
√∑

i,j a
2
ij =

√
tr(ATA)

� Spectral norm (operator norm): ∥A∥2 = σ1(A) (largest singular value)
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4.4 Optimization Foundations

Definition 4.3 (Gradient and Gradient Descent). For a differentiable function f : Rn → R, the
gradient descent update is

θk+1 = θk − αk∇f(θk)

where αk > 0 is the step size (learning rate) at iteration k.

Definition 4.4 (Convexity). A function f : Rn → R is convex if for all x, y ∈ Rn and λ ∈ [0, 1]:

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

For differentiable f , this is equivalent to: f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y.

Definition 4.5 (Smoothness). A function f : Rn → R is L-smooth if its gradient is L-Lipschitz
continuous:

∥∇f(x) −∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn

4.5 Probability and Statistics

Definition 4.6 (Risk Minimization). Given a loss function L and data distribution D, the goal is
to minimize the expected risk:

R(θ) = E(x,y)∼D[L(fθ(x), y)]

In practice, we minimize the empirical risk over training data {(xi, yi)}Ni=1:

R̂(θ) =
1

N

N∑
i=1

L(fθ(xi), yi)

Definition 4.7 (Bias-Variance Decomposition). For regression with squared loss, the expected
prediction error decomposes as:

E[(y − f̂(x))2] = Bias2 + Variance + Irreducible Error

where the bias and variance measure the model’s systematic error and sensitivity to training data,
respectively.

4.6 Neural Network Fundamentals

Definition 4.8 (Feedforward Neural Network). A feedforward neural network with L layers is a
composition of affine transformations and nonlinear activations:

fθ(x) = WLσ(WL−1σ(· · ·σ(W1x+ b1) · · · ) + bL−1) + bL

where θ = {W1, b1, . . . ,WL, bL} are the weights and biases, and σ is an activation function.

Theorem 4.9 (Universal Approximation). A feedforward neural network with a single hidden layer
containing a finite number of neurons can approximate any continuous function on a compact subset
of Rn to arbitrary accuracy, provided the activation function is non-polynomial.
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groups, graphs, geodesics, and gauges, 2021.

[7] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems (NeurIPS), volume 31, 2018.

[8] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

[9] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J.
Hsieh, Y. Lu, and Q. V. Le. Symbolic discovery of optimization algorithms. arXiv preprint
arXiv:2302.06675, 2023.

[10] H. Chung, J. Kim, M. T. McCann, M. L. Klasky, and J. C. Ye. Diffusion posterior sampling
for general noisy inverse problems. In International Conference on Learning Representations
(ICLR), 2023.

[11] J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. In International Conference on Learning Representa-
tions (ICLR), 2021.

[12] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. Proceed-
ings of the National Academy of Sciences, 117(48):30055–30062, 2020.

[13] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, 1989.

30



[14] L. de Moura and S. Ullrich. The Lean 4 theorem prover and programming language. In
International Conference on Automated Deduction (CADE), pages 625–635. Springer, 2021.

[15] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima can generalize for deep nets.
In International Conference on Machine Learning (ICML), 2017.

[16] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov,
F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz, et al. Discovering faster matrix multiplication
algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

[17] A. Ferguson, M. LaFleur, L. Ruthotto, J. Thaler, et al. The future of artificial intelligence and
the mathematical and physical sciences (ai+mps), 2025. NSF Workshop White Paper.

[18] A. Ferguson, M. LaFleur, L. Ruthotto, J. Thaler, Y.-S. Ting, P. Tiwary, S. Villar, E. P. Alves,
J. Avigad, S. Billinge, C. Bilodeau, K. Brown, E. Candes, A. Chattopadhyay, B. Cheng,
J. Clausen, C. Coley, A. Connolly, F. Daum, S. Dong, C. X. Du, C. Dvorkin, C. Fanelli,
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